Recurrent Neural Networks

Sequential modeling

Sequential modeling

Sequential data: Text, Speech, Music, Movies, Stock prices, DNA, Earthquakes, ...

Donald J. Trump &
@realDonaldTrump

Despite the constant negative press
covfefe

E F 8 8 B B & B

2017-05-31, 12:06 AM

Sequence order is important:

e overall it defines the meaning of the data
e each event in the sequence depends on the previous
events

Sequential modeling: prediction

FTSE 100 Index

prices x.20 at time t =

For a trader to do well in the stock =
market on day t he should want to
predict x, via X ~p(X[X,_,,---X,)-

Problem: the number of inputs,

X,_4,---X, INncreases with the amount of

data that we encounter

We will need an approximation to make this computationally tractable:

e Autoregressive models: autoregressive models & latent autoregressive models
e Hidden Markov Models

Sequential modeling: Autoregressive models
Two strategies:

Autoregressive (autotraAivdopounaon): use only T observations X ~p(X/X,_,,..-X, 7).
The number of arguments is always the same. Perform regression on themselves.

For discrete objects such as words we use a classifier rather than a regressor.

Latent Autoregressive Models: keep some summary h, of the past observations
around and update that in addition to the actual prediction. Estimate x|x._.,h, .
and moreover update h.=g(h,,x,) . Neural Networks with memoryful hidden layers
are LAMs. Moreover the “summary” is the hidden layer status.

Sequential modeling: Hidden Markov Models

Whenever the approximation p(x[x,_,,..-X, 1) = p(x/X,_,-...X,) is accurate we say that
the sequence satisfies a Markov condition. For T=1 we have a first order Markov

T
model. o= o)

t=1

1nd1no

e Have a discrete one-of-N hidden state. l I
e Transitions between states are stochastic and

controlled by a transition matrix. .
e The outputs produced by a state are stochastic. _a ‘ OO
e Memoryful models, time-cost to infer the hidden state O O O
distribution. © .. ©

Sequential modeling: Autoregressive models

Vanilla AR: the output variable depends linearly on its own previous values and on

a stochastic term

where @1, ..., @p are the parameters of the model, ¢ is a constant, and &; is white noise.

(Deep) Feed-forward NN AR extension

These generalize AR models by using one or more layers of non-linear hidden
units. Memoryless models: limited word-memory window; hidden state cannot

/m
\

be used efficiently

W0

Wiy

P
Xy =c+ Z‘Pin—-i + &
i=1

input(t-2)

input(t-1)

input(t)

input(t-2)

input(t-1)

input(t)

Sequential modeling: Autoregressive FF models

1.5 1

1.0 A

0.5 1

0.0

—-0.5 4

—1.0 A

—1.5 1

prediction with embedding = 4

zeo1 = f(Z600, - - - , T597)
ze02 = f(Z601,- - - ; T508)
ze03 = f(Z602,- - -, T599)

—— data
—— estimate
—— multistep

0 200 400 600 800 1000

Vanilla MLP architecture

def get_net():
net = gluon.nn.Sequential()
net.add(gluon.nn.Dense(10, activation='relu'))
net.add(gluon.nn.Dense(18, activation='relu'))
net.add(gluon.nn.Dense(1))
net.initialize(init.Xavier())
return net

Poor prediction performance. Deep
architecture does not help

Reason: we use predictions instead of real
data and errors build up

Recurrent Neural Networks

Recurrent NN have hidden layers with loops

This loop “summarizes” the past (memoryful) L

A
Recurrent -> AvaTtpogodoTtouueva ry EtravaAntrtika ‘

Recurrent NN # Recursive (Avadpouikd) NN.

A recursive neural network is more like a hierarchical network where there is really
no time aspect to the input sequence but the input has to be processed
hierarchically in a tree fashion.

Recurrent Neural Networks

An unrolled Recurrent Neural Network

W,

L.T

A

b

:

)
:
6

()
1
5

>

)
:
6

Recurrent Neural Network

Recurrent Neural Network

usually want to
predict a vector at
some time steps

o B

Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step:

he|=fw (‘ht—la flft)

new state / old state input vector at
some time step

some function
with parameters W

Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step:

ht = fW(ht—la xt)

T
!

Notice: the same function and the same set
of parameters are used at every time step.

(Vanilla) Recurrent Neural Network

The state consists of a single “hidden” vector h:

y hy = fW(ht—la C13::)

E3:- ‘

hy = tanh(Wpphe_1 + Wopxy)
X Yt = Whyht

A concrete RNN example

Task: learn a language model
e.g. predict next word

The diagram shows an unrolled
RNN. By unrolling we simply
mean that we write out the
network for the complete
sequence. For example, if the
sequence we care about is a
sentence of 5 words, the
network would be unrolled into
a 5-layer neural network, one
layer for each word.

Expected output y (supervised training at
each time step)

sky is blue
0
O Ot—l ot Ot+1
A
74 1% V 174
SO:>W W dt—] dt Osm
:]1: 1% w W
Unfold
U U U U
x ®i g o Xis1
the sky is

Since the all the weights (U,V,W) are shared
for all time steps we can treat sequences
(sentences) of different length

A concrete RNN example

e 7, is the input at time step t. For example, 71 could be a one-hot vector corresponding to the
second word of a sentence.

e 5 is the hidden state at time step t. It's the “memory” of the network. s: is calculated based on
the previous hidden state and the input at the current step: ¢ = f(Uz. + Ws._1), The function f

usually is a nonlinearity such as tanh or ReLU. $-1, which is required to calculate the first

hidden state, is typically initialized to all zeroes.

e 0 is the output at step ¢. For example, if we wanted to predict the next word in a sentence it

would be a vector of probabilities across our vocabulary. ¢ = softmax(V's,),

A concrete RNN example

e \ocabulary size C = 8000 8 = tanh(Uz; + W)
e Hidden layer size H = 100 o1 = softmax(V)

g) 8000

O 0, ; 0, o, r € R

A A A 0y € Rsooo
|74 %4

W V S Sf E RIOO

il

X

‘_' E :H:LSOOOX 100

s w S 9 S t+1)
O > ﬁ—%) W)CAD W)O W) U € R100x8000
lo
X,

x X W e R'®*1%
1 t t+1

Total parameters (weights) = 2HC + H?. In the case of C=8000 and H=100 that’s
1,610,000

r, € R3O

op € RB000

= : s; € R0
Forward ass s = tanh(Ux; + Ws;_q) (feRmXBm
p 0y = softmax(V s;) V e RB000x100
Ww £ RIOOXIOO

1 def forward_propagation(self, x):

The total number of time steps

= len(x)

During forward propagation we save all hidden states in s because need them later.
We add one additional element for the initial hidden, which we set to @
np.zeros((T + 1, self.hidden_dim))

1] = np.zeros(self.hidden_dim)

he outputs at each time step. Again, we save them for later.

np.zeros((T, self.word_dim))

For each time step...

= for t in np.arange(T):

== # Note that we are indxing U by x[t]. This is the same as multiplying U with a one-hot vector.
=5 s[t] = np.tanh(self.U[:,x[t]] + self.W.dot(s[t-11))

= o[t] = softmax(self.V.dot(s[t]))

return [o, s]

C

ST TR T

~

i O
([

RNNNumpy . forward_propagation = forward_propagation

e We store all states s, => longer sentences need more memory.
e At each step we output probabilities for all words in the vocabulary to be the
next word => use softmax to get the most probable at each step

Backpropagation Through Time

s¢ = tanh(Uz; + Ws;_q)

;= softmax(V s;)

We typically treat the full

sequence (sentence) as one

training example, so the total
error is just the sum of the errors
at each time step (word).

Ey

Lo

Ey

Es

Es

O,

Z1

O,

Z2

)

Z3

Ey

Ty

Error (or loss) e.g. cross-entropy (y: true labels)
Ei(ye. 9t) = =y log iy
E(y,9) = Z Ey(yt, 9t)

= —Zyglog‘g)t
t

For SGD we need to calculate the gradients
for all the weights V,U,W. Like we sum up
the errors, we also sum up the gradients at
each time step for one training example:

OE _ N\~ OE,
ow ; oW

s = tanh(Uxy + Ws;_q)

Backpropagation Through Time i, — softmax(V's,)
To calculate these gradients we use the chain rule of
differentiation. We will use E, as an example. OB OF: 0
oV iz OV
For V, 22 only depends on the values at the current _ 9, 94924

time step ¥3,y3, s3 (23=V33) Oy D23 OV
= (§3 —y3) ® s3
For W (and U) the calculation depends on the previous

steps 9E3 _ 0E3093 0s3 but sz = tanh(Uzy + Wsa)
oW dyz dsz OW

3

We need to apply the chain rule again G = £ Oz sy Vs OW - 5:3 Is a chain rule in
o oy . i o=l JON
itself &= = £:8%2 g0 we can rewrite it as

1 dsadsq
3

()ﬂ — Z 0&% ﬁ Js; 0sp.
oW - Y3 sy o] 1('_)83;1 PAL

s = tanh(Uxy + Ws;_q)

Backpropagation Through Time i = softmax(Vs;)

BPTT is just a standard backpropagation on an unrolled E(y.9) =) By,)
RNN with the only difference is that we sum up the
gradients for W at each time step.

EO El E2 E3 E4
2By
Because W is used in every step up 021 922 933

to the output we care about, we _). 750 @_,‘

need to backpropagate gradients

from t=3 through the network all the H w H w [
way to t=0

iRy I 9 T3 Ty

[Williams & Zipser 1995]

Backpropagation Through Time

def bptt(self, x, y):
o= 1er (y)

Ht

0, S = elf ‘omard propagatlon(x)

e \We use gradient accumulators -
for V,W’ U : ;Ldu — np zer‘os(self U shape)

dLdV = np.zeros(self.V.shape)
dLdW = np.zeros(self.W.shape)

se

([] BIShOpS delta rU|e 1 g:%tg g[r-xpoar'ange(len(y)) y] -=1.
e |n practice many people for EL;'V‘ = ‘n‘;"ZSiéiéﬁd;a%m <[
truncate the backpropagation s e 0 s

for Dott step in np clrange(max(" t se'lf bptt tr-uncate) t 1)[]:'

to a few steps. <

de\\' '—— '.outer (delta t s[bptt step—‘.])
deU[x[bptt step]] += delta t

delta t —>se1f W. T dot(delta t) * (1 - sEbptt_step-l] * 23
return [dLdU, dLdv, dLdw]

Limitations of RNNs

e In principle, recurrent networks are capable of learning long distance

dependencies.
e In practice, standard gradient-based learning algorithms do not perform

very well.
o Bengio et al. (1994) — the ‘vanishing gradient’ problem.
o Mikolov & Bengio (2013) - the ‘exploding gradient’ problem. “Clipping” solution
o The gradient is a product of Jacobian matrices, each associated with a step in the
forward computation. This can become very small or very large quickly.

e Nevertheless, the repeating cell structure is powerful
e Today, there are several methods available for training recurrent neural

networks that avoids these problems.
o LSTMs, optimisation with small gradients, careful weight initialisations, ...

The Vanishing Gradient problem

The tanh and sigmoid functions have derivatives of 0 at both ends.

Thus, with small values in the matrix and multiple matrix
multiplications the gradient values are shrinking exponentially fast,
eventually vanishing completely after a few time steps.

o1 02 03 04 05
Gradient contributions from “far away” steps become zero, and the

I I l I l
state at those steps doesn’t contribute to what you are learning: You
end up not learning long-range dependencies. ? ? '] ‘]' ‘]'

Vanishing gradients aren’t exclusive to RNNs. They also happenin ~ What time It T
deep Feedforward Neural Networks. It’s just that RNNs tend to be

very deep (as deep as the sentence length in our case), which

makes the problem a lot more common.

Long Short Term Memory networks (LSTM)

Hochreiter & Schmidhuber (1997) @ @
All recurrent r.1eural netw?rks have the —
form of a chain of repeating modules of A
neural network.
I I
In standard RNNs, this repeating module @ @ RNN @

is a single tanh layer.

In LSTMSs repeating module has four T

layers instead of one.)

%
A\

1 O — > < ; >

Neural Network Pointwise Vector

Layer Operation Transfer Eaneatenate Copy ®

The cell state and three gates

The key to LSTMs is the cell state, the horizontal line running through
the top of the diagram. It runs straight down the entire chain, with only Ci1

some minor linear interactions. It's very easy for information to just flow
along it unchanged.

The LSTM does have the ability to remove or add information to the cell
state, carefully regulated by structures called gates.

Gates are a way to optionally let information through. They are
composed out of a sigmoid neural net layer and a pointwise
multiplication operation. The sigmoid layer outputs numbers between
zero and one, describing how much of each component should be let
through. A value of zero means “let nothing through,” while a value of
one means “let everything through!”

An LSTM has three of these gates, to protect and control the cell state.

@

Forget gate

f fe =0 Wy [hi—1,2¢] + by)

Tt

The first step is to decide what information we're going to throw away from the cell state.

This decision is made by a sigmoid layer called the “forget gate layer.”

It looks at ht_1 and X, and outputs a number between 0 and 1 for each number in the cell state CH.

A 1 represents “keep this” while a 0 represents “completely get rid of this.”

Input gate

. it =0 (Wi-lhi—1, 2] + b;)
, ét = tanh(Wc-[ht_l,xt] + bc)

The next step is to decide what new information to store in the cell state. This has two parts:
First, a sigmoid layer called the “input gate layer” decides which values will be updated.
Next, a tanh layer creates a vector of new candidate values, C~t, that could be added to the state.

In the next step, we combine these two to create an update to the state.

Cell state Gt ® >
update ftT it > Ct = ft * Ct—l -+ it * ét

We now update the old cell state, C,_,, into the new cell state C..

t-17

We multiply the old state by f, forgetting the things we decided to forget earlier.

Then we add it*C~t. This is the new candidate values, scaled by how much we decided to update each state
value.

htA

Output

@;D or =0 Wy [hie1, 2] + bo)
hy = o x tanh (C})

Finally, we decide what we’re going to output. This output will be based on our cell state, but will be a filtered
version.

First, we run a sigmoid layer over h, , which decides what parts of the cell state we're going to output.

Then, we put the cell state through tanh (to push the values to be between -1 and 1) and multiply it by the
output of the sigmoid gate, so that we only output the parts we decided to.

Overall weights to learn: Wf, Wi, WC, W0

Variants: “Peephole” LSTMs

fe = O'(Wf'[ct—l,ht—laxt] + bf)
i =0 (Wi [Cy=1,hi—1, 2] + b;)
— O =0 (WO'[Cta ht—17ajt] + bo)

We add “peephole connections.” This means that we let the gate layers look at the cell state.

[Gers & Schmidhuber (2000)]

Variants: Gated Recurrent Unit (GRU)

2zt =0 (W, - [hi—1,x4])
re =0 (W, - [hi—1,x4])
il,t = tanh (W . [rt * ht—l; l’t])

ht:(l—zt)*ht_1+zt*l~lt

GRUs combine the forget and input gates into a single “update gate.”

It also merges the cell state and hidden state.

The resulting model is simpler than standard LSTM models, and has been growing increasingly popular.
[Cho, et al. (2014)]

e Many more LSTM variants, many hyperparameters, empirical evaluation

Deep RNNs and LSTMs

SSSSSS

s Yt-1 Yt Yt+1 - - - output shape: @ 0 @ . @
(20, 30, 10000)
Time
Distributed
PR
™ 7 \ =5
shape: (), / N
\

LS —) TM
Hiddgn) T
0
LSTM L LSTM L LSTM —> LSTM
s Tp—1 Iy Ttt1 - - - @ @
Input shape: (20, 30, 500)
Fig. 3. Deep Recurrent Neural Network Deep LSTM

e Each layer learns higher level features
e For recurrent architectures the depth is usually low (2-4)

Bidirectional RNNs and LSTMs

@) ast sequence
concat concat concat
\\\. \\\ \\ \.\\\.
' A (] ' ."‘. "‘-‘
'4 A' < A' < A' ¢ A’< ‘ «—LSTM«—LS’IM<I LSTM#—LSTM<—

@ 4’ A " A A 4> A @ ,ﬂ _— ,,4‘\-/ 4\/ ‘,4‘\-/
I;‘ \5 \5 — >|_5'|'M———>LSTM—>LSTM—DLSTM——’
)
embedding

e We split the input and train two networks in reverse order
e \We concatenate the hidden layers outputs at each step to calculate outputs

[Graves 2005]

Applications of sequence modeling: Text Generation

Input sequence is of same
type (words) as output
sequence.

We take a sample of next
words and decide with
argmax or we take top-k
probable words and select
one at random or perform
random multinomial
experiments with the
respective probabilities
Repeat for next word

def generate sentence(model)

W sentence 1th the start token

new_ sentence = [word to 1ndex[sentence start _token]]

Repeat

while not new sentence[1] == word to_index[sentence_end_token]:
next_word_probs = model.forward_propagation(new_sentence)
sampled mord - word to Index[unknown token]
Zz W don n (o

whlle sampled word == nord to lndex[unknown token]:
samples = np.random.multinomial(l, next_word_probs[-1])
sampled_word = np.argmax(samples)
new_sentence.append(sampled_word)

sentence_str = [index_to_word[x] for x in new_sentence[1:-1]]

return sentence_str

num_sentences = 10
senten_min_length = 7

- for i in range(num_sentences):

sent = [)

ant sentences., th one or two words
whlle 1en(sent) & lt; senten min_ length
sent = generate_ sentence(model)

print " ".join(sent)

the RNN hidden layers learn and
store the language model

Karpathy: The Unreasonable Effectiveness of

THE SONNETS recurrent Neural Networks

by William Shakespeare y

From fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thyself thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament, .
And only herald to the gaudy spring,
Within thine own bud buriest thy content,
And tender churl mak'st waste in niggarding:
Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.

When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
Thy youth's proud livery so gazed on now,
Will be a tatter'd weed of small worth held: X
Then being asked, where all thy beauty lies,
Where all the treasure of thy lusty days;
To say, within thine own deep sunken eyes,
Were an all-eating shame, and thriftless praise.
How much more praise deserv'd thy beauty's use,
If thou couldst answer 'This fair child of mine
Shall sum my count, and make my old excuse,'
Proving his beauty by succession thine!

This were to be new made when thou art old,

And see thy blood warm when thou feel'st it cold. . Ch a ra Cte r - | eve I g e n e rati O n

t fi t tyntd-iathatawiaoihrdemot 1lytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e
at irst. plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns 1lng

l train more

"Tmont thithey" fomesscerliund

Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome

coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

l train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of
her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort
how, and Gogition is so overelical and ofter.

l train more

"Why do what that day," replied Natasha, and wishing to himself the fact the
princess, Princess Mary was easier, Ted in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.

Applications of sequence modeling

Input can be different modality than the output.
Encode input in hidden state, decode in output
One to many, many to many, many to one schemes

e Image captioning

e Map unsegmented connected handwriting to strings.

e Map sequences of acoustic signals to sequences of phonemes.
e Translate sentences from one language into another one.

Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many
f Pt 1 t Pt [
f f Pt Pt A

\ e.g. Image Captioning
image -> sequence of words

Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many
f Pt 1 f tt [
f f Pt Pt A

\ e.g. Sentiment Classification
sequence of words -> sentiment

Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many
f Pt 1 f tt [
f f Pt Pt A

\ e.g. Machine Translation
seq of words -> seq of words

Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many
f Pt 1 t Pt [
f f Pt Pt A

/

e.g. Video classification on frame level

Image Captioning

“straw” “hat” END

START “straw” “hat”

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei

Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Recurrent Neural Network

Convolutional Neural Network

test image

This image is CCO public domain

| image | <

conv-64

test image

conv-64
maxpool

conv-128

conv-128
maxpool

conv-256
conv-256

maxpool a pre-trained CNN

conv-512
conv-512

maxpool

conv-512
conv-512
maxpool

FC-4096
FC-4096
FC-1000
softmax

image | - est image
conv-64
conv-64
maxpool
conv-128
conv-128
maxpool

conv-256
conv-256

maxpool a pre-trained CNN without classification head = a deep features extractor from images

conv-512
conv-512
maxpool

conv-512
conv-512
maxpool

FC-4096
FC-4096

F 0
soigax

| image | <

conv-64

test image

conv-64
maxpool

conv-128

conv-128
maxpool
conv-256
conv-256
maxpool
conv-512
conv-512
maxpool
conv-512
conv-512
maxpool

FC-4096 "

<STA
FC-4096 Bl

<START>

| image | <

conv-64

test image

conv-64
maxpool

conv-128

conv-128
maxpool

conv-256 y0

conv-256

maxpool T before:
conv-512 h = tanh(th *x +\Whh * h)

conv-512
maxpool

hO

conv-512 Wi h -
conv-512 T n OW)

maxpool h = tanh(Wxh * x + Whh * h + Wih * v)

FC-4096 x0

<STA
FC-4096 RT>

Vv

<START>

| image | <

conv-64

conv-64

maxpool
conv-128
conv-128
maxpool
conv-256
conv-256
maxpool
conv-512
conv-512
maxpool
conv-512
conv-512
maxpool

FC-4096
FC-4096

yO

hO

x0
<STA
RT>

straw

<START>

sample!

test image

| image | <

conv-64

conv-64

maxpool
conv-128
conv-128
ma)_(pool
conv-256
conv-256
maxpool
conv-512
conv-512
maxpool
conv-512
conv-512
maxpool

FC-4096
FC-4096

yO y1
hO —»{ h1

x0
<STA
RT>

straw

<START>

test image

| image | <

conv-64

test image

conv-64
maxpool
conv-128
conv-128
maxpool

conv-256 y0 y1

conv-256

= .

conv-512

conv-512 Sample'

— ho = h1

conv-512
conv-512 T T
maxpool

FC-4096 "

FC-4096 <STA straw hat
RT>

<START>

| image | <

conv-64

test image

conv-64
maxpool

conv-128

conv-128
ma)_(pool

conv-256 y0 v y2
conv-256

= [T

conv-512

conv-512

r—— ho [—»{ h1 [h2

conv-512

conv-512 T T T
maxpool

FC-4096 x0

FC-4096 <STA straw
RT>

hat

<START>

| image | <

conv-64

test image

conv-64
maxpool

conv-128

conv-128
maxpool

conv:::: y0 v y2
— £ T\ sample

<END> token

conv-512
conv-512 g -
maxpool ho = h1 = h2 => finish.
conv-512
conv-512 T T T
maxpool
FC-4096 o
<STA straw ha
FC-4096 £l t t

<START>

Example Results

A cat sitting on a A cat is sitting on a tree A dog is running in the A white teddy bear sitting in
suitcase on the floor branch grass with a frisbee the grass

Two people walking on A tennis player in action Two giraffes standing in a A man riding a dirt bike on
the beach with surfboards on the court grassy field a dirt track

Mikolov - Karpathy

facebook research

Research Areas v Publications People Academic Programs v

A

Tomas Mikolov | 4 ¢35 Andrej Karpathy

Research Scientist ’ e Stanford Computer Science Ph.D. student
karpathy _at cs.stanford.edu

N0

Facebook Al Research. Previously Google Brain Director of Al at Tesla Neural Networks for the Autopilot

Historical notice

"Simple Recurrent Networks" (SRN) are old

e Elman networks [1990]
e Jordan networks [1997]

Elman network
h: =oy (Wh,:l:t + Uphs—y + bh)
yr = oy(Wyhe +b,)

Jordan network
hi = on(Whay + Upye—1 + bp)
yr = oy (Wyhy + by)

Variables and functions

e 1, input vector

« h;: hidden layer vector

e y;: output vector

« W, U and b: parameter matrices and vector
* o, and o,,° Activation function

Bibliography

Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2), 179-211.

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE transactions on neural
networks, 5(2), 157-166.

Williams, R. J., & Zipser, D. (1995). Gradient-based learning algorithms for recurrent. Backpropagation: Theory, architectures, and applications, 433.
Jordan, M. I. (1997). Serial order: A parallel distributed processing approach. In Advances in psychology (Vol. 121, pp. 471-495). North-Holland.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.

Gers, F. A., & Schmidhuber, J. (2000). Recurrent nets that time and count. In Proceedings of the IEEE-INNS-ENNS International Joint Conference
on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium (Vol. 3, pp. 189-194). IEEE.
Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural
Networks, 18(5-6), 602-610.

Fernandez, S., Graves, A., & Schmidhuber, J. (2007, September). An application of recurrent neural networks to discriminative keyword spotting. In
International Conference on Atrtificial Neural Networks (pp. 220-229). Springer, Berlin, Heidelberg.

Pascanu, R., Mikolov, T., & Bengio, Y. (2013, February). On the difficulty of training recurrent neural networks. In International conference on
machine learning (pp. 1310-1318).

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
Cho, K., Van Merriénboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using
RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.

Karpathy, A., & Fei-Fei, L. (2015). Deep visual-semantic alignments for generating image descriptions. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 3128-3137).

