Generic form of
Feedforward Neural Networks

Designing feedforward neural networks

First layer: R? > R3 Second layer: R3 - R? Final layer: R - R?
h® = g (a®) h® = g@(a@) h® = g®(a®)
a® = W@ RO a® = Ww@pW a® = WO
w® e R3%2 g D ¢ R3 W@ e R2%3 @ p@ ¢ R2 Ww® e R2¥2 q3) p3) ¢ R2

- The number of layers

- The numbers of dimensions of hidden layers
- An activation function for each layer

- A loss function

Cross entropy loss

- For binary classification
[(a,y) = —yloga(a) — (1 —y)log(1—o(a))
« For multi-class classification

l(a,y) = —a, + logz exp(az)
K

True probability distribution
° CrOSS entro py / (1 for true category; 0 otherwise)

H(p,q) =—) p(k)logq(k)
2 .

Predicted probability distribution

Mean Squared Error (MSE) loss

- Used for regression

1
l(a,y) = lly - all2

Training multi-layer neural networks
and back propagation

Generic notation for multi-layer NNs

First layer: R? > R3 Second layer: R3 - R? Final layer: R - R
h®D = g (a®) h® = g@(a®) h® = g®(a®)
a® = WwORO) a® = WA a® = wORE
w® e R¥>*2, aM, pW € R3 w® e R?3,a®, h? € R? w® e RY2,a® h® e R
- The I-th layer (I € {1, ..., L}) consists of: wO = (Wi(jl))
. - p(=1) di— 0) — : .
Input: h " €]Rd ' (h(L) X) wi(jl): weight from the j-th neuron
- Output: R € R™ (R =) to the i-th neuron of the I-th layer
- Weight: W € R%xdi-1
. Activation function: g® ' Please accept the notational conflict between |

Activati O e & h® = g(l) (W(Z)h(l_l)) | an instance-wise loss 1, and a layer number | !
ctivation: a'¥ e R% T e

How to train weights in MLPs

- We have no explicit supervision signals for the internal
(hidden) inputs/outputs h(?), ..., R(:=1)

- Having said that, SGD only needs the value of gradient
aa (l) for every weight w() in MLPs

- Can we compute the value of 2n_ - (l) for every weight w(])?
Wij

b

- Yes! Backpropagation can do that!! = ?

Backpropagation

- Commonly used in deep neural networks

- Formulas for backpropagation look complicated

- However:

- We can understand backpropagation easily if we know
the concept of computation graph

- Most deep learning frameworks implement
backpropagation by using automatic differentiation

- Let's see computation graph and automatic
differentiation first

General Back-Propagation

The back-propagation algorithm is very simple. To compute the gradient of some
scalar z with respect to one of its ancestors & in the graph, we begin by observing
that the gradient with respect to z is given by % = 1. We can then compute
the gradient with respect to each parent of z in the graph by multiplying the
current gradient by the Jacobian of the operation that produced z. We continue
multiplying by Jacobians traveling backwards through the graph in this way until
we reach . For any node that may be reached by going backwards from z through

two or more paths, we simply sum the gradients arriving from different paths at
that node.

Rules for reverse-mode AD

Add

Multiply

x 2= f()
> >
ofF®) ICO) g

0x

Function application

Branch

Computation graph: f(x,y,z) = (x + y)z

http://cs231n.github.io/optimization-2/

X =-—2
(@=x+y)
A 4 a = 3
[+
y =5
(f = az)
— f =-12
T
Z = —4
Forward pass

The value of a variable (above an arrow)

http://cs231n.github.io/optimization-2/

Automatic Differentiation (AD): f(x,y,z) = (x + y)z
http://cs231n.github.io/optimization-2/

. Compare with: |
X =—2 . Of '

. — =7 = -4
— —4 (@=x+y) g 3_}“22:_4 i
Ja Y a = E oy E
(@X(—AL)) C_]_j — _4 EZ_]Zcz(x+y)=3 i
y = of . N\| o T '
pa— (Gex=2=4) (f = az)
Jda L f = —12
—— X (—4) o
(a ") CX_J —1
Z = —4
— 3
(g S 3> Backward pass
0z (Reverse mode AD)

The value of a variable (above an arrow)
The gradient of the output f with respect to the variable (below an arrow)

http://cs231n.github.io/optimization-2/

Automatic differentiation (Baydin+ 2018)

- AD computes derivations by using the chain rule
- Function values computed in the forward pass

- Derivations computed with respect to:
- Every variable (in reverse-mode accumulation)
- A specific variable (in forward-mode accumulation)

- Do not confuse with these:

0f(x) _ fx+8)—f(x)
0x o

- Symbolic differentiation: e.g., Mathematica, sympy

- Numerical differentiation: for example,

Exercise: AD on computation graph

- Write a computation graph for [, (w),
1

1+e WX

L,(w)=—logo(w-x) =—log

- Consider x = (1,1,1)" and w = (1,1, —1.5)'
- Compute the value of [, (w)
dlx(w)

ow QQ

- Compute gradients

Computing

dlx(w)

using AD

ow
Ly Yy =ap dy/0a = dy/0B =«
W1 =03775 Joa (=5€ a(/a(g:g 6(/0£=6
Q K = 69 0K/69=19 6K/619=9
X1 03775 B v /21 A=y+¢ or/oy =1 oA/0C =1
1 Etj—osws Uu=2A1+k ou/oA=1 du/ok =1
5 o oA 0.4740
W2 203775 Yoo ; o¢ = —Uu dv/ou=-1
ou
"ﬁ 0.5 —-0.5 0.6065 1.6065 0.6225 —0.4740 L
X2 —0::775 E G X1 exp ol 11 T
-1.5 Er e v 0¢ on
W 0 Ok e —0.3775 0.3775 0.6224 0.6224 —1.6065 -1
3-0.3775 T
K E=¢eV dé/ov = eV Yt R :
1 _ bt ___ 1 !
y p 7 0.3775 T=¢&+1 aﬂ/af =1 E ;—36(;65 0.6225 E
3 05663 09 w=1/m dw /0 = —(1/m)? ::-_-:-_-_-:-_-_-:-_-_-:-_-_-:-_-_-:-_-_-.:
0w 1
oLw) p=logw 0p/0w = 1/w TS
Wy —w; +1 EIS wy + 0.37757 =— (1 61)65) X (—1.6065) !
1 l=—p ol/dp = —1 | = 0.6224 i

No need to derive backpropagation

- Manual derivation of gradients is tedious and error-prone
- Debugging a mistake in gradients is extremely difficult

» AD is employed in most deep learning frameworks

- We only need implement an algorithm for a forward pass, i.e., how
to compute an output from an input

- We can concentrate on designing a structure of neural network
- This boosted the speed of research and development
« The idea of AD is not new (since 1959)

- Deriving a formula for backpropagation is legacy

Summary and notes

- We design:
- A neural network model f(x; 8) (with parameters 9)
» A loss function: Ep(0) = XN_. L(f(x,; 0),v,)

« L Is an instance-wise loss function
- D presents a set of training data D = ((x1, 1), -, ey, yv))

- We find a minimizer 8* for E,(6) by using SGD

- An update formula for every parameter w € 0 is derived in
a generic manner based on automatic differentiation

- Step function is inappropriate for backpropagation
- Gradients will not flow because g'(a) = 0ata # 0

Activation functions

Step

Step function: R — {0,1} 21

(1 (ifx>0) o
9(x) = {0 (otherwise) 2
* Pros
: : X g(x)
- Yields a binary output HO— : >—'T
- Cons (never use this) _
- Zero gradients A
« SGD cannot update parameters because aa—vlv =0 f
J

Sigmoid

Sigmoid: R = (0,1)

| | |
o i 5] 1= ra e =
| . . \ . .

o(x) = 1+e™*
* Pros) .
- Yields an output within (0,1) BT <: >T'
- Cons .
- Not zero-centered |
- Zero (vanishing) gradients when |x| is large f

¢

Hyperbolic tangent (tanh)

tanh: R — (—1,1)

X —X

tanh(x) = Zx ; e 20(2x) — 1 =
* Pros
- Yields an output within (—1,1)
- Zero-centered
- Cons PN
- Zero (vanishing) gradients when |x| is large Z’g\;{}
51

Rectified Linear Unit (ReLU

—— Gradient
Function value

ReLU: R - R,
ReLU(x) = max(0, x)

| | |
o i 5] 1= ra e =
| . . \ . .

* Pros

- Gradients do not vanish when x > 0

- Light-weight (no e*) computation

- Faster convergence (e.g., 6x faster on CIFAR-10)
- Cons

- Not zero centered

- Dead neurons when x < 0

Leaky RelLU

Leaky ReLU. R - R
LeakyReLU,(x) = max(ax, x)

= L P (=]

|
%]

* Pros

- Gradients do not vanish

- Light-weight (no e*) computation
- Cons

- Not zero centered
- Not so much improvement over ReLU in practice

Typical definition of a DNN

Typical example of a (pseudo) definition for a Deep Neural Network of depth L (L-1 hidden layers and
1 output layer) for (almost) all modern DL frameworks and libraries:

initialize dnnmodel
dataset consists of D inputs x of dimensions d each

set hidden Layer 1 as a fully connected (fc) layer to inputs x containing n1 neurons (n1 x d
connections):

dnnmodel.fc1(n1)
fc1.activation-function=relu

set hidden Layer 2 as a fully connected layer to Layer 1 containing n2 neurons (n2 x n1 connections):

dnnmodel.fc2(n2)
fc2.activation-function=relu

... more hidden layers ...

set hidden Layer L-1 as a fully connected layer to Layer L-2 containing nL neurons (nL-1 x nL-2
connections):

dnnmodel.fclL-1(nL-1)
fcL-1.activation-function=relu

set fcL (output layer) in a binary classification problem (1 x nL-1 connections)

dnnmodel.fclL(1)
fcL.activation-function=sigmoid

OR set fcL (output layer) in a K-class multiclass classification problem with one-hot encoding (K x
nL-1 connections)

dnnmodel. fcL(K)
fcL.activation-function=softmax

Set Loss function to Cross Entropy (based on Maximum Likelihood Estimation). Use C for L2 weight
regularization.

dnnmodel.loss=crossentropy(C)

Set the solver to mini batch SGD (or variations) with learning rate Ir that by default will use automatic
differentiation for the backprop gradient computation. Also set maximum number of epochs (e) and
batch size (m) and use of dropout for further regularization. (one epoch equals D examples used for

training)

dnnmodel.solver=minibatchSGD(1r,m, e, dropout=yes)

What made Deep Neural Networks
possible and efficient?

Factors from the natural evolution of computation

- Better computers and software allow bigger networks with higher
capacity to solve more difficult problems

- With bigger datasets available we must use stochastic methods like
SGD

Algorithmic factors

- Cross-entropy is a better loss function than MSE for sigmoid,
softmax

- ReLU in hidden layers is a better activation function than sigmoid
and tanh for deeper networks

- Automatic differentiation is now a feature of all DL frameworks

What is the difference between a
neural network and a deep neural
network, and why do the deep
ones work better?

Short answer: DNN simply seem to perform better! Read

the first answer in the following link:
https.//stats.stackexchange.com/questions/182734/what-is-the-differe
nce-between-a-neural-network-and-a-deep-neural-network-and-w

https://stats.stackexchange.com/questions/182734/what-is-the-differe

	Feedforward neural network (II): Multi-class classification
	Highlights of this lecture
	Handwritten recognition (MNIST; LeCun+ 1998)
	Image representation
	Multi-class classification and perceptron algorithm
	General form: linear multi-class classification
	Represent an image with a vector
	Linear multi-class classification
	Training for multi-class classifier
	Perceptron algorithm for multi-class (Collins, 2002)
	Multi-class Perceptron implemented in numpy
	Summary and notes
	Multi-class classification with softmax function
	Training multi-class classifiers with SGD
	Softmax function: Definition
	Softmax function: Interpretation
	Single-layer NNs for multi-class classification
	An example with softmax function
	Supervision data for multi-class
	Instance-wise likelihood
	Likelihood on the training data
	Training as a minimization problem
	Training as a minimization problem
	Stochastic Gradient Descent (SGD)
	Exercise: compute the gradient
	Answer: compute the gradients
	SGD for training SLP
	Intuitive example of SGD updates (휂 푡 =1)
	Multi-class classification in numpy
	Computing the loss with mini-batch
	Mini-batch training
	Multi-class classification in pytorch
	Regularization
	Summary and notes
	Generic form of Feedforward Neural Networks
	Designing feedforward neural networks
	Cross entropy loss
	Mean Squared Error (MSE) loss
	Activation functions
	Step
	Sigmoid
	Hyperbolic tangent (tanh)
	Rectified Linear Unit (ReLU)
	Leaky ReLU
	Dropout
	Dropout (Srivastava+ 2014)
	Dropout at training phrase
	Dropout at inference phase
	Dropout in formulas
	Dropout in pytorch
	How was 'Dropout' conceived?
	References

