EIZATQIH
otnv
ENIBAENOMENH MAOGH2H

(Supervised Learning)

Types of machine learning algorithms

Supervised
G%ggaﬂi); ﬁ;ﬁ;ﬂ.mﬁ;asc" Good for problems where future
Good for problems where each not belona to a catego actions are based
input data point 9 egory. on outcome of current responses

is labelled or belongs to a category

These algorithms are good
for clustering/grouping complex
data into classes

and next actions
are reguired to be forecasted.

https://medium.com/fintechexplained/machine-learning-algorithm-comparison-f14ce372b855

Types of machine learning algorithms

Labelled data. Learn through examples of
which we know the desired output (what we
want to predict)

*

Image classification
Speech recognition
Spam detection
Face Recognition
Weather forecasting

+*

\/ L/ R/ \/ *
e S 0 0 e

*

Supervised learning (training)

- We have a supervision data
D = {(xl, yl)' can) (xN, yN)} (N InStaﬂCeS)

- FInd parameters such that they can predict
training Instances as correctly as possible

- We assume generalization

- If the parameters predict training instances well,
they will work for unseen instances

Supervised learning for single-layer NNs

- For simplicity, we include a bias term b In w hereafter
- Redefine x("eW) = (x;,x,,...,x4,1)7T, w"W) = (W, ,w,, .., wq,b)’

- Then, w(new) . y(new) =, ». + w,x, + -+ + wyx, + b (original form)

- We Introduce a new notation to distinguish a computed
output y from the gold output y in the supervision data
« D= {(x,y1)s-- (XN, YN} (N instances)
- We distinguish two kinds of outputs hereafter

- y:the output computed (predicted) by the model (perceptron) for the input
- y:the true (gold) output for the input in the supervision data

- Training: find w such that, AR
vn € {1,..,N}: g(w-x,) = y TN\
" " “&- S_) \59

w=20
Repeat:
(x,,y,) < arandom sample from D
y g(w ' xn)
If y + y, then:
If y,, = 1 then:
wW— Ww-+nx,

else: n (0 < n) is the learning rate

© 0o N O O~ WD

We— W —nx,
10. Until no instance updates w

%
Exercise: Train an SLP to realize OR //“/

4) o)
_1

- Convert the truth table into training data

O o0 0 (((001)7,0),)
o 1 1 ((011)",1),

1 0 1 <((101)T,1),>
111 (11 1)11),

- Initialize the weight vector w = 0

- Apply the perceptron algorithm to find w
- Fixn = 1 In the exercise

Updating weights for OR

- Data: D ={((001)7,0),((01 D", 1),((10oD,1),(1117,1)}
- Initialization: w = (0 0 0)' _

- Iteration #1: choose (x,,v,) = ((11 17, 1) We chose the
. At AN S — . — — Instances in
CIaSS|f|(.:at|on. y=gw-x,) Tg(O) 0=+y, the order that
* Update: w « w+ x, = (111) L minimizes the
. ' - — T required
lteration #2: choose (x1,y,) = ((00 1),0) reautred
- Classification: y = gw-x;) = g(1) =1+ y, updates
- Update: w <« w—x; = (11 0)'

- Terminate (the weight w classifies all instances correctly)
+x= (001" y=g((110)(001)")=0

- x=(011)":y=g((110)(011)) =1 G =€
cx= (10D y=g((110)(101)) =1
cx= (111)y= g((110)(111)) =1 ,f&

Why perceptron algorithm learns

- Suppose the parameter w misclassifies (x,,, y;,)
- If y,, = 1 then:

- Update the weight vector w' «— w + x,,
- If we classify x,, again with the updated weights w’:
cw e x, = (Wt X)) X, T WXt XXy = WXy,
« The dot product was increased (more likely to be classified as 1)
- If y,, = 0 then:
- Update the weight vector w' «— w — x,,
- If we classify x,, again with the updated weights w':
W x, = (W—Xx,) X, =S WX — X" Xy S W- X,
« The dot product was decreased (more likely to be classified as 0)

- The algorithm updates the parameter w to the
direction where it will classify (x,,, y,,) more correctly

Activation function: step — sigmoid

gla)

Step function: R — {0,1}
(1 (ifa> 0)
g(a) = 0 (otherwise)

- Yields binary outputs
- Unusable for multi-class classification

- Indifferentiable at zero
- With zero gradients

08—:' Ilm O_(a): 1

a— o

)
023 lim o(a) = 0

Ja——oo

-10 -5 0 5 10 15

Sigmoid function: R - (0,1)
1

1+ e™@

o(a) =

- Yields continuous scores
- Usable for multi-class classification

- Differentiable at all points

- With mostly non-zero gradients
- Useful for gradient descent

RelLU

| ©

- Squashes real numbers between 0 and 1 - Most popular because it is simple to
- They have nice derivatives, which make learning compute and very robust to noisy inputs.
easy.

- Currently not used as much because result in
gradients too close to 0 stopping learning.

General form with sigmoid

- Single layer NN with sigmoid function
1
1+e™ WX
- Given an input x € R%, it computes an output y € (0,1)
by using the parameter w € R?

AN

y=ow-x)=

- This Is also known as logistic regression

- We can interpret ¥ as the conditional probability P(1]x)
where an input is classified to 1 (positive category)

- Rule to classify an input to 1

~ 1 1

- The classification rule is the same as the linear models

Example: logical AND

- The same parameter in the previous example
"“=J(a) a=xy+x,—15

0 0 0.182
0 1 0 -0.5 0.378
1 0 0 -0.5 0.378
1 1 1 0.5 0.622

- The outputs are acceptable, but
« P(x; Ax, = 1|x; = 1,x, = 1) Is not so high (62.2%)

- Room for improving w so that it yields y — 1 (100%) for
positives (true) and y — 1 (0%) for negatives (false)

Instance-wise likelihood

- We introduce instance-wise likelihood, to measure
how well the parameters rep_roduce (X0, V)

N W
Pn= 11 =7y, (otherwise)

I A Y] 33

0182 1-—y=0.818 = 1

0 1 0 -05 0378 1—9=10.622 = 1
1 0 0 -05 0378 1-—9=10.622 = 1
1 1 1 05 0.622 y=0.622 =% 1

Parameters of AND: y = g(a),a = x; + x, — 1.5

- Likelihood is a probability representing the ‘fitness’ of
the parameters to the training data

- We want to increase the likelihood by changing w

Likelihood on the training data

- We assume that all instances in the training data
are 1.1.d. (independent and identically distributed)

- We define likelihood as a joint probability on data,

N
Lp(w) = l_[pn
n=1

- When the training data D = {(x1, 1), ..., Xy, Yn)} IS
fixed, likelihood is a function of the parameters w

- Let us maximize Ly (w) by changing w
- This is called Maximum Likelihood Estimation (MLE)
- The maximizer w* reproduces the training data well

Training as a minimization problem

- Products of (0,1) values often cause underflow
- Use log-likelihood, the logarithm of the likelihood, instead

N N
LLyw) = log Lyw) = log | [p, =) logp,
n=1 n=1

- In mathematical optimization, we usually consider a
minimization problem instead of maximization

- We define an objective function Ep(w) by using the
negative of the log-likelihood

N
Ex(W) = —LLyW) = —) logp,
n=1

- E(w) Is called a loss function or error function

Training as a minimization problem

- Given the training data D = {(x{,y1), ..., (X, Yn) 1},
find w* as the minimization problem,

N
w* = argmin Ep (w) = argmin z L,
w w =1

—log (ify, = 1) . "
ln - = Iog Pn = {_ |Og(l i}n?n) (Othyean|Se)} = ~Vn Iog Yn — (1 — yn) Iog(l _ yn)

Ep(w)

/

f%
t NN
v
D,
N\
1
1
]

E\/

W

Stochastic Gradient Descent (SGD)

- The objective function is the sum of losses of instances,

N
Exw) =) 1,
n=1

- We can use Stochastic Gradient Descent (SGD) and its
variants (e.g., Adam) for minimizing E, (w)

- SGD Algorithm (T is the number of updates)
1. Initialize w with random values

2. fort—1toT:

3. Ny «— 1/t

4 (X, ¥n) < arandom sample from D

a1
. w<—w—17ta—v’v1

Dataset Preparation

Training Dataset:
The actual dataset that we use to train the model.

The model sees and learns from this data.

Validation Dataset:

The validation set is used to evaluate a given model.

We use this data to fine-tune the model hyperparameters.
Hence the model occasionally sees this data, but it never does "Learn”

from this.

The validation set is also known as the Development set. This makes sense
since this dataset helps during the "development” stage of the model.

Testing Dataset:

The sample of data used to provide an evaluation of the final model
fit on the training dataset.

It is only used once a model is completely trained (using the train
and validation sets).

The test set is generally well curated. It contains carefully
sampled data that span the various classes that the model would
face, when used in the real world.

Insufficient quantity of training data
Non-representative training data
Poor-quality data

Irrelevant features

Overfitting the training data
Underfitting the training data

- task is to predict if an image shows a balloon or not

- Train a model using a dataset containing many blue coloured
balloons (and other irrelevant objects)

- test the model on the original dataset: it gives 99% accuracy!
- fest the model on a new ("unseen”) dataset containing yellow
coloured balloons: it gives 20% accuracy!

Our model doesn't generalise well from our training data to
unseen data. This is known as overfitting.

A model that has learned the noise instead of the signal is
considered “overfit” because it fits the training dataset but
has poor fit with new datasets.

Overfitting happens when the ANN is said to be over-
trained so that the model captures the exact relationship
between the specific input-output used during training
phase.

learned features
via model

Have wings
Mouth is long

Neck is long
Shape looks like 2’
little larger than duck

White color

Not swan

The model has the ability to distinguish swan and other birds. Due to the fact
that all training images are white swans, the model learns that all swans are white,

hence it cannot predict accurately swans of other colours.

Underfitting happens when a machine learning model is not
complex enough to accurately capture relationships
between the input features and the target variable.

Underfitting appears when the network is not able to
capture the underlying function mapping input - output
data, either due to the small size of the training dataset or
the poor architecture of the model.

learned features
i Yes, swan
via model
Have wings
Mouth is long
Yes, swan
Yes, swan

The learned features of the swan are too few, so the criterion for
distinguishing whether the images are swan or not is not clear. It is
difficult to predict accurately.

Definition
* Overfitting

Good performance on the training
data, poor performance on the test
data (model is too complex)

* Underfitting

Poor performance on the training
data and poor performance on the
test data (model is too simple)

Error

€ Underfitting Overfitting =2

Model “complexity™

X
Underfitting Just right! overfitting

90 + 6 Op + 61 + By 0y + 01z + 092 + B32° + O,

https://www.programmersought.com/article/58683868977/

Reqgularization

- MLE often causes over-fitting
- When the training data is linearly separable

N
lw| —>ooa521n—>0
n=1

- Subject to be affected by noises in the training data

- We use reqgularization (MAP estimation)
- We introduce a penalty term when w becomes large
- The loss function with an L2 regularization term:

N
E(w) = 2 L, + Clw|?
n=1

- C is the hyper parameter to control the trade-off between
over/under fitting

Cross-validation (or rotation estimation)

This is a procedure for finding how well a predictor performs on
an unknown dataset, i.e., how well it generalizes.

A general and simple approach in training a predictor is:

= Divide the dataset into two (or three) non-overlapping subsets,
one called the test set and the other the training set. In ANN
applications, some researchers use the test set for periodical
testing of the network, and a third set called validation set |

for the predictor evaluation.
= Build the model using the training set.
= Check its predictions by using the test set (or the validation set).

This procedure is repeated in multiple iterations each time selecting a
different non-overlapping test/training/validation dataset.

Strategies in cross-validation:

HOLD-OUT:
Randomly pick a part of the dataset, usually% of the data, to be used as

the training set and the remaining % as the test set.

k-FOLD:

Divide the data into k partitions. Use one partition as the test set and the
remaining k-1 partitions for the training.

LEAVE-ONE-OUT:
This is a special case of k-fold.

Beyond accuracy:
Confusion matrix

Cases predicted as
not having the disease

Cases predicted as
having the disease (YES)

disease (YES)

(NO)
Actual cases
without the 50 15
disease (NO)
Actual cases
with the 5 130

We see that 180 out of the 200 cases were correctly classified, while the
remaining 20 were misclassified.

A simple appraisal would have been to say that there is classification
accuracy of 180/200 = 90%.

However, it would have been a very serious, even fatal, misclassification
of the 5 cases that were predicted as not having the disease while actually
they had it, or 15 cases that were predicted with the disease, while
actually they didn’t have it.

Cases predicted as
not having the disease

Cases predicted as
having the disease (YES)

(NO)
Actual cases
without the 50 15
disease (NO)
Actual cases
with the 5 130

disease (YES)

Also, in highly unbalanced data the accuracy will easily be
biased towards high values.

Thus we need a system of better performance appraisal.

This leads us to some important new definitions.

Cases predicted as Cases predicted as
not having the disease (NO) | having the disease (YES)

Actual cases without _
the disease (NO) LLJES 15

Actual cases with i
the disease (YES) 5 TP =130

DEFINITIONS:
TRUE POSITIVE (TP):

The number of cases that were correctly predicted as YES.

In our example, TP = 130.
TRUE NEGATIVE (TN):

The number of cases that were correctly predicted as NO.

In our example, TN = 50.

Cases predicted as Cases predicted as
not having the disease (NO) | having the disease (YES)

Actual cases without B ~
the disease (NO) TN =50 FP =15
Actual cases with _ B
the disease (YES) FN =35 TP = 130

DEFINITIONS:

FALSE POSITIVE (FP) (or Type | error, or False alarm):

The number of cases that were wrongly predicted as having
the disease (YES) but actually do not have the disease.

In our example, FP = 15.

ACCURACY (AC):
(or correctness or recognition rate)

The rate of correct classifications.
TP+TN _ TP+TN _ TP+TN

AC = TB5TAL -~ P+N_~ TP+TN+EN+FP - — 200 _

TN=50 | FP=15
FN=5 TP =130
= 130490 _4 g0 = 90%.

POSITIVE PREDICTIVE VALUE (PPV) BEEEN FP =16

(or Precision):

_ TP _ 130 _
PPV = 15+Fp = T30+15 - 89-6%

FN

!
o

TP =130

TRUE (REAL) POSITIVE RATE (TPR) TN =50

FP =15

(or Sensitivity, or Recall, or Hit rate):
TP _ TP _ 130

FN

I
4]

TP =130

TPR = = 96.3%.

P TTP+FN _130+5
TRUE (REAL) NEGATIVE RATE (TNR) (or Specificity):

TN TN _ 50 _
TNR = 1 = TRFFP = 55575 = 76.9%.

FALSE NEGATIVE RATE (FNR) (or Miss rate):

The ideas of binary confusion matrix are easily
extended to multiple classes by proper transformations.

Predicted Class
Class 1 | Class 2 | Class 3
Class 1 2 1 1
Actual Class 2 1 2 1
Class
Class 3 1 2 3

* F1 score penalises extremely low precision and recall

Practical prediction Lo W EEIRESEEEEE Negative-based IR

. . Benign Malignant Wrong . e . Benign Malignant Wrong
PreC|S|0n. 0500 Benign Benign Correct PreC|S|0n 1000 Benign Benign Correct
Reca”: 0750 Malignant Benign Wrong Reca“: 0.250 Benign Benign Correct

Benign Benign Correct Benign Benign Correct

. Benign Benign Correct . Benign Benign Correct

M ean: 0 ' 625 Malignant Malignant Correct M €an: O * 625 Benign Malignant Wrong
. Benign Benign Correct . Benign Benign Correct

F 1 score: O ° 60 Benign Benign Correct F 1 Score: O . 40 Benign Benign Correct
Malignant Benign Wrong Benign Benign Correct

Benign Benign Correct Benign Benign Correct

Benign Benign Correct Benign Benign Correct

Malignant Benign Wrong Benign Benign Correct

Benign Benign Correct Benign Benign Correct

Benign Benign Correct Benign Benign Correct

Benign Benign Correct Benign Benign Correct

Benign Benign Correct Benign Benign Correct

Benign Benign Correct Benign Benign Correct

Benign Benign Correct Benign Benign Correct

Malignant Malignant Correct Benign Malignant Wrong

Benign Benign Correct Benign Benign Correct

Benign Benign Correct Benign Benign Correct

Benign Benign Correct Benign Benign Correct

Benign Benign Correct Benign Benign Correct

Malignant Malignant Correct Malignant Malignant Correct

Receiver Operating
Characteristic (ROC) Graph

TRUE (REAL) POSITIVE RATE (TPR)

(or Sensitivity, or Recall, or Hit rate):

TP _ TP _ 130

TPR =& =155FN ~7130+5

= 96.3%.

FALSE POSITIVE RATE (FPR) (or Fall out):

FPREW=m=_=3.7%=1—TNR

This is a plot of the true positive rate vs false positive rate that
Is generated as we vary the threshold for assigning
observations to a given class.

~. Excellent
prediction

TRUE POSITIVE RATE, TPR

Random guessing models

0 FALSE POSITIVE RATE, FPR 1

This is an alternative way to the confusion matrices, to
examine the performance of supervised learning
classifiers.

It is popular in Cl biological classifiers and medical diaghostic
systems .

It is a visual way to examine the tradeoff between the ability
of a classifier to correctly identify positive cases and the
number of negative cases that are incorrectly classified.

It encapsulates all the information of the confusion matrix,
since FN Is complement to TP and TN is complement to FP.

—

The point (0,1) is the
perfect classifier
because it classifies all
positive cases and
negative cases correctly
(the false positive rate is
0 (none), and the true
positive rate is 1 (all)).

~%. Excellent
predictiop

AN
Random guessing
models

0 FALSE POSITIVE RATE, FPR 1

TRUE POSITIVE RATE, TPR

The point (0,0) represents a classifier that predicts all cases
to be negative, while the point (1,1) corresponds to a
classifier that predicts every case to be positive.

Point (1,0) is the classifier that is incorrect for all
classifications.

The area under the ROC curve (AUC, or ROCA) is
also a good indicator of classifier performance.

This performance metric has the advantage that it is
more robust than the accuracy, especially in problems of
unbalanced classes.

This metric has been well accepted, but it has some
problems whenthe ROCS for different models cross.

