Convolutional Neural Networks
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CIFAR: Canadian Institute for Advanced Research. CIFAR encourages basic research without

direct application

motivated Hinton to move to Canada in 1987 and funded his work

the funding was ended in the mid 90s just as sentiment towards neural nets was becoming
negative again

rather than relenting and switching his focus, Hinton fought to continue work on neural nets,

and managed to secure more funding from CIFAR

A ‘Brief’ History of Neural Nets and Deep Learning - Andrey Kurenkov



https://medium.com/@andreykurenkov/a-brief-history-of-neural-nets-and-deep-learning-part-4-61be90639182

CIFAR | ICRA

But in 2004, Hinton asked to lead a new program on neural computation. The

mainstream machine learning community could not have been less interested in neural

nets.

“It was the worst possible time,” says Bengio, a professor at the Université de Montréal
and co-director of the CIFAR program since it was renewed last year. “Everyone else

was doing something different. Somehow, Geoff convinced them. We should give

(CIFAR) a lot of credit for making that gamble.”

CIFAR “had a huge impact in forming a community around deep learning,” adds LeCun,

the CIFAR program’s other co-director.

A ‘Brief’ History of Neural Nets and Deep Learning - Andrey Kurenkov



https://medium.com/@andreykurenkov/a-brief-history-of-neural-nets-and-deep-learning-part-4-61be90639182

2019 A.M. Turing Award: Bengio, Hinton, LeCun (&

C i i: AR CIFAR convenes extraordinary minds to address
science and humanity’s most important questions.
e

.
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Turing’Award honours CIFAR'S
‘pioneers of Al

CIFAR Fellows Yoshua Bengio, Geofirey Hinton and Yann LeCun were
jointly awarded the prestigious A.M. Turing Award



https://www.cifar.ca/

CIFAR | ICRA

The CIFAR-10 dataset

The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training
images and 10000 test images.

The dataset is divided into five training batches and one test batch, each with 10000 images. The test batch contains exactly 1000
randomly-selected images from each class. The training batches contain the remaining images in random order, but some training
batches may contain more images from one class than another. Between them, the training batches contain exactly 5000 images

from each class.

Here are the classes in the dataset, as well as 10 random images from each:
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The CIFAR-10 and CIFAR-100 are labeled
subsets of the 80 million tiny images dataset.
They were collected by Alex Krizhevsky,
Vinod Nair, and Geoffrey Hinton.



https://www.cs.toronto.edu/~kriz/cifar.html
http://groups.csail.mit.edu/vision/TinyImages/

Computer Vision




Image representation

- Animage (28 x 28

pixels, grayscale) is
represented by a 28 x
28 matrix.

- The original dataset

represents a brightness
in an 8-bit integer ([0,
255]).

« In this lecture, a

brightness is
normalized within the
range of [0, 1].



CMYKVS RGB

WIDTH x HEIGHT x CHANNELS -> SHAPES & COLOUR -> cemantic meaning for humang
CIFAR10: each picture has 32 x 32 x 3 (in RGB) = 3072 features



Last time: Neural Networks
Linear score function: f = W&
2-layer Neural Network f = Wamax(0, Wiz)
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Traditional Computer »>» img = cv2.imread(*fly.png',@)

Vision 0 # Create SURF object. You cam specify params here or later.
# Here I set Hessian Threshold to 48

60 s3> surf = cv2.SURF({48@)

DpenCV # Find keypolnmts and descriptors :Iir?c't'_'_-.-'
_ Explicit feature extraction (e g »»> kp, des = surf.detectAndCompute{img,Mone)

SIFT, SURF, ORB) »»» len(kp)
. (S
- From images we create feature
vectors <
Learning Feature Hierarchy with DL
« Deep architectures can be more ~ Feature representation
efficient in feature representation; i B
. “Objects”
Dee p Lea rni ng (C N N ) * Natural derivation/abstration from
o ] low level structures to high level 2rid lager
Implicit feature extraction: The structures; “Object parts”
output layers of each convolutional tst layer
* Share the lower-level “Edges”
|ayer are the features of the next representations for multiple tasks
. (such as detection, recognition, Pixels
Convolutional layer segmentation).



https://opencv.org/
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A bit of history:

Gradient-based learning applied to
document recognition
[LeCun, Bottou, Bengio, Haffner 1998]

Image Maps
Input

i

Convolutions

FuIIy Connected
Subsamplmg

LeNet-5
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A bit of history...

500

[Hinton and Salakhutdinov 2006]
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Fine-tuning with backprop
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First strong results

pre-training
Acoustic Modeling using Deep Belief Networks

Abdel-rahman Mohamed, George Dahl, Geoffrey Hinton, 2010
Context-Dependent Pre-trained Deep Neural Networks

for Large Vocabulary Speech Recognition

George Dahl, Dong Yu, Li Deng, Alex Acero, 2012

Deep Neural
Network

r t 1t 1
. . . Spectrogram
Imagenet classification with deep convolutional
neura I ne tWOI'kS llustration of Dahl et alc.ég;fnbgoaayne Mclntosh, copyright
Alex Krizhevsky, llya Sutskever, Geoffrey E Hinton, 2012

vy 128

Figures copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.



A bit of history:

ImageNet Classification with Deep
Convolutional Neural Networks
[Krizhevsky, Sutskever, Hinton, 2012]

poolis

Figure copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission

“AlexNet”



Fast-forward to today: ConvNets are everywhere

Classification Retrieval

agaric
mushroom
Jelly fungus
gill fungus
fire engine | dead-man's-fingers

Figures copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.



Fast-forward to today: ConvNets are everywhere

A d
: 2 N . )
Figures copyright Shaoqing Ren, Kaiming He, Ross Girschick, Jian Sun, 2015. Reproduced with Figures copyright Clement Fabet, 2012,
permission. ' ) Reproduced with permission. [ Fa & abet et al . 2 0 1 2 ]
[Faster R-CNN: Ren, He, Girshick, Sun 2015]
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Photo by Lanc Mcintosh. Copyright CS231n 2017.

Fast-forward to today: ConvNets are everywhere
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This image by GBPublic_PR is

licensed under CC-BY 2.0

NVIDIA Tesla line

(these are the GPUs on rye01.stanford.edu)

Note that for embedded systems a typical setup
would involve NVIDIA Tegras, with integrated
GPU and ARM-based CPU cores.



Convolutional Neural Networks



Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input activation

) Wz

1 —> — 1 (O

3072 10 x 3072

weights 10



Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input activation
) b Wz
1] 10 x 3072 1 rb
3072 . 10
weights /
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)



The Cross-Correlation Operator

In a convolutional layer, an input array and a correlation kernel array output an array through a cross-correlation operation. Let's
see how this works for two dimensions. As shown below, the input is a two-dimensional array with a height of 3 and width of 3.
We mark the shape of the array as 3 X 3 or (3, 3). The height and width of the kernel array are both 2. This array is also called a
kernel or filter in convolution computations. The shape of the kernel window (also known as the convolution window) depends
on the height and width of the kernel, which is 2 x 2.

Input Kernel Output
LB I 4
0 19 | 25
415 * =
3 37|43
G| 7|8

Fig. 6.1 Two-dimensional cross-correlation operation. The shaded portions are the first output element and the input and
kernel array elements used in its computation: 0 x04+1x14+3x2+4x3=19.

In the two-dimensional cross-correlation operation, the convolution window starts from the top-left of the input array, and slides
in the input array from left to right and top to bottom. When the convolution window slides to a certain position, the input
subarray in the window and kernel array are multiplied and summed by element to get the element at the corresponding
location in the output array. The output array has a height of 2 and width of 2, and the four elements are derived from a two-
dimensional cross-correlation operation:

O0x04+1x14+3x24+4x3=19,
1x04+2x14+4x24+5x3=25,
IxXD+4x1+6x24+Tx3I=37,
4x04+5x14+Tx248x3=43.



Filters (kernels, convolutions)

Sharpen: Blur:
0ojojo(O]|O 0/0|0]|0|0
0[(0|-1]0|0 Of1({1/1/0
0/-1/5/-1|0 0{1|1/1(0
0/0|-10/0 Of1(1/1/0
olojololo ojojojojo

Edge Detect:

Inverse approach:
what-if we learned the filters weights?




Convolution Layer

32x32x3 image -> preserve spatial structure

32 height

3 depth



Convolution Layer

32x32x3 Image

/|

32

32

5x5x3 filter

J

Convolve the filter with the image
l.e. “slide over the image spatially,
computing dot products”



Convolution Layer Filters always extend the full
___——— depthofthe input volume

32x32x3 image /
5x5x3 filter
32
Convolve the filter with the image
- l.e. "slide over the image spatially,

computing dot products”

32




Convolution Layer

__— 32x32x3 Image

o5x5x3 filter w
2
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.,e. 5*5*3 = 75-dimensional dot product + bias)

> wlz+b

™~ 1 number:




Convolution Layer

activation map

__— 32x32x3 Image

5x5x3 filter /
2
ZE>O ”

convolve (slide) over all

spatial locations
32 28




Convolution Layer

consider a second, green filter

__— 32x32x3 Image

/ 5x5x3 filter
2

]

=0
Iz

convolve (slide) over all
spatial locations

activation maps

y 4

28

_/_A



For example, if we had 6 5x5 filters, we’'ll get 6 separate activation maps:

activation maps

32

28

Convolution Layer

32 28
3 6

We stack these up to get a "new image” of size 28x28x6!



The brain/neuron view of CONV Layer

32

32

5000«

]

28

28

E.g. with 5 filters,
CONYV layer consists of
neurons arranged in a 3D grid

(28x28x5)

There will be 5 different
neurons all looking at the same
region in the input volume



Output Volume (3x3x2)

Filter W1 (3x3x3)

wll[:

Filter W0 (3x3x3)

Input Volume (+pad 1) (7x7x3)
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http://cs231n.github.io/assets/conv-demo/index.html

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32 28

CONYV,
RelLU

e.g.6
5x5x3
32 filters 28




Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32

32

CONYV,

RelLU
e.g. o6
OX5x3
filters

|

28

CONYV,
RelLU
e.g. 10
5x5x6
filters

A-

10

CONV,
RelLU

24






; . Visualization of VGG-16 by Lane Mcintosh. VGG-16
P rev I eW lze”er and Fergus 20 1 3] architecture from [Simonyan and Zisserman 2014].

Linearly
separable
classifier

Low-level Mid-level High-level
features features features

VGG-16 Convi_1 VGG-16 Conv3 2 VGG-16 Convs 3



preview:

RELU RELU RELU RELU RELU RELU
CONVlCONVl CONVlCONVl CONVlCONVl FC
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Layers used to build ConvNets

As we described above, a simple ConvNet is a sequence of layers, and every layer of a ConvNet transforms one
volume of activations to another through a differentiable function. We use three main types of layers to build
ConvNet architectures: Convolutional Layer, Pooling Layer, and Fully-Connected Layer (exactly as seen in regular
Neural Networks). We will stack these layers to form a full ConvNet architecture.

Example Architecture: Overview. We will go into more details below, but a simple ConvNet for CIFAR-10
classification could have the architecture [INPUT - CONV - RELU - POOL - FC]. In more detail:

o INPUT [32x32x3] will hold the raw pixel values of the image, in this case an image of width 32, height 32, and
with three color channels R,G,B.

o CONV layer will compute the output of neurons that are connected to local regions in the input, each
computing a dot product between their weights and a small region they are connected to in the input volume.
This may result in volume such as [32x32x12] if we decided to use 12 filters.

s RELU layer will 2pply an elementwise activation function, such as the maz(0, z) thresholding at zero. This
leaves the size of the volume unchanged ([32x32x12]).

» POOL layer will perform a downsampling operation along the spatial dimensions (width, height), resulting in
volume such as [16x16x12].

e FC (i.e. fully-connected) layer will compute the class scores, resulting in volume of size [1x1x10], where each
of the 10 numbers correspond to a class score, such as among the 10 categories of CIFAR-10. As with
ordinary Neural Networks and as the name implies, each neuron in this layer will be connected to all the
numbers in the previous volume.



A closer look at spatial dimensions:

activation map

___— 32x32x3 image

5x5x3 filter
2
ﬁ>@ N

convolve (slide) over all
spatial locations

32 28




A closer look at spatial dimensions:

/

7x7 input (spatially)
assume 3x3 filter




A closer look at spatial dimensions:

/

7x7 input (spatially)
assume 3x3 filter




A closer look at spatial dimensions:

/

7x7 input (spatially)
assume 3x3 filter




A closer look at spatial dimensions:

/

7x7 input (spatially)
assume 3x3 filter




A closer look at spatial dimensions:

/

7x7 input (spatially)
assume 3x3 filter

=> 5x95 output




A closer look at spatial dimensions:

7
/X7 input (spatially)

assume 3x3 filter
applied with stride 2




A closer look at spatial dimensions:

7
/X7 input (spatially)

assume 3x3 filter
applied with stride 2




A closer look at spatial dimensions:

7
/X7 input (spatially)

assume 3x3 filter
applied with stride 2
=> 3x3 output!




A closer look at spatial dimensions:

7
/X7 input (spatially)

assume 3x3 filter
applied with stride 3?




A closer look at spatial dimensions:

7
/X7 input (spatially)

assume 3x3 filter
applied with stride 3?

/ doesn’t fit!
cannot apply 3x3 filter on
/X7 input with stride 3.




Output size:
(N - F) / stride + 1

e.g.N=7,F=3:
stride1=>(7-3)/1+1=5
stride2=>(7-3)/)2+1=3
stride 3=>(7-3)/3+1=2.33:\



In practice: Common to zero pad the border

0

0

0

0

0

o O | O O O

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

(recall:)
(N -F)/stride + 1



In practice: Common to zero pad the border

0|0

0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!



In practice: Common to zero pad the border

0|0

0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!
In general, common to see CONYV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F =3 => zero pad with 1

F =5 =>zero pad with 2

F =7 =>zero pad with 3




Remember back to...
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

32 28 24
CONV, CONYV, CONYV,
RelLU RelLU RelLU
e.g.6 e.g. 10
5X95x3 5x5x6
32 filters 28 filters 24




Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: 7




Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size:
(32+2%2-5)/1+1 = 32 spatially, so
32x32x10




Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?




Examples time:

Input volume: 32x32x
10 5x5 filters with stride 1, pad 2 /

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params  (+1 for bias)
=> 7610 =760




Summary. To summarize, the Conv Layer:

e Accepts a volume of size W; x Hy x Dy
» Requires four hyperparameters:
o Number of filters K,
their spatial extent F',
the stride S,
o the amount of zero padding P.
e Produces a volume of size Wy x Hy x D, where:
o Wo=(W; —F+2P)/S+1
o Hy = (H; — F +2P)/S + 1 (i.e. width and height are computed equally by symmetry)
° D2 = J¢
« With parameter sharing, it introduces F' - F' - D; weights per filter, for a total of (F' - F' - D, ) - K weights
and K biases.
« In the output volume, the d-th depth slice (of size W5 x H, ) is the result of performing a valid convolution
of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

0

o



Common settings:

Summary. To summarize, the Conv Layer:

K = (powers of 2, e.g. 32, 64, 128, 512)
- F=3,5=1,P=1

Accepts a volume of size W; x Hy x Dy
Requires four hyperparameters:

o Number of filters K, = PESE=R]Fee ,

o their spatial extent F', - F=5,9=2,P=7 (Whatever fItS)
o the stride .S, - F=1,S=1,P=0

o the amount of zero padding P.

Produces a volume of size Wy x Hy x D, where:

o Wo=(W; —F+2P)/S+1

o Hy =(Hy — F +2P)/S + 1 (i.e. width and height are computed equally by symmetry)

° D2 = J¢
With parameter sharing, it introduces F' - F' - D, weights per filter, for a total of (F' - F' - D; ) - K weights
and K biases.
In the output volume, the d-th depth slice (of size W, x H>) is the result of performing a valid convolution
of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.



(btw, 1x1 convolution layers make perfect sense)

[

4

64

56

1x1 CONV
with 32 filters

(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

32

56

56



Exam ple CONV SpatialConvolution
Iayer in TOrCh module = nn.SpatialConvolution(nInputPlane, nOutputPlane, kW, kH, [dW], [dH], [padW], [padH])

Applies a 2D convolution over an input image composed of several input planes. The input tensorin forward(input) is
expected to be a 3D tensor ( nInputPlane x height x width ).

The parameters are the following:

« nInputPlane : The number of expected input planes in the image given into forward() .

* noutputPlane : The number of output planes the convolution layer will produce.

« kw : The kernel width of the convolution

« kH : The kernel height of the convolution

« aw : The step of the convolution in the width dimension. Defaultis 1 .

« dH : The step of the convolution in the height dimension. Default is 1 .

« padw : The additional zeros added per width to the input planes. Defaultis e , a good numberis (kw-1)/2.

« padH : The additional zeros added per height to the input planes. Default is padw , a good numberis (kH-1)/2 .

Note that depending of the size of your kernel, several (of the last) columns or rows of the input image might be lost. It is up

ary. To summarize, the Conv Layer. to the user to add proper padding in images.

e Accepts a volume of size W; x H; x Dy If the input image is a 3D tensor nInputPlane x height x width , the output image size will be noutputPlane x oheight x
» Requires four hyperparameters: owidth where

o Number of filters K,

o their spatial extentF owidth = floor((width + 2*padW - kW) / dW + 1)

oheight = floor((height + 2*padH - kH) / dH + 1)

o the stride S,
o the amount of zero padding P.

Torch is licensed under BSD 3-clguse.




Example: CONV
layer in Caffe

Summary. To summarize, the Conv Layer:

e Accepts a volume of size W; x Hy; x Dy
» Requires four hyperparameters:

o Number of filters K,

o their spatial extent F,

o the stride S,

o the amount of zero padding P.

layer {

}

name: “convl”

type: "Convolution”

bottom: “"data"

top: "convl"”

# learning rate and decay multipliers for the filters
param { lr_mult: 1 decay mult: 1 }

# learning rate and decay multipliers for the biases
param { lr_mult: 2 decay _mult: 0 }

convolution_param {

num_output: 96 # learn 96 filters
kernel_size: 11 # each filter 1s 11x11
stride: 4 # step 4 pixels between each filter application

weight_filler {
type: "gaussian" # initialize the filters from a Gaussian
: std: 0.01 # distribution with stdev 0.01 (default mean: O)
bias filler {
type: "constant" # initialize the biases to zero (0)
value: 0O
3
}

Caffe is licensed under BSD 2-Clause.



two more layers to go: POOL/FC

RELU RELU RELU RELU RELU RELU

CONV lCONVl CONV lCONVl CONV ICONVl FC
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Pyramid (Image processing) - Subsampling

‘ Level 4
& 1/16 resolution
L3 Level 3
~  1/8 resolution

Blur and
subsample

Blur and

subsample ' | Level 2

1/4 resolution

Blur and
subsample
Level 1
Blur and 1/2 resolution
subsample

Level 0
Original
image



Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64

pool

e

112x112x64

224

224

|

.
downsampling

112



Single depth slice

MAX POOLING

11112 | 4
S| 6| 7|3
312 1|0
1123 | 4

max pool with 2x2 filters

and stride 2

-

Also used: Average
Pooling




Accepts a volume of size W; x H; x Dy
Requires three hyperparameters:
o their spatial extent F,
o the stride S,
Produces a volume of size W x Hy x Dy where:
o Wo=(W; —F)/S+1
o Hy=(Hy - F)/S+1
° D2 — D1
Introduces zero parameters since it computes a fixed function of the input
Note that it is not common to use zero-padding for Pooling layers



Accepts a volume of size W; x H; x Dy
Requires three hyperparameters:
o their spatial extent F,
o the stride S,
Produces a volume of size W x Hy x Dy where:
° W2 =(W1 —F)/S-l—l
o Hy=(Hy —F)/S+1
° D2 — D1
Introduces zero parameters since it computes a fixed function of the input
Note that it is not common to use zero-padding for Pooling layers

Common settings:

F
F

I
W
»nwm

I

2
2



Fully Connected Layer (FC layer)

- Contains neurons that connect to the entire input volume, as in ordinary Neural
Networks

RELU RELU ELU RELU RELU RELU
CONVlCONV

,

CO CONVl

'

Wp——

truck
aifplane
ship

horse




CNN Architectures
(ImageNet)



IMAGENET 14167122 mags, 21041 st ndere

Explore Download Challenges Publications CoolStuff About

Not logged m. Login | Signup

ImageNet is an image database organized according to the WordNet hierarchy (currently only the nouns),
in which each node of the hierarchy is depicted by hundreds and thousands of images. Currently we have
an average of over five hundred images per node. We hope ImageNet will become a useful resource for
researchers, educators, students and all of you who share our passion for pictures.

Click here to learn more about ImageNet, Click here to join the ImageNet mailing list.

http://www.image-net.org/
A very large labeled images dataset
Currently: 14.197.122 images in 21.841 categories



http://www.image-net.org/

IMZAGE Large Scale Visual Recognition Challenge (ILSVRC)

http://www.image-net.org/challenges/LSVRC/

Competition

The ImageNet Large Scale Visual Recognition Challenge (IL=2VRG) evaluates algorithms for object detection and image classification at
arge scale. One high level motivation is 1o allow researchers o compare progress in detection across a wider varety of objecis - taking
advantage of the quite expensive labeling effort. Another motivation is to measure the progress of com puter vision for large scale image
noexing for retrieval and annotation.

For details about each challenge please refer to the comesponding page.

« LSVRC 2017 e |eNet 1998 (the grandfather)

» LSVRC 2015 e AlexNet 2012. The first work that popularized Convolutional Networks
« ILSVRC 2015 in Computer Vision was the AlexNet, developed by Alex Krizhevsky,

» LLSVRGC 2014 llya Sutskever and Geoff Hinton. The AlexNet was submitted to the

» LSVRC 2013 ImageNet ILSVRC challenge in 2012 and significantly outperformed the
» ILSVRG 2012 second runner-up (top 5 error of 16% compared to runner-up with 26%
« ILSVRC 2011 error). The Network had a very similar architecture to LeNet, but was

« ILSVRC 2010 deeper, bigger, and featured Convolutional Layers stacked on top of

each other (previously it was common to only have a single CONV
layer always immediately followed by a POOL layer).

ZF Net. ILSVRC 2013 winner

GoogLeNet. ILSVRC 2014 winner

VGGNet. The runner-up in ILSVRC 2014.

ResNet. winner of ILSVRC 2015.


http://www.image-net.org/challenges/LSVRC/
http://www.image-net.org/challenges/LSVRC/
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Fig. 6.710 LeNet (left) and AlexNet (right)



VGGNet in detail. Lets break down the VGGNet in more detail as a case study. The whole VGGNet is composed of
CONV layers that perform 3x3 convolutions with stride 1 and pad 1, and of POOL layers that perform 2x2 max
pooling with stride 2 {(and no padding). We can write out the size of the representation at each step of the
processing and keep track of both the representation size and the total number of weights:

INPUT: [224x224x3] memory: 224%224*3=-15@K  weights: @

CONV3-64: [224x224x64] memory: 224%224%64=3.2M weights: (3%*3%3)%64 = 1,728
CONV3-64: [224x224x64] memory: 224%224*%64=3.2M weights: (3*3*64)*64 = 36,864
POOLZ: [112x112x64] memory: 112%*112*%64=800K weights: @

CONV3-128: [112x112x128] memory: 112%112*%128=1.6M weights: (3*3%64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112%112%*128=1.6M weights: (3¥3*%128)*128 = 147,456
POOL2: [56x56x128] memory: 56%56%128=400K weights: @

CONV3-256: [56x56x256] memory: 56%56%256=800K weights: (3%3%128)%256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256-=800K weights: (3*3%256)*%256 = 589,824
CONV3-256: [56X56x256] memory: 56%56%256=800K weights: (3%3%256)%256 = 580,824
POOLZ: [28x28x256] memory: 28%28%256=200K weights: @

CONV3-512: [28x28x512] memory: 28%28%512-400K weights: (3%3%256)%512 = 1,179,648
CONV3-512: [28x28x512] memory: 28%28%512=400K weights: (3%3%512)*512 = 2,359,296
COMV3-512: [28x28x512] memory: 28%28*512-400K weights: (3%3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14%14%512=100K weights: @

CONV3-512: [14x14x512] memory: 14%14*512=100K weights: (3%*3%512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14%14%512=100K weights: (3%3%*512)%512 = 2,359,296
CONV3-512: [14x14x512] memory: 14%14*512=100K weights: (3%*3%512)*512 = 2,359,296
POOLZ: [7x7x512] memory: 7*7%512=25K weights: @

FC: [1x1x4@96] memory: 4096 weights: 7*7%512%4@896 = 102,760,448

FC: [1x1x4@96] memory: 4896 weights: 4896%4096 = 16,777,216

FC: [1xiIx1@ed] memory: 1000 weights: 4096*%100@ = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters



Summary

- ConvNets stack CONV,POOL,FC layers

- Trend towards smaller filters and deeper architectures

- Trend towards getting rid of POOL/FC layers (just CONV)

- Typical architectures look like
[(CONV-RELU)*N-POOL?1*M-(FC-RELU)*K,SOFTMAX
where N is usually up to ~5, M is large, 0 <= K <= 2.
- but recent advances such as ResNet/GooglLeNet

challenge this paradigm



Transfer Learning

“You need a lot of a data if you want to
train/luse CNNs”



Transfer Learning

"You need a lot of g!lf you want to
tralnf@ Ns”




Transfer Learning with CNNs

1. Train on Imagenet
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Conahue et al, "DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recogniticn”, ICWVL 2014
Razavian et al, "CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014
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Transfer Learning with CNNs
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Transfer learning with CNNs is pervasive...
(it's the norm, not an exception)

Object Detection
(Fast R-CNN) [og Toss » smooth LLioss | Image Captioning: CNN + RNN

Plropq:al i it Bounding box “ ”
classifier tmax regressors Straw

“hat” END

FCs
y 4 ; y 4 Rol pooling
External proposal é& > : f)’
algorithm 7 AV /
e.g. selective search '
ConvNet

(applied to entire

START “straw” “hat”

Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for
Generating Image Descriptions”, CVPR 2015

Girshick, “Fast R-CNN", ICCV 2015 . _
Figure copyright Ross Girshick, 2015. Reproduced with permission. Figure copyright IEEE, 2015. Reproduced for educaticnal purposes.



Transfer learning with CNNs is pervasive...
(it's the norm, not an exception)

Object Detection CNN pretrained

(Fast R-CNN) [l |
7 1 on ImageNet

Bounding box
regressors

Image Captioning: CNN + RNN

Proposal
classifier

“straw” “hat” END

-----

External proposal
algorithm
e.g. selective search

ConvNet
(applied to entire
image)

START “straw” “hat”

Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for
Girshick, “Fast R-CNN", ICCV 2015 Generating Image Descripticns’, CVPR 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission. Figure copynight IEEE, 2015. Reproduced for educational purposes.



Transfer learning with CNNs is pervasive...
(it's the norm, not an exception)

Object Detection CNN pretrained

(Fast R-CNN) [l |
| 7 1 on ImageNet
Proposa

e ; 4 Bounding box
classifier ftmas
regressors

Image Captioning: CNN + RNN

“straw” “hat” END

-----

External proposal
algorithm
e.g. selective search

ConvNet
(applied to entire
image)

START “straw” “hat”

Word vectors pretrained
. Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for
Girshick, “Fast R-CNN", ICCV 2015 W I t h WO rd 2ve C Generating Image Descriptions”, CVPR 2015

Figure copyright Ross Girshick, 2015. Reproduced with permission. Figure copyright IEEE, 2015. Reproduced for educational purposes.



Takeaway for your projects and beyond.:
Have some dataset of interest but it has < ~1M images?

1. Find a very large dataset that has
similar data, train a big ConvNet there
2. Transfer learn to your dataset

Deep learning frameworks provide a “Model Zoo” of
pretrained models so you don’t need to train your own

Keras https://keras.io/applications/

PyTorch https://pytorch.org/docs/stable/torchvision/models.html

MXNet (Gluon) https://mxnet.apache.org/api/python/gluon/model_zoo.html
TensorFlow https://qgithub.com/tensorflow/models

Caffe https://github.com/BVLC/caffe/wiki/Model-Zoo



https://keras.io/applications/
https://pytorch.org/docs/stable/torchvision/models.html
https://mxnet.apache.org/api/python/gluon/model_zoo.html
https://github.com/tensorflow/models
https://github.com/BVLC/caffe/wiki/Model-Zoo

ETTIAEYUEVEC TTNYEC KAl TTPOKTIKA TTAPAOEIYUATO

Convolutional Neural Networks

Stanford Intro to CNNs

Dive into Deep Learning

[MepiExouv eicaywyry ota CNNs kal TTapouaiaon Twv d1apopwv apXITeKToviKwy ConvNets Tou
Imagenet

‘Eva atrAo mrapdadsiypa CNN oto MNIST pe Keras. H €icodog (eikdva) €xel éva JOVo €TTITTEOO KABWC
gival grayscale. Keras CNN oT1o CIFAR-10 (tratijoTe “Next” yia va d€ite 10 idio TTpopANua pe data
augmentation, ye 1o ResNet KaBwg Kal pia OTITIKOTTOINGT TWV GUVEAIKTIKWY QIATPWV.

Transfer Learning

Eicaywyn 1ou Stanford

Tutorial og Pytorch 1Tou dgixvel dUo dIaPOPETIKEC OTPATNYIKES training YeTA TO transfer learning.
Eiocdyoupe 10 ResNet18 kai kdvoupe train Tpwta g€ 0AOKANPO TO diKTUO KAl HETA UOVO oTO TEAIKO fully
connected eTTiTTedo



http://cs231n.github.io/convolutional-networks/
https://d2l.ai/chapter_convolutional-neural-networks/index.html
https://www.kaggle.com/moghazy/guide-to-cnns-with-data-augmentation-keras
https://keras.io/examples/cifar10_cnn/
http://cs231n.github.io/transfer-learning/
https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
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