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The Data Science Lab @ UniPi.GR

Our research agenda:

m Extreme-scale data
management

= Mobility data analytics
at the computing
continuum (edge / fog
/ cloud)

= Time series analytics &
forecasting

= Semantic integration

m efc.

hitps://www.datastories.org
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1.
Introduction —
Getting to know mobility data




Application domains

= Land movement: Find shortest path from location A to
location B; Which points of interest (POls) are found in a range
of 5 km from A?¢ etc.

m Sea / Air movement: Find the routes from (sea/air) port A to
port B with direct connection (or at most 1 intermediate stop)?
Which is the anticipated movement of vessel / aircraft X during
the next At? etc.

All images source: Wikipedia.org
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Examples of datasets @ land

m Geolife (source: Microsoft Research Asia)

m 182 user movements (under various
transportation means) organized in 17,621
trajectories;

m 68 Kmin 2,7 hrs. per trajectory, avg.;
m dense sampling (1 sample every ~5 sec)

m T-Drive (source: Microsoft Research Asiq):

m 2,357 taxis in Beijing for 1 week (15 million
points, in fotal);

m 869 Km per taxi, avg.;

= sparse sampling (1 sample every ~3 min) image source: research.microsoft.com



Examples of datasets @ land (cont.)

New York City Taxi Pickups
2009-2015

m NYC taxis (source: NYC Taxi & Limousine
Commission): 1.4 billion trips, Jan. 09 — Dec.17.
» Ride-hailing apps data are also provided
m Atftention: pickup — drop-off locations are only available

Brooklyn Monthly Taxi Pickups Manhattan Monthly Taxi Pickups

trailing 28 days, based on NYC TLC trip data Trailing 28 days

1,000,000
750,000
500,000

250,000 /

0

image source: toddwschneider.com



Examples of datasets @ land (cont.)

® Mobility tfrends during COVID-19 pandemic

® e.g., search for correlations (Theodoridis & Theodoridis, 2021; Georgiou et al. 2022)

Mobility Trends Mobility Trends
Change in routing requests since January 13, 2020 Change in routing requests since January 13, 2020
Q Athens ® Q New York City ©

w20 +20% L N,
'A/‘AA,/\/\/\/\//\\‘/ 2 — \z)}&o/ Wil / ) /) A ine

RRRRRRRRRRRRRRRRRRRRRRRR

Data source: www.apple.com/covid19/mobility 3



Examples of datasets @ seq

= AIS (Automatic Identification System)

m >250,000 vessels tfracked daily (source:
marinetraffic.com)

m AlS signal transmitted: every 2 to 10 sec
depending on speed while underway;
every 3 min while at anchor

[ 2= Station 2782: University of Piraeus

Status: Operator: N/A

Area Covered: Elevation: N/A
1845km?

Coverage Map > | Average:2.92 Max: 25.84

VesselsinRange >

e T — image source: marinetraffic.com
' + top: global snapshot on May 26, 2022; vessel colors

correspond to different vessel types (e.g., cargo is
green, tanker is red)

+ left: vessels tracked by the Univ. Piraeus’ AlS station
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Examples of datasets @ sea (cont.)

= Piraeus (GR) provided by Univ. Piraeus *
= Brest (FR) provided by French Naval Academy **

sampling rate (avg.)

Dataset Piraeus Brest
fime frame ~32 months 6 months
(2/5/2017-26/12/2019) | (01/10/2015-31/03/2016)
# of records ~244M ~16M
# of distinct vessels (onor:frliﬂzed) ~5K
~5 min <1 min

complementary
data

ports, coastline,
weather, areas of
interest, etc.

ports, coastline, weather,

trajectory synopses, etc.

Zenodo downloads

~1K (since 2021)

~14K (since 2018)

* https://doi.org/10.5281/zenodo.5562629
** https://doi.org/10.5281/zenodo.11675%94

Piraeus
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Examples of datasets @ air

= ADS-B (Automatic Detection System
- Broadcast)

m >15,000 aircrafts flying at the same time
worldwide (source: flightradar24.com)

m ADS-B signal fransmitted: every 1 sec
while on air; not transmitted while on
the ground

QID46

United States - US Air Force (USAF)  fligh

#6 Worldwide d by 60

Sango:

MHZ . N/A

MILDENHALL
BST (UTC +01:00

ACTUAL 07:56 ESTIMATED

@ flightradar24

image source: flightradar24.com

+ top: global snapshot on May 25, 2022; yellow vs. blue
planes if located by terrestrial vs. satellite stations

* left: the route of a military aircraft
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Examples of datasets @ air (cont.)

= Air traffic provided by OpenSky Network*
= For each flight, origin-destination airports and respective timestamps
= Timeframe: Jan 1¢t, 2019 — Jan. 315, 2022 (ongoing)
= high vs. low peak: Aug. 2019 (2.3M records) vs. Apr. 2020 (843K records)
= Related dataset: in-flight emergency situations **
= More analytics examples at hitps://traffic-viz.qithub.io

8

European airports
2 O EDDF
am_ () EGLL
= = OEHAM Saar-Hunsric
E‘m LEMD sy
E O LFPG X Soarld
k] LIRF 7‘ \
‘5 200 O LSzH L e
- i =F R\ <% Za
“TT N1 aw Onbw 20 MM Ny Odow 21 AM Ay Odbw 22 A Flight A319 near Luxembourg
day on Aug 20t 2019, “hot brakes”

. alarm
* https://doi.org/10.5281/zen0do.3737101

** https://doi.org/10.5281/zen0d0.3937482 12


https://traffic-viz.github.io/
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Pre-processing mobility data




Data pre-processing

= Definition: preparing data T={<p; 1> <pa2 1>, ..., <pn. 1>}
for analytics purposes -

m Data pre-processing includes:
® Cleansing (noise removal, smoothing, map matching, etc.)
» Transformation (frajectory segmentation, simplification, etc.)
= Enrichment (semantic annotation, data fusion, etc.)
= Sampling (over the entire dataset)
etc.
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Data pre-processing (cont.)

® An example: data pre-processing pipeline (urban traffic)

L~

*0*0

o
N
«

Y ¥
e

Cleansed,

Streaming
GPS traces

integrated
GPS traces

Source: Track & Know project

map-matched,
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From GPS locations to trajectories

m GPS records correspond to samples (p;, 1) of our movement — inferring
‘continuous’ movement is not trivial.

m A trajectory is represented by a 3D[4D] polyline (x-, y-, [z-,] 1-); vertices
correspond to (p;, 1)
m alternative: a 2D[3D] polyline consisting of pi‘s along with an array of f;'s

- =\ , -\
: . . . (pit) (Pi+1.fi+1) | / /
m Typically, linear interpolation ~f - s
is assumed between - /
(o1, fi) and (P, tia) ( ]
—t —t
p(t) =|x + (Xip1 — X)) Y + Yis1—i)
i+1 — L i+1 — L

16



GPS Data Cleansing

m Erroneous recordings: noise vs. random errors

m Noise corresponds to values that are ‘impossible’ to
appear

m Can be detected and removed using
appropriate filters

® e.g., maximum speed

m Potential Area of
Activity (PAA)

S(P;): Limited
Area of P,




GPS Data Cleansing (cont.)

m Erroneous recordings: noise vs. random errors

® Random errors correspond to ‘possible’ values that appear to be small

deviations from actual ones

m Can be smoothed using a
plethora of statistical methods

® e.g., least squares spline
approximation (de Boor, 1978)

_____ o----- Original trace
—&——  Smoothed trace
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GPS Data Cleansing (cont.)

m Special case: network-constrained movement
m Requires an additional step: map-matching

m Several techniques (Quddus et al. 2003; 2007):
m Geometric map-matching
® Topological map-matching
® Probabilistic map-matching
= Hybrid map-matching

19



Trajectory segmentation

m Goal: Segment sequences of points in homogeneous sub-sequences (called

trajectories)

® Various approaches:
m Segmentation via raw (spatial / temporal) gap
m Segmentation via stop discovery
m Segmentation via prior knowledge (e.g., office / sleeping hours, arrival at ports)

= efc. M%
W

stops
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Trajectory simplification

® The need for simplification: efficiency in storage, processing time, etc.
m Actually, a form of data compression

‘'signature’ as much as possible
by keeping a set of critical
points only

= Goal: maintain the original x | S

m Approaches
m Offline, i.e., multi-pass, vs.
® Onling, i.e., 1-pass

CRITICAL POINTS

image source: aminess.eu
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Trajectory simplification (cont.)

m Offline approaches:
m top-down vs. bottom-up vs. sliding window vs. opening window

® e.9., Synchronous Euclidean Distance - SED (Meratnia & de By, 2004)

m Adapts the popular Douglas & Peucker polyline simplification (1973) to the mobility
domain

P,'('.\',',_l"',t,')Q O
W | O

image source:
https://commons.wikimedia.org/wiki
/File:Douglas-Peucker_animated.gif

P.(xpYets)

Ps(x5,y5.t5)
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Trajectory simplification (cont.)

= Online approaches, e.g., Trajectory Synopses o SN s alh
(Patroumpas et al. 2015; 2017) .
= Maintains a velocity vector
per moving object in order : | BN
to detect instantaneous N XIS A 0 i
events \\ N Gap end .

® stop; change in velocity
vector; etc.

Stop
Slow motion

» Tradeoff: degree of
compression vs. quality of >
approximation  Takeoff

“ 4. Landing

-4 Change in Heading
u Gap start

Gap end

* Change in Speed
* Change in Altitude
¢ Slow motion ‘
® Stop

0‘72‘ 2
- «

images source:
datacron-project.eu

,.
il
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Trajectory enrichment

= From “raw” sequences (p.,t) of fime-
stamped locations

.. to meaningful mobility tuples
<where, when, what/how/why>

= Semantic trajectory (Yan et al.
2011; 2012, Parent et al. 2015)
®m semantically-annotated

representation of the motion path of
a moving object

= sequence of episodes (stops/moves)
along with appropriate tags

-
------
+®

o
-----------

.
+* e
. .
- ...-“'.'.

------

A 6:30pm-9pm
11lpm-8am PALS
cﬁ&

8:30am-6pm ll
Happy Day!
- .

...... = p
fre e e @ .NOIse XPnce range

Heart giage of

Temperature Reviews
rate
sleep

Air polution Open-close hours

Heart Emotlonal
rate status

Source: MASTER project
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3.
Analyzing mobility data




Types of mobility data analytics

® Discovering groups and outliers

m Discovering frequent routes (hot paths) and
frequent locations (hot spofts)

= Route prediction tasks, etfc.

OUTPUT | CORRECT VALUE | OBJECTIVE FUN. | VALUE

v % Faxr from
- ceality 1L
s Closer 100

. o

111

Very close 0

image source: kdnuggets.com




Orthogonal issue: Trajectory similarity

® How do we measure similarity between two trajectories A, B2
m not so trivial as it sounds

A Yo

B .\\.}

. .
= Alternative approaches: .-:. ‘ A
= Trajectory as a 2D time-series e 0@ -
» Trajectory as a 2D polyline q.}.-\
= Tragjectory as a movement function L.\g
()



Trajectory as a tfime series

® Time series similarity has been studied extensively (e.g., Vlachos et al. 2002;
Chen et al. 2005). Examples:

® Fuclidean distance, Chebyshev distance, Dynamic Time Warping (DTW),
m L ongest Common SubSequence (LCSS),

m Edit Distance on Real sequences (EDR),

m Edit distance with Real Penalty (ERP), etc.

28



Trajectory as a polyline

® DISSIM (Nanni & Pedreschi, 2006; Frentzos et al. 2007)
m Extension of Euclidean distance:

t, Euclidean M

DISSIM(R,S) = j tan(R(t),S(t))dt

n—1

1
DISSIM(R, S) ~ Ez ((LZ(R(tkLS(tk)) + Ly (R (tis1), S(tisn)) )
k=1
(1 — tk))
m DISSIM function is a metric 1. d(z,y) >0
m Conditions: (1) non-negativity; (2) identity of indiscernibles; 2 d(x’ v) ; loz=y
(3) symmetry; (4) triangle inequality 3 d(a:,y) o)
4. d(z,z) < d(z,y) +d(y, 2)



Trajectory as a movement function

m Trajectory similarity using Fréchet distance, e.g. (Buchin et al. 2009;

Gudmundsson et al. 2019)

® g measure of similarity between curves that takes info account the location and

ordering of the points along the curves
m continuous mappingu : A — B

= distance max d(a, ,u(a))

S

image source: https://omrit.filtser.com

Discrete Frechet Distance of curves P and Q: 2.1124

| dFD Tength

———ll
——r |

2 3 4 5 B
image source: mathworks.com



Point clustering

= DBSCAN (Ester et al. 1996): A density-based algorithm for
discovering clusters in large spatial databases with noise

® Method parameters:
m radius of an object’s neighborhood (e)
= minimum population within an object’s neighborhood (m)

m Cores (build clusters) vs. Borders (assigned to their cores’ clusters) vs. Noise

= The notion of density reachability

m Directly Density-Reachable vs. Density-Reachable vs. Density Connected

\ ) L ] l ]
I 1

|
e

m:3 @ Ofop ) p
g

q o
31



Point clustering (cont.)

MinPts = 5

= OPTICS (Ankerst et al. 1996): ordering points to identify the
clustering structure

® The notions of core distance and reachability distance

Reachability plot: partitions the dataset in a sequence of
‘valleys’ (==> clusters) and ‘hills’ (==> outliers)

—
—_—

core-distance(0)
reachability-distancegp, 03
q

reachability-distance(q,o

> £y
=0 ‘av
Qv oS
UC & _Cp
£0 517}
U0 o0
oo (

ordering of points ordering of points
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Trajectory clustering

m Objectives:
m Cluster trajectories w.r.t. similarity
= Eventually, detect outliers

m [ssues:
= Which similarity function?

m Upon the entire tfrajectories or
portions (sub-trajectories?

‘L‘ ,,. Emas

Could you detect
clusters? outliers? |

33



Trajectory clustering (cont.)

m T-OPTICS (Trajectory OPTICS) (Nanni & Pedreschi, 2006)

m Builds upon OPTICS (Ankerst et al, 1999) and DISSIM distance

function tn
DISSIM(R,S) = J Ly(R(t),S(t))dt

ty

= The reachability plot produces “valleys” and *hills”
m Valleys =2 clusters; Hills = outliers (noise)
m Recall that DISSIM is a metric = indexing is allowed

Time

Time

Reachabilify pIdt
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Discovering collective mobillity behavior

m Detecting a large enough subset of objects
moving along paths close to each other for
a certain time. Main approaches:

m Spherical-like clustering: Flocks (Laube et al.
2005; Gudmundsson & van Kreveld, 2006) vs.

m Density-based clustering: Convoys (Jeung et
al. 2008); Swarms (Li et al. 2010), etc.

= Hybrid: Evolving Clusters (Tritsarolis et al. 2021)

m Note: these methods work on time-

aligned location sequences = need for
fixed re-sampling




Flocks and variants

m [nferesting applications of the flock/convoy pattern discovery:
m |dentify long flock patterns (top-k longest flock pattern discovery)
m Discover meetings (fixed- vs. varying- versions)
m Discover convergences
m Discover leaders and followers O

convergence

36



Location / Trajectory prediction .

F2 &~ B
traffic jam ___ \‘4 to
® Prediction aims to predict the future location(s) of _F ’i
(or even the entire trajectory to be followed by) /:\ /f‘ t
a moving object. h

= Two main approaches: Formula- vs. Pattern-based prediction
= Motion function models, e.g., RMF (Tao et al. 2004)

m vs. patterns built upon the history, e.g., Personal profiles (Trasarti et al. 2017)

m A survey of 50+ methods: (Georgiou et al. 2018)




Location / Trajectory prediction (cont.)

» MyWay (Trasarti et al. 2017) maintains a Personal Mobility Data Store (PMDS) per
participating person
= How is a person moving? User’s Personal Mobility Data Store

m According to his/her past S ndidial l s N
movement patterns :“rz:;:“’/—/? “‘ Predictor /
» What if the personal datastore T

is not adequate?

m | ook into the collective
knowledge base

m 3 predictors: personal (red),
collective (blue), hybrid (green)

image source: kdd.isti.cnr.it 3 8



4.
Real-world use case




MDA in The maritime domain

= Vessel Route Forecasting (VRF)
= Vessel Traffic Flow Forecasting (VTFF)
= Vessel Collision Risk Assessment (VCRA)

Material based on:

« Chondrodima E., Mandalis P., Pelekis N., Theodoridis Y. (2022) Machine Learning Models for Vessel Route
Forecasting: An Experimental Comparison. Proc. 23rd IEEE Int. Conf. MDM.

* Mandalis P., Chondrodima E., Kontoulis I., Pelekis N., Theodoridis Y. (2022) Machine Learning Models for
Vessel Traffic Flow Forecasting: An Experimental Comparison. Proc. 3rd IEEE Int. Workshop MBDW.

« Tritsarolis A., Chondrodima E., Pelekis N., Theodoridis Y. (2022) Vessel Collision Risk Assessment using AlS
Data: A Machine Learning Approach. Proc. 3rd IEEE Int. Workshop MBDW.
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Motivation

B vast spread of AlS-enabled maritime fleet Motivation for several
B Emergence of Unmanned Surface Vessels (USVs), analytics & forecasting
etfc. tasks

B Topics of interest:

B vessel Route Forecasting (VRF) has a wide range of
applications, such as accurate ETA calculation, collision /
traffic jaom assessment, etc.

B Vessel Traffic Flow Forecasting (VTFF) is vital for
maritime authorities to alleviate congestion (operational
level); assists route planning purposes (strategic level)

B vessel Collision Risk Assessment (VCRA) is critical for
maritime safety

image source: image source:

B All the above are quite challenging due to complex marinetraffic.com www.ntnu.edu
and dynamic maritime traffic conditions



Datasets at hand

Piraeus.”

= Piraeus (GR) provided by Univ. Piraeus [1] -
« Aegean-Cyclades (GR) provided by MarineTraffic e
= Brest (FR) provided by French Naval Academy [2]

Aegean -
Dataset Piraeus Aegean-Cyclades Brest Cyclades
6 months
. 1 day 1 month

Time frame (01/10/2015-

(3/7/2018) (01-30/11/2018) 31/03/2016)
# of records 455,145 1,720,368 16,311,185
# of distinct vessels 361 2645 5041
Sampling rate (avg.) ~ 5 min ~ 2.5 min <1 min
Used in VCRA VRF, VTFF VRF

[1] https://doi.org/10.5281/zenodo.5562629; [2] https://doi.org/10.5281/zenodo.1167594



VRF — Problem formulation

B Given:

B vessel's trajectory [(po.to). ..., (Pe t )]
consisting of k transitions at (irregular)
timepoints,

B o number of transitions r, and
B time duration (prediction horizon) At

BPredict:

Bihe vessel's future trajectory [(pest tist). -0 (Prsr tesr)] CONsisting of r transitions
at (fixed) timepoints, i.e., with sampling rate equal to At/r



VRF — Proposed framework

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
Historical Cleansing Operations Spatiotemporal-aware Processing Mechanism TrainingPhase Future Location
Trajectory Record ‘

Deduplication . Model Training I
Nolse s Trajectory !
egmentation
. L \_Elimination ? )

=== X Stationary T o - : X
Simplification i ) :I Machine =

y Inslgnificant 5% Leamning y .
ns! O J Model 144
Trajectory Elimination | s

B |nput: a historical AIS database
B ntermediate phases: data cleansing; trajectory preprocessing; model training

M Output: a trained VRF model
B Different ML models validated: Linear, SVMr, CART, RFT, AdaBoost, MLP, GRU, LSTM



VRF — Experimental results

= Quality measures:

®m Average displacement error
(ADE) — the average
distance error for all
predicted time steps

= Final displacement error
(FDE) - the distance error at
the final predicted time
step

= Qutput:

m LSTM clearly outperforms all
competitors

PREDICTION RESULTS FOR Af UP TO 30 MIN. AND r UP TO 6 TRANSITIONS (UNIT: METERS)

Data Method ADE per At in min. for r=6 FDE(30 min)
5 10 15 20 25 30

Linear 867 1717 2569 3420 4271 5121 9371

% CART 340 889 1481 1916 2335 2796 5102
E RFT 221 654 1114 1506 1911 2377 4709
5» AdaBoost 230 640 984 1374 1785 2217 4376
§ SVMr 638 1335 2223 2938 3706 4310 7328
% MLP 180 735 1290 1782 2264 2765 5270
< GRU 79 195 337 511 727 977 2229
LSTM 76 184 317 481 684 920 2097

Linear 1158 1788 2412 3030 3642 4312 7666

CART 571 1091 1679 2218 2708 3247 5945

RFT 286 641 1016 1445 1852 2226 4094

2 AdaBoost 252 610 983 1387 1782 2159 4041
@ SVMr 697 1388 2008 2668 3276 3828 6591
MLP 677 1067 1482 1936 2403 2894 5344

GRU 241 466 710 959 1215 1485 2832

LSTM 239 440 663 899 1146 1408 2719




VTFF — Problem formulation

t o

m Given:
m g set of vessel frajectories D spanning in Dy (Minimum
bounding box of locations) in space and Dy in time,

® a time duration (prediction horizon) At,
® g number of temporal transitions r
m a spatiotemporal (3D) grid that partitions Dy into grid
cells of resolution GxG, and Dy U 4t into r time frames
m Predict:

® The expected number of vessels (presence) in each
grid cell related to At.

Example grid: 4 x 4 x 5 space-
time frames

Traffic flow (Nov. 2018; G = 10km). Darker
color indicates higher traffic flow.



VTFF — Proposed approaches

VRF-based VTFF
Perform VRF using a Allocate future locations Calculate presence within each
trained LSTM model into the spatio-temporal 3D grid cell
T e 3D)grid = &
v e k;g»ﬁ s\
_J—*t*i%ﬁ:ﬂ; e a-Em A . EE N
Ptoent |—3—> ‘@; AAAAAAAA S/ / 777777 : \ % Vé -
VS.
Sequence-based VTFF
Produce a sequence of vessels’ Train an ML model to
presence per spatial (2D) grid cell predict the temporal
2 &y evolution of each
T sequer~=
wi™
% é - ‘ eemn Tensor




VTFF — Experimental results

B F B F A
— 1 1 Yo NY,
SMAPE = Z Z ||y“| . T"’ t|| Jaccard = 3" 7:;’5 - th:
H . — —  1Yb Yb — —
» Quality measures: =17 =1 ' b=1" =1 [Tht b
= Symmetric Mean Absolute Percentage Error (SMAPE);
« Jaccard similarity coefficient
TABLE II.
° . PREDICTION RESULTS (SMAPE, JACCARD) FOR THE VRF-BASED VTFF
" Experlmenfs. STRATEGY IN THE TESTING SET (ALL GRID CELLS) .
» comparing the two approaches (Table |); Crd cell | Trme Trame
(km) (min) SMAPE  Jaccard
= a closer look af the VRF-based approach (Table Il p 057 095
5 10 26.20 0.87
TABLE L
PREDICTION RESULTS (SMAPE) IN THE TESTING SET (20 BUSIEST GRID 15 44.00 0.78
CELLS), G = 10KM . 5 4.97 0.97
10 10 14.23 0.93
VTFF strategy Method | Time prediction horizon (min)
15 24.90 0.87
5 10 15
5 3.52 0.98
Flow XgBoost | 1772 30.41 27.43 15 0 10,08 095
sequence-based ' '
ARIMA | 46.94 37.75 48.73 15 18.04 0.91
VREF-based LSTM 6.35 16.76 28.71




CRI = WU =Wpcpa * Upcpa + Wrcpa = Urcpa+

VCRA - Problem formulation WU e U e s U

' W =[Wpcra> Wrcpa, Wp, Wa, W] =
[0.4457,0.2258,0.1408,0.1321,0.0556]

B (frain a ML model in order to) estimate CRI(v,,v4), i.e., the g y
collision risk index of an own vessel v, w.r.t. a target vessel 22D
v; that are in an encountering process, at real-time
B Two vessels are in an encountering process during a time ;q, L4 YO
period, when their distance decreases along this time period , ~ _

and increases right after

Vessel collision geometry

7
13882 10 A
. . Y(N) 4Co
138 e (left) Trajectories of C;
""""" encountering vessels in
1.3878 N . TRA.
the case of crossing /BC
1.3876 situation —image source: 4
T 1aema Park & Jeong 2021 [21] Cot vt
=" Vot :
1.3872 . . Ry /,VO ™
(right) The moving vector I 2
1.387 diagram of encounter Bot R 4
= ships - image source: v~ AN ‘
= [[eT— Chen et al. 2015 [7] ~ Vet R X@)
1.3866

512 514 516 518 52 522
x(m) x10°



VCRA - Proposed methodology

m Given the following features for each
pair (vVo,vi) of vessels in an
encountering process:

m [ocation (x, y), length, course @, speed V

m Create a dataset with 5+2 features:

m distance D, speed V5 and Vi, course ¢
and ¢y

= (optionally) lengthO and lengthT

® Train an MLP model with

® two hidden layers (of 256 and 32 neurons,
resp.)

m one output: CRI(va,Vy)

L4

lengthg

lengthT

(top) the proposed MLP-VCRA architecture

(right) the estimated o
CRI over cargo vessels : 06
as they approach the
port of Piraeus

CRI

0.2

0.0



VCRA — Experimental results

® |n terms of quality, our MLP-VCRA approach
m Reaches 87.5% accuracy after training
m Qutperforms its competitors by a large margin

® |n terms of latency* (i.e., response time)

m Qutperforms competitors and the kinematic
equations (ground truth)

m Regarding the features used

m Vessels' length is optional. Nevertheless, it
marginally improves quality and latency

* Machine used: a single node with 8 CPU cores
and 16 GB of RAM

R
Method MAE RMSE  ooponse
Time (msec.)
Kinematic Eq. - 329 £+ 11.7
SVM-VCRA [19] 0.0572 0.0945 351 £ 145
AFNN-VCRA [20] 0.0476 0.0934 314 + 2.16
RVM-VCRA [21] 0.0359 0.0802 322 + .744
MLP-VCRA 0.0179 0.0485 311 + 1.05
response
AccuTey, MAE RMSE time (msec.)
(%) ;
(min.; med.; max.;)
MIESVCRA 86.827 0.0179  0.0485  196; 354; 680
(lengthp)
MIERSVERS 87.134 0.0167 0.0480 201; 360; 684
(lengthr)
MRS 87.514 0.0165 0.0472  192; 332; 638
(lengtho,T)
MLP-VCRA 87.207 0.0189  0.0478  197; 369; 695

(w/out lengtho,T)




Conclusions

B Toking advantage of the wealth of AlS data, we studied several
popular ML methods w.r.t. their prediction accuracy on three
maritime analytics problems.

B Our experimental results show that

B VRF: LSTM outperforms competition
B VTFF: the VRF-based solution is quite promising

B VCRA: the MLP-VCRA approach avoids CRI calculations and
outperforms competition

m Assuch, the proposed VRF/VTFF/VCRA models are strong
candidates to be used as references for MTS purposes




Summary




Summary

m The field of MDA has many success stories to
narrate on*:

® Data management - access methods, query
processing techniques, DBMS extensions (the
so-called, Moving Object Databases)

» Data exploration — data mining techniques
(clusters, flocks, convoys, T-patterns, hot spofs,
etc.)

m .. mostly based on the sampled spatio-
temporal coordinates (x-, y-, z-, 1-) of moving
objects

*see e.q. (Pelekis & Theodoridis 2014)
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Summary (cont.)

® The new era that emerges is around two
keywords:

= Semantically-annotated trajectories™ — information
about when, where, what, how, why

m Extreme-scale mobility data** — voluminous,
streaming, disperse information about objects’
movement

Morning sleep

Evening sleep

*Parent C, et al. (2013): Semantic trajectories modeling
and analysis. ACM Computing Surveys, 45(4).

**Vouros GA, et al. (2018) Big data analytics for time critical mobility forecasting: recent
progress and research challenges. In Proceedings of EDBT.
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