Superviced (earning
Regrescion [/ Relation to Perceptron

Perceptron

Xp =1
X| =0
>
*n




Regression Problem

® Training data: sample drawn i.i.d. from set X
according to some distribution D,

S={(z1,y1)s - (Tm, Ym)) EX XY,

with Y CR is a measurable subset.

M |oss function: L: Y xY —R_a measure of closeness,

typically L(y,y")=('—y)* or L(y,y') =1y’ —y|” for
some p>1,

® Problem: find hypothesis 4: X —R in H with small
generalization error with respect to target f

Rp(h) = xE |L(h(z), f(z))].

~D



® |n much of what follows:
®Y=RorY=[-M,M]for some M >0.

o L(y,y')=(y' —y)’— mean squared error.



Linear Regression

® Feature mapping ®: X — R,

® Hypothesis set: linear functions.
{x—w- -®(x)+b:weRY beR}.

® Optimization problem: empirical risk minimization.

—_— . . — 2
min F(w,b) mZ(W P(z;) +b—y;)
=1

yl\
o o >®
o 20 4
O




Linear Regression - Solution

, S . 1
® Rewrite objective function as F(W)=—|X'W - Y|?,
X — [q>1(a:1)...<1>(:cﬂ{)} c RIN+1)xm m

—@(xl)—l— 1_ w1 _yl -
with X'=| W=| ' ®|Y=]:
w
P(zm)" 1] b | Lml

® Convex and differentiable function.

VE(W) = 3X(XTW —~Y).

m

VEW)=02X(X'W-Y)=0c XX'W=XY.



Linear Regression - Solution

| Solution:
— {(XXT)1XY if XX invertible.
(XXT)'XY in general.
e Computational complexity: O(mN + N?)if matrix
inversion in O(N?).
® Poor guarantees in general, no regularization.

® For output labels in R?, p>1, solve p distinct
linear regression problems.



Higher order polynomials

The polynomial regression model
Yi = Bo+Pizi+ ez + -+ Bzt +& (1=1,2,...,n)

can be expressed in matrix form in terms of a design matrix X, a response vector 3, a parameter vector (3
, and a vector € of random errors. The i-th row of X and g will contain the x and y value for the i-th data

sample. Then the model can be written as a system of linear equations:

- - B 2 m] - = - -
n 1l =2 o7 ... a7 Bo £1
2 m
2 m
y3 | = |1 =3 =3 ... xf§ B2 | + |es |,
L Und |1 oz, 22 ... x| LBml  Lénl

which when using pure matrix notation is written as
j=X3+E.

The vector of estimated polynomial regression coefficients (using ordinary least squares estimation) is

AN

f=(X"X)! X"y,



Higher order polynomials - Overfitting

Degree 1 Degree 4 Degree 15
MSE = 4.08e-01(+/- 4.25e-01) MSE = 4.32e-02(+/- 7.08e-02) MSE = 1.82e+08(+/- 5.45e+08)
—— Model —— Model —— Model
——— True function ——— True function —— True function
e Samples e Samples e Samples




Ridge Regression
(Hoerl and Kennard, 1970)
& Optimization problem:

min F(w,b) = A|w||? + 3 (w- ®(z;) + b —y:)°.
=1
where A >0 is a (regularization) parameter.

® directly based on generalization bound.
® generalization of linear regression.
® closed-form solution.

® can be used with kernels.



LASSO
(Tibshirani, 1996)

® Optimization problem: ‘least absolute shrinkage
and selection operator’.

min F(w,b) = A[wll1 + > (W-x; +b—y)°,
=il
where A\>0 is a (regularization) parameter.
® Solution: equiv. convex quadratic program (QP).
® general: standard QP solvers.

® specific algorithm: LARS (least angle regression
procedure), entire path of solutions.



Sparsity of LI regularization

" |

LI regularization L2 regularization



Notes

® Advantages:
® theoretical guarantees.
® sparse solution.
e feature selection.

® Drawbacks:
® no natural use of kernels.

® no closed-form solution (hot necessary, but can
be convenient for theoretical analysis).



Regression

m Kernel-based methods (in Foundations)
® Kernel ridge regression.

® SVR.

® Many other families of algorithms: including
® neural networks.
® decision trees.
® boosting trees for regression.



A Simple Problem (Linear
4 Regression)

’X1
« We have training data X = {x,/}, i=1,..,N with
corresponding output Y = {y}, i=1,..,N

« We want to find the parameters that predict the
output Y from the data Xin a linear fashion:

Y=w, + w, X,




A Simple Problem (Linear
y‘

Notations:

Superscript: Index of the data point in the
training data set; k = K" training data point
e | Subscript: Coordinate of the data point;

|

1

i X1k= coordinate 1 of data point k.

. -

« We have training data X = {x,X}, k=1,..,N with
corresponding output Y = {y}, k=1,..,N

« We want to find the parameters that predict the
output Y from the data Xin a linear fashion:

Y= w, + wy x




A Simple Problem (Linear
d Regression)

:X1
|t is convenient to define an additional “fake”
attribute for the input data: x, = 1

« We want to find the parameters that predict the
output Y from the data Xin a linear fashion:

yk~ WX,  + Wy Xy




M%e convenient notations

AR, T

. Vector of attributes for each training data’foint:
X=X 558
« We seek a vector of parameters: w = [w,,..,w,/]

« Such that we have a linear relation between prediction
Y and attributes X:

M

k k k k k k

Y5 R WX, WXy + Wy Xy = D WiX) =W -X
=0




MorHe convenient notations

By definition: The dot product | —*

between vectors w and xX is:

k v k
=0

ing data’Point:

« We seek a vector of parameters:

« Such that we have a linear relation b
Y and attributes X:

w,,..,w/]

en prediction

k

W
Y = wo xS WX o wy X =Y wix = wx
=0

k




Neural Networks




\ [\ )
Dendrites Q Microtubule

Neurofibrils
Neurotransmitter

Synaptic vesicles
Synapse (Axoaxoni

Synaptic cleft TS
Axonal terminal /

Node of Ranvier

Receptor

Rough ER
(Nissl body)

C ‘
PN Qo ‘
c®
o
Polyribosomes

Synapse
(Axosomatic)

Ribosomes
Golgi apparatus

Myelin Sheath
. (Schwann cell)

Axon hillock
Nucleus

Nucleolus

Membrane ' '

Microtubule —==

Nucleus
(Schwann cell)

Mitochondrion

Smooth ER '
Microfilament
Microtubule
S Axon
ynapse Dendrites

(Axodendritic)



T he McCulloch-Pitts Neuron

e The first mathematical model of a neuron [Warren
McCulloch and Walter Pitts, 1943]

e Binary activation: fires (1) or not fires (0)

e EXcitatory inputs: the a's, and
Inhibitory inputs: the b's

e Unit weights and fixed threshold 6

e Absolute inhibition



(1 If Y qa;p>0and by = =byt=0
Ct4+1 =

0 Otherwise

" Ci+1




Computing with McCulloch-Pitts Neurons

~AND




Any task or phenomenon that can be represented as

a logic function can be modelled by a network of
MP-neurons

e {OR, AND, NOT} is functionally complete

e Any Boolean function can be implemented using
OR, AND and NOT

e Canonical forms: CSOP or CPOS forms

e MP-neurons < Finite State Automata



e Problems with MP-neurons

— Weights and thresholds are analytically determined.
Cannot learn

— Very difficult to minimize size of a network

— What about non-discrete and/or non-binary tasks?

e Perceptron solution [Rosenblatt, 1958]

— Weights and thresholds can be determined ana-
lytically or by a learning algorithm

— Continuous, bipolar and multiple-valued versions

— Efficient minimization heuristics exist



Perceptron

e Architecture
— INPUE: &= {85 = L, 89y,
— Weight: @ = (wg = —0,w1,...,wy), 8 = bias
— Net input: y = o7 = .1 w;z;

& If wx R .
— Output £(%) = g(wF) = { (1) It %; 8 g: activation function



LPERCEPTRON | In July 1958, the U.S. Office of Naval
L "I 3 Research unveiled a remarkable
invention.

An IBM 704 — a 5-ton computer the
size of a room — was fed a series of
punch cards. After 50 trials, the
computer taught itself to distinguish
cards marked on the left from cards
marked on the right.

It was a demonstration of the
“perceptron” — “the first machine which
is capable of having an original idea,”
according to its creator, Frank
Rosenblatt.

[Cornell Chronicle]



https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-60-years-too-soon

Neural Network: Linear Perceptron | inear. no activation function

looduvauo ye TN ouvapTnon
ouvapuikou Tou ADALINE
(Widrow-Hoff, 1960). BATre
ouykpion Perceptron - Adaline

Input attribute values



https://sebastianraschka.com/faq/docs/diff-perceptron-adaline-neuralnet.html
https://sebastianraschka.com/faq/docs/diff-perceptron-adaline-neuralnet.html

Neural Network: Linear Perceptron

Note: This input unit corresponds to the
“fake” attribute x, = 1. Called the bias

® @ e

Output Unit
M

i=0

Input Units

 Connection with weight

Neural Network Learning
problem: Adjust the connection
weights so that the network
generates the correct
prediction on the training data.




Linear Regression: Gradient
Descent

* We seek a vector of parameters: w = [w,,..,w,/] that
minimizes the error between the prediction Y and and

the data X:

E=Y(y*- )

W X + W X + - F+Wi X E: 8a TNV doupe Kai e 1/2
Z 171 MM MTTPOOTA YIa KAVOVIKOTTOINON
v - w x*f

o0 O, =y —w-x*

M= EMZ

=
N




LI near |- 5. is the error between the input x and the
prediction y at data point k.

Graphically, it the “vertical” distance

between data point k and the prediction
calculated by using the vector of linear
.} parameters w.




Gradient Descent

« The minimum of E is reached when the derivatives
with respect to each of the parameters w; is zero:

oE _ 2N( k k k k ) k
— =22y  —(w,x; +w, X +---+wy X)) X;
ow, -

N

:—2Z(y"—w-x")x,f‘

k=1

N
=2 5 X;
k=1




Gradient Descent

« The minimum of E is reached when the derivatives
with respect to each of the parameters w; is zero:

Note that the contribution of
training data element number k
JE N to the overall gradient is -9, x/

_ k k | Acite ka1 1o “Single-Laver
ow =-2 (y T WM"M)}XI' Neural Networks and Gradient
i k=1 Descent” Tou Raschka pe

TTapadeiypara o€ Python



https://sebastianraschka.com/Articles/2015_singlelayer_neurons.html
https://sebastianraschka.com/Articles/2015_singlelayer_neurons.html
https://sebastianraschka.com/Articles/2015_singlelayer_neurons.html

Gradient Descent Update Rule

E Here we need

Here we need to decrease

to increase w;. w;. Note that
Note that 0E
O 7
BW,- is positive
is negative : l :
g w

« Update rule: Move in the direction {

opposite to the gradient direction

oE
W, < W, - —

oW,




1.

Perceptron Training

Given input training data x* with
corresponding value y*

Compute error:

K K
Op <Y —W-X

2. Update NN weights:

W, < W, + ad, X\




o is the learning rate.

o too small: May converge slowly and may need a lot of
training examples

o too large: May change w too quickly and spend a
long time oscillating around the minimum.

1. Compute error:

\ [
o, «— y~ \ X"
2. Update NN weights: \

W, < W, + S, X"




1 _
W1 Wo
08]  “Trye” value w,= 0.7 0.8/
0.61 0.6}
0.4 0.4 “True” value w,= 0.3
0.2t 0.2
" | . iterations iterations
0 5 10 15 20 | G 5 10 15 20
=True” function: g
Oa,y = 0.3 + 0.7 X1 &
w=[0.30.7] .-~
0.6’ ,/”
0.4 .-~
0.2+
% 0.5 !




-
0.8 0.8 \
0.6/ 0.6/
0.4/ 0.4|
0.2| 0.2|
% 5 10 15 20 % 5 10 15 20

After 2 iterations
(2 training points)




After 6 iterations
(6 training points)

T T
0.8- _\\ 0.8
0.6- 0.6/
0.4- 0.4/
0.2- 0.2
% 5 0 51'5 20 | % 10 15 20




After 20 iterations
(20 training points)

1 . 1 .

- K i’

0.8/ 0.8

0.6 True” value wy= 0.7 -

0.4f 0.4

0.2} 0.2 “True” value w,= 0.3

iterations iterations
% 5 10 15 20 | % 5 10 15 >
1.5 .




Perceptrons: Remarks

Update has many names: delta rule, gradient
rule, LMS rule.....

Update is guaranteed to converge to the best
linear fit (global minimum of E)

Of course, there are more direct ways of solving
the linear regression problem by using linear
algebra techniques. It boils down to a simple
matrix inversion (not shown here).

In fact, the perceptron training algorithm can be
much, much slower than the direct solution




A Simple Classification Problem

Training data:

000088080

« Suppose that we have one attribute x,

» Suppose that the data is in two classes
(red dots and green dots)

 Given an input value x,, we wish to predict
the most likely class.




A Simple Classification Problem
Y =1 e IR TR X BEE I

y=0
*—0-o *—o
- We could convert it to a problem similar to the X1

previous one by defining an output value y
- { Oif inredclass

1if ingreenclass

» The problem now is to learn a mapping between

the attribute x, of the training examples and their
corresponding class output y




X A18imple Classification Problem
-y= ___: ___________

What we would like: a piece-wise
constant prediction function:
This is not continuous - Does
not have derivatives

What we get from the current
linear perceptron model:
continuous linear prediction

. >
X1




Possible solution: Transform the linear
predictions by some function ¢ which
would transform to a continuous
approximation of a threshold

This curve is a continuous
approximation (“soft” threshold) of the
hard threshold 6

Note that we can take derivatives of

that prediction function
VAN 1

»




The Sigmoid Function
1 . . ;

0.6 i

1
0.4 ol(t) = :
0.2 ( ) 1_|_ e—t .

% 4 2 0 2 4 6

* Note: It is not important to remember the exact
expression of ¢ (in fact, alternate definitions are used
for ). What is important to remember is that:

— It is smooth and has a derivative ¢’ (exact expression is
unimportant)

— It approximates a hard threshold function at x=0




Generalization to M Attributes

A linear separation is
parameterized like a line:

» Two classes are linearly separable if they
can be separated by a linear combination
of the attributes:

— Threshold in 1-d
— Line in 2-d

— Plane in 3-d

— Hyperplane in M-d




Generalization to M Attributes

y — 0 |n thls reglon A linear Separation iS

. parameterized like a line:
wz cir(l “?p))(p))ri)gmate v
yorom > W, X; =W-X=0

y =1 in this region,
we can approximate
y by o(w.x) = 1




Single Layer Network for
Classification

Output prediction

« Term: Single-layer Perceptron




Interpreting the Squashing Function

Data is very close to threshold (small Data is very far from threshold
margin) - o value is very close to (large margin) = o value is
1/2 > we are not sure > 50-50 very close to 0 > we are very
chance that the class is 0 or 1 confident that the class is 1
1 | \ | | 3
0.8 i
0.6 i
0.4 i
0.2+ i
0 1 1 1 1
-6 -4 -2 O 2 4 6

* Roughly speaking, we can interpret the output as how
confident we are in the classification: Prob(y=1|x)




Training

Given input training data x* with
corresponding value y*

1. Compute error:

K k
2. Update NN weights:

W, < W; + 0{5kxf‘a’(w . x"




Note: It is exactly the same as before,
except for the additional complication
of passing the linear output through ¢
[

K with

corresponding v
1. Compute error:

o, —y~ —%(w-xkj

AThis formula derived by direct application of
the chain rule from calculus

W, < W, + a5k%’(w . X




Xo = X

w=[01-1]

D

Annoying detail: We get
the same separating
line if we multiplying all
of w by some constant,
so we are really
interested in the relative
values, such as the
slope of the line, -w,/w;.




D -
o8| True class boundary ’/}2 1
0.6 0 True value of
" -1 slope —w,/w, = 1
0.4} °.” R
o S iterations 2|
02 & (5 training )
{/ data points) lterations
0 . g . : >
0 0.5 o 20 40 60
1 j » 10'
® -
'I
0.8 o ®%
0.6} /"' x X |9
.. »”X X
® 7
0.4} .‘/z 0
’(
02t @ 2
s x X _5 |
0 0.5 0 20 40 B0




. ' 7 10'
0 @ l
0.6} °l
o8 WMMW
0.4 40 iterations | gl.
- (40 trair]ing True value of
C? X X data points) ’ slope —w,/ W, = 1 .
0.5 1 |70 20 o =
T—a® - Al [
0.8f l
5.
0.9 9 . M
0.4} o :
.: %60 iterationsOr '
0.2} (60 training :
', data points) | Itgranons ]
0 = 1l 1 20 40 60




Single Layer: Remarks

« Good news: Can represent any problem in which the

decision boundary is linear.

« Bad news: NO guarantee if the problem is not linearly

separable

« Canonical example: Learning the XOR function from
example - There is no line separating the data in 2

classes.
X1 - O

Class output:

X=0 @

®

Hyperplanes over RY have
VC-dim = d+1

The Minsky-Papert XOR affair
(1969)



https://en.wikipedia.org/wiki/Perceptrons_(book)

