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Motivation

B Some computational learning questions
® What can be learned efficiently?
® What is inherently hard to learn?
® A general model of learning?

® Complexity
e Computational complexity: time and space.

® Sample complexity: amount of training data
needed to learn successfully.

® Mistake bounds: number of mistakes before
learning successfully.



® PAC Model
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Learning Stages

labeled data algorithm prior knowledge

training sample .{— features

parameter
selection

validation data

test sample ,
evaluation



Definitions

B Spaces: input space X, output spaceY.

B [ossfunction:L: Y XY —R.
* [(y,y): cost of predicting y instead of y.
* binary classification: 0-1 loss, L(y, ') =1, .
* regression’Y CR,I(y,y)=(y —y)°.
B Hypothesis set: HC Y, subset of functions out of which
the learner selects his hypothesis.
* depends on features.

® represents prior knowledge about task.



Supervised Learning Set-Up

B Training data: sample S of size mdrawn i.i.d. from X xY
according to distribution D:

S = ((xlayl)v SHEY ('vaym))

B Problem: find hypothesis h € Hwith small generalization
error.

e deterministic case: output label deterministic function of
input, y= f(x).
® stochastic case: output probabilistic function of input.



Errors

B Generalization error: for h€ H, itis defined by

R(h) = E_[L(h).5)]

B Empirical error: for h€ Hand sample S, itis
N T s
R(h) = — 3" L(h(w:), yo)
=1

@ Bayes error:

R*= inf R(h).
h
h measurable

e in deterministic case, R* =0.



Definitions and Notation

B X:set of all possible instances or examples, e.g.,
the set of all men and women characterized by
their height and weight.

B c: X —{0,1}:the target concept to learn; can be
identified with its support{zc X:c(z)=1}.

B (':concept class, a set of target concepts c.

B D:target distribution, a fixed probability
distribution over X.Training and test examples are
drawn according to D.



Definitions and Notation

B S:training sample.

B H:set of concept hypotheses, e.g., the set of all
linear classifiers.

® The learning algorithm receives sample S and
selects a hypothesis hs from H approximating c.



Errors

B True error or generalization error of h with
respect to the target concept cand distribution D'

R(h) = Pr [h(z) # ()] = E [Lnwyreo)

xND T

B Empirical error:average error of h on the training
sample S drawn according to distribution D,

Rg(h) = Pr |h(z) # c(z)] = E [1h(:r:)7éc ()] Z Lp(es)ste(es)-

xe~ D T

B Note: R(h) = JE [ﬁs(h)]-
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Finite Hypothesis Classes

The simplest type of restriction on a class is imposing an upper bound on its size
(that is, the number of predictors h in ). In this section, we show that if H is
a finite class then ERMy will not overfit, provided it is based on a sufficiently
large training sample (this size requirement will depend on the size of H).

Limiting the learner to prediction rules within some finite hypothesis class may
be considered as a reasonably mild restriction. For example, H can be the set of
all predictors that can be implemented by a C++ program written in at most
10° bits of code. In our papayas example, we mentioned previously the class of
axis aligned rectangles. While this is an infinite class, if we discretize the repre-
sentation of real numbers, say, by using a 64 bits floating-point representation,
the hypothesis class becomes a finite class.



e NMeasures of success: We define the error of a classifier to be the probability
that it does not predict the correct label on a random data point generated
by the aforementioned underlying distribution. That is, the error of A is
the probability to draw a random instance z, according to the distribution
D, such that A(z) does not equal f(z).

Formally, given a domain subset,? A C X, the probability distribution,
D, assigns a number, D( A}, which determines how likely it is to observe a
point € A. In many cases, we refer to A as an event and express it using
a function 7 : X — {0, 1}, namely, 4 = {x € X : m{z) = 1}. In that case,
we also use the notation P...p[m(x)] to express D(A4).

‘We define the error of a prediction rule, A : X — Y, to be

Losh) = P [h(@) # f(@)] T D{z:h@) # f(m)}).  (21)

That is, the error of such A is the probability of randomly choosing an
example z for which A{z) # f(z). The subscript (D, f) indicates that the
error is measured with respect to the probability distribution 2 and the

correct labeling function f. We omit this subscript when it is clear from
the context. L(p ry(A) has several synonymous names such as the general-
ization error, the risk, or the true error of A, and we will use these names
interchangeably throughout the book. We use the letter L for the error,
since we view this error as the loss of the learner. We will later also discuss
other possible formulations of such loss.



Understanding g
Foundations

Realizability Assumption
DEFINITION 2.1 {The Realizability Assumption) There exists A € # s.t. Consistent Case (ZUV£“n§ TrsP'TrTwo'n): the hypOthESIS h
Lp sy(h*) = 0. Note that this assumption implies that with probability 1 over | returned by the algorithm is always consistent, that is, it

random samples, .S, where the instances of S5 are sampled according to 2 and dmitted the traini leS
are labeled by f, we have Lg(h*) = 0. admitted no error on e tralning sampie >.

S

e The i.i.d. assumption: The examples in the training set are independently
and identically distributed (i.i.d.) according to the distribution D. That is,
every z; in S is freshly sampled according to D and then labeled according
to the labeling function, f. We denote this assumption by S ~ D™ where
m is the size of .S, and D™ denotes the probability over m-tuples induced
by applying P to pick each element of the tuple independently of the other
members of the tuple.

Intuitively, the training set .S is a window through which the learner
gets partial information about the distribution D over the world and the
labeling function, f. The larger the sample gets, the more likely it is to
reflect more accurately the distribution and labeling used to generate it.

5

‘We will therefore address the probability
to sample a training set for which L(p, sy(hg) is not too large. Usually, we denote

6 Probabl the probability of getting a nonrepresentative sample by &, and call (1 — 8} the .
( y) - 7 O SeUS i i 4 (1-9) 1 - & : Confidence
confidence parameter of our prediction.



PAC Model
(Valiant, 1984)

® PAC learning: Probably Approximately Correct
learning.

B Definition: concept class C' is PAC-learnable if there
exists a learning algorithm L such that:

® forallce C,e>0,6>0, and all distributions D,

JPr [R(hs)<d>1-6

® for samples Sof size m=poly(1/e,1/6)for a
fixed polynomial.



Remarks

Concept class C'is known to the algorithm.

Distribution-free model: no assumption on D.

Both training and test examples drawn ~ D.

Probably: confidence1—6.

Approximately correct: accuracyl—e.

Efficient PAC-

earning:Lruns in timepoly(1/e,1/9).

What about t

he cost of the representation of ce C?



PAC Model - New Definition

® Computational representation:
® cost forze XinO(n).
® costforceCinO(size(c)).

B Extension: running time.
O(poly(1/e,1/8)) — O(poly(1/e,1/6,n, size(c))).



Empirical Risk Minimization

As mentioned earlier, a learning algorithm receives as input a training set 5,
sampled from an unknown distribution 2 and labeled by some target function
£, and should output a predictor hg : & — Y (the subscript .S emphasizes the
fact that the output predictor depends on §). The goal of the algorithm is to
find Ag that minimizes the error with respect to the unknown P and f.

Since the learner does not know what D and f are, the true error is not directly
available to the learner. A useful notion of error that can be calculated by the
learner is the training error — the error the classifier incurs over the training
sample:

Ls(h) déf |{7’ € [m] ; h’(xi) 7é yi}|’ (22)

T

where [m] = {1,...,m}.

The terms empirical error and empirical risk are often used interchangeably
for this error.

Since the training sample is the snapshot of the world that is available to the
learner, it makes sense to search for a solution that works well on that data.
This learning paradigm — coming up with a predictor A that minimizes Lg(h) —
is called Empirical Risk Minimization or ERM for short.

ERMy(S) € argmin Lg(h),
heH

hg € argminLg(h). (2.4)
heH

hs(ﬂ!) &= {

Y
0

]
o =3
FP—-———
P ! .
1 1
o'ae
1 .|
@ s *
L

if 3i € [m] stz =2

otherwise.

(2.3)



€ (Approximately)

commonly denoted by ¢. We interpret the event L(p sy(hs) > € as a failure of the
learner, while if L(p £y(hs) < € we view the output of the algorithm as an approx-
imately correct predictor. Therefore (fixing some labeling function f : X — ),
we are interested in upper bounding the probability to sample m-tuple of in-
stances that will lead to failure of the learner. Formally, let S|; = (@1,...,Zm)
be the instances of the training set. We would like to upper bound

D™({Slz : Lip,py(hs) > €}).
Let Hp be the set of “bad” hypotheses, that is,
He ={h€H: Lips(h) > e}
In addition, let
M ={S|;:3h € Hp, Lg(h) = 0}

be the set of misleading samples: Namely, for every S|, € M, there is a “bad”
hypothesis, A € Hg, that looks like a “good” hypothesis on S|.. Now, recall that
we would like to bound the probability of the event L(p (hs) > €. But, since
the realizability assumption implies that Lg(hg) = 0, it follows that the event
Lp, p(hs) > € can only happen if for some » € Hp we have Lg(h) = 0. In
other words, this event will only happen if our sample is in the set of misleading
samples, M. Formally, we have shown that

{8z : Lip,pylhs) > e} T M .
Note that we can rewrite M as

M= |J {Sl=: Ls(h) = 0}.
heHe

(2.5)

Hence,

D™({Sle : Lo,y (hs) > €}) < D™(M) = D™ (Unew{Sle : Ls(h) = 0}).
(2.6)
Next, we upper bound the right-hand side of the preceding equation using the
union bound — a basic property of probabilities.

LEMMA 2.2 (Union Bound)
have

For any two sets A, B and a distribution D we

D(AUB) < D(A) + D(B).
Applying the union bound to the right-hand side of Equation (2.6) yields

D™({Slz: Lip.pylhs) > €}) < D D™({Sla: Ls(h) = 0}).
heHp

(2.7)

Next, let us bound each summand of the right-hand side of the preceding in-
equality. Fix some “bad” hypothesis A € Hg. The event Lg(h) = 0 is equivalent

to the event Wi, A(x;) = f(z:). Since the examples in the training set are sampled
ii.d. we get that

D™({S]e : Ls(h) = 0})

D™ ({S]e : Vi, hlz:) = fz:)})

LI DUz : Az) = f(z)).

i=1

(2.8)

For each individual sampling of an element of the training set we have
D{zi:hlzi) =w}) =1 -Lpplh) S1—¢

where the last inequality follows from the fact that A € Hg. Combining the
previous equation with Equation (2.8) and using the inequality 1 — e < e™¢ we
obtain that for every A € Hp,

D™({S|z: Le(h) =0} < {1 —e)™ < e ™. (2.9)
Combining this equation with Equation (2.7) we conclude that

D ({Sle : Lippylhs) > €}) < |Hple™™ < [H]e™™.

A graphical illustration which explains how we used the union bound is given in
Figure 2.1.

Figure 2.1 Each point in the large circle represents a possible m-tuple of instances.
Each colored oval represents the set of “misleading” m-tuple of instances for some
“bad” predictor 2 € #z. The ERM can potentially overfit whenever it gets a
misleading training set S. That is, for some h € Hz we have Ls(h) = 0.

Equation (2.9) guarantees that for each individual bad hypothesis, h € Hz, at most
(1 — €)™ Afraction of the training sets would be misleading. In particular, the larger m
is, the smaller each of these colored ovals becomes. The union bound formalizes the
fact that the area representing the training sets that are misleading with respect to
some h € Hz (that is, the training sets in M) is at most the sum of the areas of the
colored ovals. Therefore, it is bounded by |H | times the maximum size of a colored
aval. Any sample S outside the colored ovals cannot cause the ERM rule to overfit.

COROLLARY 2.3 Let H be a finite hypothesis class. Let 6 € (0,1) and e > 0

(H[e™s S
S e

J———

tH
_ws@og(i/m\?

€u42=@?j(MV%}

and let m be an integer that satisfies
> LB/

€
Then, for any lobeling function, f, and for any distribution, D, for which the
realizability assumption holds (that is, for some h € H, Lip p(h) = 0}, with
probability of at least 1 — & ower the choice of an i.i.d. sample S of size m, we
have that for every ERM hypothesis, hg, it holds that

L[D,f)(hs) g €.

The preceeding corollary tells us that for a sufficiently large m, the ERMy rule
over a finite hypothesis class will be probably (with confidence 1-8) approzimately
{up to an error of €) correct. In the next chapter we formally define the model
of Probably Approximately Correct (PAC) learning.

Correct



Remarks

B The algorithm can be ERM if problem realizable.

® Error bound linear in = and only logarithmic in = .

B log, |H|is the number of bits used for the
representation of H.

® Bound is loose for large |H|.

® Uninformative for infinite | H|.



Sample Complexity

The function ms : (0,1)?> — N determines the sample complexity of learning H:
that is, how many examples are required to guarantee a probably approximately
correct solution. The sample complexity is a function of the accuracy (e) and
confidence (0) parameters. It also depends on properties of the hypothesis class
‘H — for example, for a finite class we showed that the sample complexity depends
on log the size of H.

Note that if H is PAC learnable, there are many functions my that satisfy the
requirements given in the definition of PAC learnability. Therefore, to be precise,
we will define the sample complexity of learning H to be the “minimal function,”
in the sense that for any €,d, my/(¢,d) is the minimal integer that satisfies the
requirements of PAC learning with accuracy € and confidence 4.

Let us now recall the conclusion of the analysis of finite hypothesis classes
from the previous chapter. It can be rephrased as stating:

COROLLARY 3.2 FEwery finite hypothesis class is PAC learnable with sample
complezxity

my(€,0) < uniform convergence bound (consistent case)

€

loe/9)].

There are infinite classes that are learnable as well (see, for example, Exer-
cise 3). Later on we will show that what determines the PAC learnability of
a class is not its finiteness but rather a combinatorial measure called the VC
dimension.



B PAC Model

B Samp
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Inconsistent Case

B Nohe His a consistent hypothesis.

B The typical case in practice: difficult problems,
complex concept class.

B But, inconsistent hypotheses with a small number
of errors on the training set can be useful.

® Need a more powerful tool: Hoeffding’s inequality.



Hoeftding’s Inequality

® Corollary: for any e>0and any hypothesis h: X —{0,1}
the following inequalities holds:
Pr[R(h) — R(h) > €] < e~2m€
Pr[R(h) — R(h) > ¢] < e~27¢.
® Combining these one-sided inequalities yields

2

Pr[|R(h) — R(h)| > €] < 2e~2m¢"



Application to Learning Algorithm?

® Can we apply that bound to the hypothesis i g
returned by our learning algorithm when training
on sample S

® No, because hs is not a fixed hypothesis, it depends
on the training sample. Note also that E[R(hg)]
is not a simple quantity such as R(hg).

B |nstead, we need a bound that holds simultaneously
for all hypotheses h € H, a uniform convergence
bound.



Generalization Bound - Finite H

B Theorem:let H be a finite hypothesis set, then, for
any ¢ >0, with probability at least 14,

log |H| + log 2

2m

Vh € H, R(h) < Rs(h) + \/

B Proof: By the union bound,

Pr {%ag [R(h) — Rs(h)] >e}

— Pr [|R(h1) — Rs(h)|>eV ...V |R(hm) — Bs(him)| >e}

< 3" Pr||R(h) - Rs(h)|>¢]
heH

<2|H| exp(—2me?).



COROLLARY 3.2 Fwery finite hypothesis class is PAC learnable with sample E-QVTITTPOCWTTEUTIKO training set

complexity DEFINITION 4.1 (e-representative sample) A training set S is called e-representative

(w.r.t. domain Z, hypothesis class , loss function ¢, and distribution D) if
[log(lﬂl/&]

ma(€,6) < 2 VheH, |Ls(h) - Lp(h)| <e.

The next simple lemma states that whenever the sample is (¢/2)-representative,
the ERM learning rule is guaranteed to return a good hypothesis.

Finally, if we choose

LEMMA 4.2 Assume that a training set S is §-representative (w.r.t. domain

log(2|7—[|/5) Z, hypothesis class H, loss function £, and distribution D). Then, any output of
m > 2¢2 ERMy (S), namely, any hs € argmin, oy, Ls(h), satisfies
Lp(hs) < minLp(h :
then p(hs) < pin p(h) +e€

D™({S: 3h € H,|Ls(h) — Lp(h)| > €}) < 6.

COROLLARY 4.6 Let H be a finite hypothesis class, let Z be a domain, and let
:HxZ —[0,1] be a loss function. Then, H enjoys the uniform convergence
property with sample complexity

i) < [S29).

Furthermore, the class is agnostically PAC learnable using the ERM algorithm
with sample complexity

mi(e, 6) < myg(e/2,6) < [w} -

The Finite Hypothesis Class is Agnostic PAC Learnable: can be PAC learnable with error on the training set (inconsistent case)
Agnostic learner: : A learner that doesn’t assume that contains an error-free hypothesis and that simply finds the hypothesis with
minimum training error (ERM)
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Remarks

Thus, for a finite hypothesis set, whp,

vhe H.R(h) < z’fés(h) +o(\/1°g|H‘).

m

Error bound in O(—=) (quadratically worse).

log, |H|can be mterpreted as the number of bits
needed to encode H.

Occam’s Razor principle (theologian William of
Occam): “plurality should not be posited without
necessity’.



Occam’s Razor

® Principle formulated by controversial theologian
William of Occam:“plurality should not be posited
without necessity”, rephrased as “the simplest
explanation is best”;

® invoked in a variety of contexts, e.g., syntax.
Kolmogorov complexity can be viewed as the
corresponding framework in information theory.

® here, to minimize true error, choose the most
parsimonious explanation (smallest|H|).

® we will see later other applications of this
principle.



Generalized Loss Functions

Given any set H (that plays the role of our hypotheses, or models) and some
domain Z let £ be any function from H x Z to the set of nonnegative real numbers,
(:HxZ—->R;,.

We call such functions loss functions.

Note that for prediction problems, we have that Z = X x ). However, our
notion of the loss function is generalized beyond prediction tasks, and therefore
it allows Z to be any domain of examples (for instance, in unsupervised learning
tasks such as the one described in Chapter 22, Z is not a product of an instance
domain and a label domain).

We now define the risk function to be the expected loss of a classifier, h € H,
with respect to a probability distribution D over Z, namely,

def

Lo(h) E [¢(h, 2)]. (3.3)

z2~D

That is, we consider the expectation of the loss of h over objects z picked ran-
domly according to D. Similarly, we define the empirical risk to be the expected

loss over a given sample S = (z1,...,2m,) € Z™, namely,
def 1
L = — ). 4
s(h) m;ah,z) (34)

The loss functions used in the preceding examples of classification and regres-
sion tasks are as follows:

e 0-1 loss: Here, our random variable z ranges over the set of pairs X x Y and
the loss function is

det JO if h(z)=y
lo—1(h, (z,y)) = {1 if hz)#vy

This loss function is used in binary or multiclass classification problems.
One should note that, for a random variable, «, taking the values {0, 1},
Ea~pla] = Paopla = 1]. Consequently, for this loss function, the defini-
tions of Lp(h) given in Equation (3.3) and Equation (3.1) coincide.
e Square Loss: Here, our random variable z ranges over the set of pairs X’ x )
and the loss function is

laa(hy (2,9)) € (h(z) — ).

The Finite Hypothesis Class is

Agnostic PAC Learnable for General Loss functions

DEFINITION 3.4 (Agnostic PAC Learnability for General Loss Functions) A
hypothesis class H is agnostic PAC learnable with respect to a set Z and a
loss function ¢ : H x Z — R, if there exist a function my : (0,1)> - N
and a learning algorithm with the following property: For every €,0 € (0,1)
and for every distribution D over Z, when running the learning algorithm on
m > my(e,0) ii.d. examples generated by D, the algorithm returns h € H
such that, with probability of at least 1 — ¢ (over the choice of the m training
examples),

Lp(h) < min Lp (k'
el = pig Ip()+s

where Lp(h) = E,.p[l(h, z)].

Classification (Binary, Multiclass)

Regression



Lecture Summary

|v—l

B (Cis PAC-learnable if 3L,Vce C,Ve,6 >0,m=P (=

<e€ >1-—0.
JPr [R(hs) <> 13

B Learning bound, finite H consistent case:
R(h) < ;- (log |H| +log 5).
B Learning bound, finite H inconsistent case:

< RS + \/log|H|+log 5

® How do we deal with infinite hypothesis sets?

5)
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A ﬂteary of the (earnable

In this paper we have considered learning as the process of deducing a program for performing a task, from information that does not provide
an explicit description of such a program.

We have given precise meaning to this notion of learning and have shown that in some restricted but nontrivial contexts it is computationally
feasible.

Consider a world containing robots and elephants.

Suppose that one of the robots has discovered a recognition algorithm for elephants that can be meaningfully expressed in k-conjunctive normal
form. Our Theorem A implies that this robot can communicate its algorithm to the rest of the robot population by simply exclaiming "elephant”
whenever one appears. An important aspect of our approach, if cast in its greatest generality, is that we require the recognition algorithms of
the teacher and learner to agree on an overwhelming fraction of only the natural inputs.



