
Feedforward Neural Network (I)

ΕΙΣΑΓΩΓΗ

στην

ΕΠΙΒΛΕΠΟΜΕΝΗ ΜΑΘΗΣΗ 

(Supervised Learning)







• We have a supervision data

• ( instances)

• Find parameters such that they can predict 

training instances as correctly as possible

• We assume generalization

• If the parameters predict training instances well, 

they will work for unseen instances
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Perceptron (Single layer NN)



• For simplicity, we include a bias term

• Redefine ( ) =

in hereafter
( ) =

• Then, ( )

, ,…, ,1 ,

= + + +

, ,…, ,

+ (original form)

• We introduce a new notation to distinguish a computed 

output from the gold output in the supervision data

• = { , ,…, , } ( instances)

• We distinguish two kinds of outputs hereafter

• : the output computed (predicted) by the model (perceptron) for the input

• : the true (gold) output for the input in the supervision data

• Training: find such that,
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1.

2. Repeat:

a random sample from3.

4.

5. if

6.

7.

8.

9.

if

then:

then:

else:

10. Until no instance updates

𝜂 ∈ 0,1 is the learning rate
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• Convert the truth table into training data

• Initialize the weight vector

• Apply the perceptron algorithm to find

• Fix in the exercise

0 0 0

0 1 1

1 0 1

1 1 1

=

0 0 1 ,0 ,

0 1 1 ,1 ,

1 0 1 ,1 ,

11 1 ,1
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• Data:

• Initialization:

• Iteration #1: choose

• Classification:

• Update:

= = 0 = 0

+ = 111

• Iteration #2: choose

• Classification: = = 1 = 1

• Update: = 11 0

• Terminate (the weight classifies all instances correctly)
• = 0 0 1 :

• = 0 1 1 :

• = 1 0 1 :

• = 1 1 1 :

= 11 0 0 0 1 = 0

= 11 0 0 11 = 1

= 11 0 1 0 1 = 1

= 11 0 111 = 1

We chose the 

instances in 

the order that 

minimizes the 

required 

number of 

updates
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misclassifies• Suppose the parameter

• If then:

• Update the weight vector +

• If we classify again with the updated weights :

• If

• = + = +

• The dot product was increased (more likely to be classified as 1)

then:

• Update the weight vector

• If we classify

• =

again with the updated weights :

=

• The dot product was decreased (more likely to be classified as 0)

• The algorithm updates the parameter 

direction where it will classify

to  the 

more correctly
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Sigmoid function: (0,1)

( ) =
1

1 +

Step function:

( ) =

{0,1}

> 0)1 (if

0 (otherwise)

• Yields binary outputs

• Unusable for multi-class classification

• Indifferentiable at zero

• With zero gradients

• Yields continuous scores

• Usable for multi-class classification

• Differentiable at all points

• With mostly non-zero gradients

• Useful for gradient descent

lim ( ) = 1

lim ( ) = 0
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Sigmoid or Logistic vs Rectified Linear 
Unit (ReLU) Activation Functions

- Most popular because it is simple to 
compute and very robust to noisy inputs.

- Squashes real numbers between 0 and 1
- They have nice derivatives, which make learning 
easy.
- Currently not used as much because result in 
gradients too close to 0 stopping learning.



• Single layer NN with sigmoid function

• Given an input , it computes an output 

by using the parameter

• This is also known as logistic regression

• We can interpret as the conditional probability  

where an input is classified to (positive category)

• Rule to classify an input to :

> 0.5
1

>
1

1 + 2
> 0

• The classification rule is the same as the linear models
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• The same parameter in the previous example

• The outputs are acceptable, but

•

• Room for improving 

positives (true) and

is not so high (62.2%)

so that it yields (100%) for 

(0%) for negatives (false)

= = ( )

0 0 0 -1.5 0.182

0 1 0 -0.5 0.378

1 0 0 -0.5 0.378

1 1 1 0.5 0.622

Feedforward Neural Network (I)



• We introduce instance-wise likelihood, to measure 
how well the parameters reproduce

=
1

(if =  1) 

(otherwise)

= = ( )

0 0 0 -1.5 0.182 1 = 0.818

0 1 0 -0.5 0.378 1 = 0.622

1 0 0 -0.5 0.378 1 = 0.622

1 1 1 0.5 0.622 = 0.622

1

1

1

1

Parameters of AND:

• Likelihood is a probability representing the ‘fitness’ of 
the parameters to the training data
• We want to increase the likelihood by changing
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• We assume that all instances in the training data 

are i.i.d. (independent and identically distributed)

• We define likelihood as a joint probability on data,

is• When the training data

fixed, likelihood is a function of the parameters

• Let us maximize by changing

• This is called Maximum Likelihood Estimation (MLE)

• The maximizer reproduces the training data well
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• Products of values often cause underflow

• Use log-likelihood, the logarithm of the likelihood, instead

= log = log = log

• In mathematical optimization, we usually consider a 

minimization problem instead of maximization

• We define an objective function by using the 

negative of the log-likelihood

= = log

• is called a loss function or error function
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,• Given the training data

find as the minimization problem,

= log =
log  

log 1

(if =  1) 

(otherwise)
= log (1 ) log(1 )
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• The objective function is the sum of losses of instances,

• We can use Stochastic Gradient Descent (SGD) and its 

variants (e.g., Adam) for minimizing

• SGD Algorithm ( is the number of updates)

1. Initialize with random values

2. for to :

3.

4. a random sample from

5.
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Dataset Preparation



Training Dataset

Training Dataset: 

The actual dataset that we use to train the model.

The model sees and learns from this data.



Validation Dataset

Validation Dataset: 

The validation set is used to evaluate a given model. 

We use this data to fine-tune the model hyperparameters. 
Hence the model occasionally sees this data, but it never does “Learn”
from this. 

The validation set is also known as the Development set. This makes sense 
since this dataset helps during the “development” stage of the model.



Testing Dataset

Testing Dataset: 

The sample of data used to provide an evaluation of the final model 
fit on the training dataset.

It is only used once a model is completely trained (using the train 
and validation sets). 

The test set is generally well curated. It contains carefully 
sampled data that span the various classes that the model would 
face, when used in the real world.



• Insufficient quantity of training data

• Non-representative training data

• Poor-quality data

• Irrelevant features

• Overfitting the training data

• Underfitting the training data

Main Problems during training



- task is to predict if an image shows a balloon or not
- train a model using a dataset containing many blue coloured 
balloons (and other irrelevant objects)
- test the model on the original dataset: it gives 99% accuracy! 
- test the model on a new (“unseen”) dataset containing yellow 
coloured balloons: it gives 20% accuracy!

Our model doesn’t generalise well from our training data to 
unseen data. This is known as overfitting.
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Overfitting Problem (II)

A model that has learned the noise instead of the signal is 
considered “overfit” because it fits the training dataset but 
has poor fit with new datasets.

Overfitting happens when the ANN is said to be over-
trained so that the model captures the exact relationship 
between the specific input-output used during training 
phase.



Overfitting Example

The model has the ability to distinguish swan and other birds. Due to the fact 
that all training images are white swans, the model learns that all swans are white, 
hence it cannot predict accurately swans of other colours.



Underfitting Problem 

Underfitting happens when a machine learning model is not 
complex enough to accurately capture relationships 
between the input features and the target variable.

Underfitting appears when the network is not able to 
capture the underlying function mapping input – output 
data, either due to the small size of the training dataset or 
the poor architecture of the model.



Underfitting Example

The learned features of the swan are too few, so the criterion for 
distinguishing whether the images are swan or not is not clear. It is 
difficult to predict accurately.



More on generalization ability (1) 



More on generalization ability (2) 



• MLE often causes over-fitting
• When the training data is linearly separable

• Subject to be affected by noises in the training data

• We use regularization (MAP estimation)
• We introduce a penalty term when becomes large

• The loss function with an L2 regularization term:

= +

• is the hyper parameter to control the trade-off between 
over/under fitting
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Cross-validation (1)



Cross-validation (2)



Beyond accuracy:
Confusion matrix

PERFORMANCE METRICS



Confusion matrix or Error matrix (1) 



Confusion matrix or Error matrix (2) 



Confusion matrix or Error matrix (3) 



Confusion matrix or Error matrix (4) 



Confusion matrix or Error matrix (5) 



Confusion matrix or Error matrix (6) 



Confusion matrix or Error matrix (7) 



Confusion matrix or Error matrix (8) 



F1 score (Twice the Inverse of sum of 
Inverses of precision and recall) 

• F1 score penalises extremely low precision and recall
Predicted Actual Performance
Benign Benign Correct
Benign Malignant Wrong
Benign Benign Correct
Malignant Benign Wrong
Benign Benign Correct
Benign Benign Correct
Malignant Malignant Correct
Benign Benign Correct
Benign Benign Correct
Malignant Benign Wrong
Benign Benign Correct
Benign Benign Correct
Malignant Benign Wrong
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Malignant Malignant Correct
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Malignant Malignant Correct

Predicted Actual Performance
Benign Benign Correct
Benign Malignant Wrong
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Benign Malignant Wrong
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Benign Malignant Wrong
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Malignant Malignant Correct

Practical prediction
Precision: 0.500
Recall: 0.750

Mean: 0.625
F1 score: 0.60

Negative-based
Precision:1.000
Recall: 0.250

Mean: 0.625
F1 score: 0.40



Receiver Operating 
Characteristic (ROC) Graph



TPR/FPR Reminder 



Receiver Operating Characteristic 

ROC Graph (1)



Receiver Operating Characteristic 

ROC Graph (2)



Receiver Operating Characteristic 

ROC Graph (3)



ROC Area


