Supervised Learning Regression / Relation to Perceptron

Perceptron

Regression Problem

Training data: sample drawn i.i.d. from set X according to some distribution D,

$$S = ((x_1, y_1), \dots, (x_m, y_m)) \in X \times Y$$

with $Y \subseteq \mathbb{R}$ is a measurable subset.

- Loss function: $L: Y \times Y \to \mathbb{R}_+$ a measure of closeness, typically $L(y,y') = (y'-y)^2$ or $L(y,y') = |y'-y|^p$ for some $p \ge 1$.
- Problem: find hypothesis $h: X \to \mathbb{R}$ in H with small generalization error with respect to target f

$$R_D(h) = \underset{x \sim D}{\text{E}} \left[L(h(x), f(x)) \right].$$

Notes

Empirical error:

$$\widehat{R}_D(h) = \frac{1}{m} \sum_{i=1}^m L(h(x_i), y_i).$$

- In much of what follows:
 - $Y = \mathbb{R}$ or Y = [-M, M] for some M > 0.
 - $L(y, y') = (y'-y)^2 \longrightarrow$ mean squared error.

Linear Regression

- Feature mapping $\Phi: X \to \mathbb{R}^N$.
- Hypothesis set: linear functions.

$$\{x \mapsto \mathbf{w} \cdot \mathbf{\Phi}(x) + b \colon \mathbf{w} \in \mathbb{R}^N, b \in \mathbb{R}\}.$$

Optimization problem: empirical risk minimization.

$$\min_{\mathbf{w},b} F(\mathbf{w},b) = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{w} \cdot \mathbf{\Phi}(x_i) + b - y_i)^2.$$

Linear Regression - Solution

Rewrite objective function as $F(\mathbf{W}) = \frac{1}{m} \|\mathbf{X}^{\top} \mathbf{W} - \mathbf{Y}\|^2$, $\mathbf{X} = \begin{bmatrix} \Phi(x_1) \dots \Phi(x_m) \\ 1 & \dots & 1 \end{bmatrix} \in \mathbb{R}^{(N+1) \times m}$

with
$$\mathbf{X}^{\top} = \begin{bmatrix} \mathbf{\Phi}(x_1)^{\top} & 1 \\ \vdots & \\ \mathbf{\Phi}(x_m)^{\top} & 1 \end{bmatrix} \mathbf{W} = \begin{bmatrix} w_1 \\ \vdots \\ w_N \\ b \end{bmatrix} \mathbf{Y} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$$
.

Convex and differentiable function.

$$\nabla F(\mathbf{W}) = \frac{2}{m} \mathbf{X} (\mathbf{X}^{\top} \mathbf{W} - \mathbf{Y}).$$

$$\nabla F(\mathbf{W}) = 0 \Leftrightarrow \mathbf{X}(\mathbf{X}^{\top}\mathbf{W} - \mathbf{Y}) = 0 \Leftrightarrow \mathbf{X}\mathbf{X}^{\top}\mathbf{W} = \mathbf{X}\mathbf{Y}.$$

Linear Regression - Solution

Solution:

$$\mathbf{W} = \begin{cases} (\mathbf{X}\mathbf{X}^{\top})^{-1}\mathbf{X}\mathbf{Y} & \text{if } \mathbf{X}\mathbf{X}^{\top} \text{ invertible.} \\ (\mathbf{X}\mathbf{X}^{\top})^{\dagger}\mathbf{X}\mathbf{Y} & \text{in general.} \end{cases}$$

- Computational complexity: $O(mN+N^3)$ if matrix inversion in $O(N^3)$.
- Poor guarantees in general, no regularization.
- For output labels in \mathbb{R}^p , p>1, solve p distinct linear regression problems.

Higher order polynomials

The polynomial regression model

$$y_i \,=\, eta_0 + eta_1 x_i + eta_2 x_i^2 + \cdots + eta_m x_i^m + arepsilon_i \; (i=1,2,\ldots,n)$$

can be expressed in matrix form in terms of a design matrix \mathbf{X} , a response vector \vec{y} , a parameter vector $\vec{\beta}$, and a vector $\vec{\varepsilon}$ of random errors. The *i*-th row of \mathbf{X} and \vec{y} will contain the x and y value for the *i*-th data sample. Then the model can be written as a system of linear equations:

$$egin{bmatrix} y_1 \ y_2 \ y_3 \ dots \ y_n \end{bmatrix} = egin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^m \ 1 & x_2 & x_2^2 & \dots & x_2^m \ 1 & x_3 & x_3^2 & \dots & x_3^m \ dots \ dots & dots & dots & dots \ dots \ y_n \end{bmatrix} + egin{bmatrix} arepsilon_1 \ arepsilon_2 \ dots \ \ dots \ \ do$$

which when using pure matrix notation is written as

$$\vec{y} = \mathbf{X}\vec{eta} + \vec{arepsilon}$$
.

The vector of estimated polynomial regression coefficients (using ordinary least squares estimation) is

$$\widehat{ec{eta}} = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1} \; \mathbf{X}^\mathsf{T} \vec{y},$$

Higher order polynomials - Overfitting

Ridge Regression

(Hoerl and Kennard, 1970)

Optimization problem:

$$\min_{\mathbf{w}} F(\mathbf{w}, b) = \lambda \|\mathbf{w}\|^2 + \sum_{i=1}^{m} (\mathbf{w} \cdot \mathbf{\Phi}(x_i) + b - y_i)^2,$$

where $\lambda \ge 0$ is a (regularization) parameter.

- directly based on generalization bound.
- generalization of linear regression.
- closed-form solution.
- can be used with kernels.

LASSO

(Tibshirani, 1996)

Optimization problem: 'least absolute shrinkage and selection operator'.

$$\min_{\mathbf{w}} F(\mathbf{w}, b) = \lambda \|\mathbf{w}\|_1 + \sum_{i=1}^{m} (\mathbf{w} \cdot \mathbf{x}_i + b - y_i)^2,$$

where $\lambda \ge 0$ is a (regularization) parameter.

- Solution: equiv. convex quadratic program (QP).
 - general: standard QP solvers.
 - specific algorithm: LARS (least angle regression procedure), entire path of solutions.

Sparsity of L1 regularization

Notes

- Advantages:
 - theoretical guarantees.
 - sparse solution.
 - feature selection.
- Drawbacks:
 - no natural use of kernels.
 - no closed-form solution (not necessary, but can be convenient for theoretical analysis).

Regression

- Kernel-based methods (in Foundations)
 - Kernel ridge regression.
 - SVR.
- Many other families of algorithms: including
 - neural networks.
 - decision trees.
 - boosting trees for regression.

A Simple Problem (Linear Regression)

- We have training data $X = \{x_1^k\}$, i=1,...,N with corresponding output $Y = \{y^k\}$, i=1,...,N
- We want to find the parameters that predict the output Y from the data X in a linear fashion:

$$Y \approx W_0 + W_1 X_1$$

A Simple Problem (Linear

- We have training data $X = \{\vec{x}_1^k\}, k=1,...,N$ with corresponding output $Y = \{y^k\}, k=1,...,N$
- We want to find the parameters that predict the output *Y* from the data *X* in a linear fashion:

$$y^k \approx W_o + W_1 X_1^k$$

A Simple Problem (Linear Regression)

- It is convenient to define an additional "fake" attribute for the input data: $x_0 = 1$
- We want to find the parameters that predict the output Y from the data X in a linear fashion:

$$y^k \approx w_o x_o^k + w_1 x_1^k$$

More convenient notations

 $\mathbf{X}^{k} = [X_{0}^{k},...,X_{M}^{k}]$

• We seek a vector of parameters:
$$\mathbf{w} = [w_o, ..., w_M]$$

Such that we have a linear relation between prediction Y and attributes X:

$$y^{k} \approx w_{o} x_{o}^{k} + w_{1} x_{1}^{k} + \dots + w_{M} x_{M}^{k} = \sum_{i=0}^{M} w_{i} x_{i}^{k} = \mathbf{w} \cdot \mathbf{x}^{k}$$

More convenient notations

By definition: The dot product between vectors \mathbf{w} and \mathbf{x}^k is:

$$\mathbf{w} \cdot \mathbf{x}^k = \sum_{i=0}^M w_i x_i^k$$

• We seek a vector of parameters:
$$[w_o,...,w_M]$$

• Such that we have a linear relation be en prediction Y and attributes X:

 $\mathbf{X}^i = [X_0^i, ..., X_n^i]$

$$y^{k} \approx W_{o} X_{o}^{k} + W_{1} X_{1}^{k} + \dots + W_{M} X_{M}^{k} = \sum_{i=0}^{M} W_{i} X_{i}^{k} = \mathbf{W} \cdot \mathbf{X}^{k}$$

Neural Networks

The McCulloch-Pitts Neuron

- The first mathematical model of a neuron [Warren McCulloch and Walter Pitts, 1943]
- Binary activation: fires (1) or not fires (0)
- ullet Excitatory inputs: the a's, and Inhibitory inputs: the b's
- ullet Unit weights and fixed threshold heta
- Absolute inhibition

$$c_{t+1} = \left\{ \begin{array}{ll} 1 & \text{If } \sum_{i=0}^n a_{i,t} \geq \theta \text{ and } b_{1,t} = \cdots = b_{m,t} = 0 \\ 0 & \text{Otherwise} \end{array} \right.$$

Computing with McCulloch-Pitts Neurons

Any task or phenomenon that can be represented as a logic function can be modelled by a network of MP-neurons

- {OR, AND, NOT} is functionally complete
- Any Boolean function can be implemented using OR, AND and NOT
- Canonical forms: CSOP or CPOS forms
- MP-neurons ⇔ Finite State Automata

- Problems with MP-neurons
 - Weights and thresholds are analytically determined.
 Cannot learn
 - Very difficult to minimize size of a network
 - What about non-discrete and/or non-binary tasks?
- Perceptron solution [Rosenblatt, 1958]
- Weights and thresholds can be determined analytically or by a learning algorithm
 - Continuous, bipolar and multiple-valued versions
 - Efficient minimization heuristics exist

Perceptron

Architecture

- Input:
$$\vec{x} = (x_0 = 1, x_1, \dots, x_n)$$

- Weight:
$$\vec{w} = (w_0 = -\theta, w_1, \dots, w_n), \theta = \text{bias}$$

- Net input:
$$y = \vec{w}\vec{x} = \sum_{i=0}^{n} w_i x_i$$

- Output
$$f(\vec{x}) = g(\vec{w}\vec{x}) = \begin{cases} 0 & \text{If } \vec{w}\vec{x} < 0 \\ 1 & \text{If } \vec{w}\vec{x} \ge 0 \end{cases}$$

g: activation function

In July 1958, the U.S. Office of Naval Research unveiled a remarkable invention.

An IBM 704 – a 5-ton computer the size of a room – was fed a series of punch cards. After 50 trials, the computer taught itself to distinguish cards marked on the left from cards marked on the right.

It was a demonstration of the "perceptron" – "the first machine which is capable of having an original idea," according to its creator, Frank Rosenblatt.

[Cornell Chronicle]

Neural Network: Linear Perceptron

Linear: no activation function

Ισοδύναμο με τη συνάρτηση δυναμικού του ADALINE (Widrow-Hoff, 1960). <u>Βλέπε</u> σύγκριση <u>Perceptron</u> - <u>Adaline</u>

Linear Regression: Gradient

Descent

• We seek a vector of parameters: $\mathbf{w} = [w_o, ..., w_M]$ that minimizes the error between the prediction Y and and the data X:

$$E = \sum_{k=1}^{N} (y^k - (\mathbf{w}_o x_o^k + \mathbf{w}_1 x_1^k + \dots + \mathbf{w}_M x_M^k))^2$$

$$= \sum_{k=1}^{N} (y^k - \mathbf{w} \cdot \mathbf{x}^k)^2$$

$$= \sum_{k=1}^{N} \delta_k^2 \qquad \delta_k = y^k - \mathbf{w} \cdot \mathbf{x}^k$$

Ε: θα την δούμε και με 1/2 μπροστά για κανονικοποίηση

Gradient Descent

• The minimum of *E* is reached when the derivatives with respect to each of the parameters *w_i* is zero:

$$\frac{\partial \mathbf{E}}{\partial \mathbf{w}_{i}} = -2\sum_{k=1}^{N} (\mathbf{y}^{k} - (\mathbf{w}_{o} \mathbf{x}_{o}^{k} + \mathbf{w}_{1} \mathbf{x}_{1}^{k} + \dots + \mathbf{w}_{M} \mathbf{x}_{M}^{k})) \mathbf{x}_{i}^{k}$$

$$= -2\sum_{k=1}^{N} (\mathbf{y}^{k} - \mathbf{w} \cdot \mathbf{x}^{k}) \mathbf{x}_{i}^{k}$$

$$= -2\sum_{k=1}^{N} (\mathbf{y}^{k} - \mathbf{w} \cdot \mathbf{x}^{k}) \mathbf{x}_{i}^{k}$$

Gradient Descent

 The minimum of E is reached when the derivatives with respect to each of the parameters w_i is zero:

Note that the contribution of training data element number k to the overall gradient is $-\delta_k x_i^k$

$$\frac{\partial \mathbf{L}}{\partial \mathbf{W}_{i}} = -2 \sum_{k=1}^{N} (\mathbf{y}^{k} - (\mathbf{W})^{T} \mathbf{X}_{1} + \cdots + \mathbf{W}_{M} \mathbf{X}_{M}))$$

$$= -2 \sum_{k=1}^{N} (\mathbf{y}^{k} - \mathbf{W}) \mathbf{X}_{i}^{k}$$

$$= -2 \sum_{k=1}^{N} \delta_{k} \mathbf{X}_{i}^{k}$$

Δείτε και το <u>"Single-Layer</u>
<u>Neural Networks and Gradient</u>
<u>Descent"</u> του Raschka με
παραδείγματα σε Python

 Update rule: Move in the direction opposite to the gradient direction

$$\mathbf{w}_i \leftarrow \mathbf{w}_i - \alpha \frac{\partial E}{\partial \mathbf{w}_i}$$

Perceptron Training

- Given input training data x^k with corresponding value y^k
- 1. Compute error:

$$\delta_k \leftarrow y^k - \mathbf{w} \cdot \mathbf{x}^k$$

2. Update NN weights:

$$\mathbf{W}_i \leftarrow \mathbf{W}_i + \alpha \delta_k \mathbf{X}_i^k$$

 α is the learning rate.

 α too small: May converge slowly and may need a lot of training examples

 α too large: May change **w** too quickly and spend a long time oscillating around the minimum.

1. Compute error:

$$\delta_k \leftarrow y^k$$
 \mathbf{x}^k

2. Update NN weights:

$$W_i \leftarrow W_i + \alpha \delta_k X_i^k$$

Perceptrons: Remarks

- Update has many names: delta rule, gradient rule, LMS rule.....
- Update is *guaranteed* to converge to the best linear fit (global minimum of *E*)
- Of course, there are more direct ways of solving the linear regression problem by using linear algebra techniques. It boils down to a simple matrix inversion (not shown here).
- In fact, the perceptron training algorithm can be much, much slower than the direct solution

A Simple Classification Problem

Training data:

- Suppose that we have one attribute x_1
- Suppose that the data is in two classes (red dots and green dots)
- Given an input value x_1 , we wish to predict the most likely class.

A Simple Classification Problem

$$y = 0$$

We could convert it to a problem similar to the X previous one by defining an output value y
 0 if in red class

$$y = \begin{cases} 1 & \text{if in green class} \end{cases}$$

 The problem now is to learn a mapping between the attribute x₁ of the training examples and their corresponding class output y

- Note: It is **not** important to remember the exact expression of σ (in fact, alternate definitions are used for σ). What is important to remember is that:
 - It is smooth and has a derivative σ' (exact expression is unimportant)
 - It approximates a hard threshold function at x = 0

Generalization to *M* Attributes

- Two classes are linearly separable if they can be separated by a linear combination of the attributes:
 - Threshold in 1-d
 - Line in 2-d
 - Plane in 3-d
 - Hyperplane in *M*-d

Generalization to M Attributes

Term: Single-layer Perceptron

Interpreting the Squashing Function

• Roughly speaking, we can interpret the output as how confident we are in the classification: Prob(y=1|x)

Training

- Given input training data x^k with corresponding value y^k
- 1. Compute error:

$$\delta_k \leftarrow y^k - \sigma(\mathbf{w} \cdot \mathbf{x}^k)$$

2. Update NN weights:

$$\mathbf{W}_i \leftarrow \mathbf{W}_i + \alpha \delta_k \mathbf{X}_i^k \sigma'(\mathbf{w} \cdot \mathbf{x}^k)$$

Note: It is exactly the same as before, except for the additional complication of passing the linear output through σ

- Given input tra ata x^k with corresponding value.
- 1. Compute error:

$$\delta_k \leftarrow y^k - \sigma(\mathbf{w} \cdot \mathbf{x}^k)$$

This formula derived by direct application of the chain rule from calculus

$$W_i \leftarrow W_i + \alpha \delta_k x_i^k \sigma'(\mathbf{w} \cdot \mathbf{x}^k)$$

Single Layer: Remarks

- Good news: Can represent any problem in which the decision boundary is *linear*.
- Bad news: NO guarantee if the problem is not linearly separable
- Canonical example: Learning the XOR function from example → There is no line separating the data in 2 classes.
 1

$$X_1 = 0$$

$$X_1 =$$

$$X_2 =$$

Class output: $y = X_1 \text{ XOR } X_2$

$$X_1 = 0$$
$$X_2 = 0$$

*

Hyperplanes over R^d have VC-dim = d+1

The Minsky-Papert XOR affair (1969)