Section outline

  • Το μάθημα καλύπτει την περιοχή των νευρωνικών δικτύων με αναφορά και σε άλλες τεχνικές από την ευρύτερη περιοχή της υπολογιστικής νοημοσύνης. 

    Διαλέξεις

    • δίκτυα πρόσθιας τροφοδότησης και μάθηση μέσω διόρθωσης σφάλματος (πολυστρωματικό perceptron και ο αλγόριθμος backpropagation)
    • μηχανές διανυσμάτων υποστήριξης
    • συσχετιστικά δίκτυα, δίκτυα Hopfield, πολυστρωματικά δίκτυα με ανατροφοδότηση 
    • δίκτυα ανταγωνιστικής μάθησης και χάρτες Kohonen
    • ενισχυτική μάθηση 
    • αλγόριθμοι συνδυαστικής βελτιστοποίησης, γενετικοί αλγόριθμοι
    • βαθιά μάθηση, συνελικτικά δίκτυα, επαναληπτικά δίκτυα, αυτοκωδικοποιητές, παραγωγικά αντιπαραθετικά δίκτυα

    Εργαστήριο

    • επιβλεπόμενη μάθηση: αφελής μπεϋζιανός ταξινομητής, παραμετρικοί και μη-παραμετρικοί ταξινομητές, ανταλλαγή μεροληψίας - διακύμανσης, ταξινομητής k-πλησιέστερων γειτόνων, υπερπαράμτεροι και διασταυρούμενη επικύρωση, μετρικές αξιολόγησης, προεπεξεργασία δεδομένων, κατάρα της διαστατικότητας, εξισορρόπηση συνόλων δεδομένων
    • μη επιβλεπόμενη μάθηση: ομαδοποίηση, αλγόριθμος k-μέσων, αξιολόγηση ομαδοποίησης, ασαφής αλγόριθμος c-μέσων, ιεραρχική ομαδοποίηση, γκαουσιανά μοντέλα μειγμάτων, αυτοοργανούμενοι χάρτες Kohonen
    • ενισχυτική μάθηση: δυναμικός προγραμματισμός, Q-learning, βαθιά ενισχυτική μάθηση
    • βαθιά μάθηση: βιβλιοθήκη tensorflow, συνελικτικά δίκτυα, βιβλιοθήκη keras, επαναληπτικά δίκτυα, δίκτυα υπολοίπων