
Exercise Solutions - Advanced Neural Networks

1 Perceptron activation functions

Last week we used the activation function

g(h) =

{
1 h > 0

0 h ≤ 0
(1)

Why is this not used with backpropagation?

Answer:
Backpropagation is entirely dependent on the output of the neurons not being hard zeroes and ones, so that
it can make gradual changes to them. From a technical perspective, it is dependent on the activation function
yi = f(ai) being differentiable, with a derivative f ′(ai) that can be written as a function of the neuron output yi
(you could perhaps write it as g′(yi) = f ′(f−1(yi))), in order to estimate how much the weighted sum of inputs
ai has to change in order to achieve a change in yi that is proportional to the derivative of the error yi − ti.

2 Hidden layers

What is the minimum number of hidden neuron layers needed in order to approximate an arbitrary continuous
function, and why?

Answer:
You need three layers (one output layer plus two hidden layers) in order to create any decision boundary. Take the
two-dimensional case: one layer gives you straight lines, and two layers gives you any shape that is in between any
number of lines, so any convex shape - which includes all triangles. By combining enough triangles (remember,
we haven’t put any limits on how many neurons we have in each layer) we can approximate any shape. Luckily,
this holds for any number of dimensions, so three layers is enough no matter how many input nodes we have.

3 Validation

Why do we use a validation set? Describe how the three different cross-validation methods presented in the
lecture slides work, and what their advantages and disadvantages are.

Answer:
First off, there has been some confusion about exactly what cross-validation means. The lecture slides and the
book describes it as something involving three sets: a training set, a validation set and a test set, and is described
as something you do in order to implement early stopping. Contrary to this, the cross-validation that you were to
do in the second mandatory exercise only involves a training set and a test set, and isn’t used for early stopping
at all!

The first definition is actually just an extension to cross-validation that is used in order to do early stopping
properly. In both cases we split up our data and use parts of it for training data while the rest remains “unseen”
by the training, and is used for validating the training. To better avoid bias, this data then has to be split into
separate sets for evaluating when to stop training (the “validation set” in the lectures) and for evaluating final
performance (the “test set” in the lectures).

1

In general then, a validation set is used in order to evaluate the performance of the trained classifier on unseen
data. In accordance with the terminology used in the book, it would also be valid to answer that the validation
set is used to test for when it is right to stop early.

The three validation methods work as follows:

• Simple cross-validation: the data is simply split into two (three) equally large parts, with one part used for
training, (one part used for determining early stopping) and one part used for final evaluation.

• k-fold cross-validation: the data is separated into k folds. The training is then done k times, each time
using a different fold as the test data (or with early stopping: one fold for validation during training and
one fold for the final evaluation) and the rest as training data.

• Leave one out cross-validation: in turn, leave out each single data sample and train on the rest, testing
on the single sample you left out, and calculate the success rate. (kind of an extreme case of k-fold cross-
validation).

4 Multi Layer Perceptron

Implement the MLP shown below, and train it to correctly perform the XOR function.

Figure 1: MLP with one hidden layer and two hidden nodes.

Answer:
No solution given, this is very similar to assignment https://github.com/gsiolas/NN-exercises/tree/master/material/
assignment2.

5 Delta(error) function

In the lecture slides the backpropagation deltas are first presented as
δk = (yk − tk)yk(1 − yk)

What does this tell us about the activation function in use?

Answer:
In general the backpropagation deltas are defined a s δ k = (yk − t k)g′(yk) where g ′(yk) i s t he d erivative o f the
activation function as a function of the activation output as mentioned in the previous exercise. In this case we
have δk = (yk − tk)yk(1 − yk), so we must have g′(yk) = yk(1 − yk). Then we would need to be either clever at
math or hope that this is a common activation function so that we can find it in some text about neural networks.
In fact, this g′(yk) corresponds to the single most common activation function:

f(x) =
1

1 + e−x
(2)

2

https://github.com/gsiolas/NN-exercises/tree/master/material/assignment2

The derivation goes like this:

f ′(x) =
e−x

(1 + e−x)2

a = 1 + e−x

f ′(x) =
e−x

(a)2

f ′(x) =
1 + e−x − 1

(a)(a)

f ′(x) =
a− 1

(a)(a)

f ′(x) =
a− 1

(a)

1

(a)

f ′(x) = (
a

a
− 1

a
)
1

a

f ′(x) = (1− 1

a
)
1

a
f ′(x) = (1− f(x))f(x)

6 Natural language MLP

You are to design an MLP that would learn to hyphenate words correctly. You would have a dictionary that
shows correct hyphenation examples for lots of words. Think about the following: What should the input to the
neural net be?

• How should this input be encoded to work well with the classifier?

• How is should the output be encoded?

• How many layers do you need?

• How many neurons should there be in each layer?

Answer:
There are many ways of solving this, but the simplest way to arrange the input is to take pairs of letters as input,
and assume that some external mechanism will feed us with candidate letter-pairs.

The next question is then how to encode the letter-pairs. Neural networks takes their input as a fixed number
of real-valued scalars. So we need an encoding in that form. But, there is no clear and easy way to put the
relevant set of letters on a one-dimensional scale, or even a multidimensional scale.

What we can do is to use binary inputs: we encode each letter with one input for each possible value. In
the biological analogy of neural networks this would correspond to having a specialized neuron in our brain that
detects a single letter. E.g. in the English alphabet we would get 26 inputs per letter. Then we want two letters
as input, so we would get a total of 52 inputs to our neural net.

Finally, since we take pairs of letters as input, the output can simply be a true or false value that says whether
this is a good place to hyphenate or not. In that case, the output layer only needs to have one single neuron.

The number of hidden layers and their neuron count depends on how difficult we believe the problem to be.
We don’t expect there to be any easy patterns to which letter-pairs that are “hyphenatable”, so the classification
problem is unlikely to be linearly separable, or maybe even separable by a convex shape, so it would probably be
wise to have two hidden layers, so that the network can classify complex shapes in the input space. The number
of neurons in each layer would have to be up to experimentation, but a wise default value might be to reduce
the number of neurons in each layer linearly, so if you have N inputs, you would have 2N/3 neurons in the first
hidden layer and N/3 neurons in the second. Again, with the English alphabet, this would give 104/3 ≈ 35 and
52/3 ≈ 17 hidden nodes.

3

	Perceptron activation functions
	Hidden layers
	Validation
	Multi Layer Perceptron
	Delta(error) function
	Natural language MLP

