The Infinite Case: Rademacher Complexity and VC-dimension




Rationale: PAC provides no bounds for the infinite hypothesis class
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Setup

Nothing new ...

* Samples S=((x1,¥1),--+,(Xm, ¥m))

e Labels y;={—1,+1}

e Hypothesis h: X — {—1,+1}

* Training error: R(h) = 1> " 1[h(x;) # yi]



An alternative derivation of training error

B(h) :% > Lln(x) £ v
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An alternative derivation of training error
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An alternative derivation of training error

B(h) :nZ]l[h () # yi]

1
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Correlation between predictions and labels
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An alternative derivation of training error

R(h) :niﬂ[h (xi) # vi] (1)
A1 if(h(xay) == (1,=1) or (=1,1)
B Z{o (h(xi,yi) == (1,1) or (=1,~1)

i

m - 2

L Qe @
=- T Yin(X;

2 2m -

Minimizing training error is thus equivalent to maximizing correlation

1 m
argmax - Zy,-h(x,-) (5)



Playing with Correlation

Imagine where we replace true labels with Rademacher random variables

+1  with prob .5
o= . (6)
—1 with prob .5
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+1  with prob .5
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This gives us Rademacher correlation—what'’s the best that a random
classifier could do?
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Playing with Correlation

Imagine where we replace true labels with Rademacher random variables

(6)

+1  with prob .5
o=
" l=1 with prob .5

This gives us Rademacher correlation—what’s the best that a random
classifier could do?

m

maleaih(x,-)} (7)
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Notation: E, [f] =, p(x)f(x)



Playing with Correlation

Imagine where we replace true labels with Rademacher random variables

(6)

+1 with prob .5
o=
: —1 with prob .5

This gives us Rademacher correlation—what'’s the best that a random
classifier could do?

%s(H)=E,

1 m
ngazaih(xf)} (7)

Note: Empirical Rademacher complexity is with respect to a sample.



Rademacher Extrema

* What are the maximum values of Rademacher correlation?
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* What are the maximum values of Rademacher correlation?
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Rademacher Extrema

* What are the maximum values of Rademacher correlation?
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i |H| = 2m
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Rademacher Extrema

* What are the maximum values of Rademacher correlation?
|Hl =1

h(x)Eq [£370i] =0

|H|=2m



Rademacher Extrema

* What are the maximum values of Rademacher correlation?
|Hl =1 |H| =27
h(x%)Eq [15 Z,'.na,-} =0 Ey [maxheH 15 Z,'.na,-h(x,-)]



Rademacher Extrema

* What are the maximum values of Rademacher correlation?
h(Xi)Eg‘ [#Z’mﬂ,] =0 % =1



Rademacher Extrema

* What are the maximum values of Rademacher correlation?
h(x)Eq [+ 3 0] =0 T =1
* Rademacher correlation is larger for more complicated hypothesis space.

e What if you're right for stupid reasons?



Generalizing Rademacher Complexity

We can generalize Rademacher complexity to consider all sets of a
particular size.
R (H) =Es~pn [R5 (H)]



Generalizing Rademacher Complexity

Theorem
Convergence Bounds Let F be a family of functions mapping from Z to
[0,1], and let sample S = (z1,...,zm) were z; ~ D for some distribution D

over Z. Define E [f] = E,~p [f(2)] and Es[f] = LT H(z). with
probability greater than1— 6 for all f€ F:

& I
B[ <Ba[1+ 20 (F)+ 0 | || -2 ®
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Generalizing Rademacher Complexity

Theorem

Convergence Bounds Let F be a family of functions mapping from Z to
[0,1], and let sample S = (z1,...,zm) were z; ~ D for some distribution D
over Z. Define E [f] = E,p[f(z)] and s [f] = LT H(z). with
probability greater than1— 6 for all f€ F:

Ini

E [f] <R [f] +2%m (F) + 0 75 ®)

f is a surrogate for the accuracy of a hypothesis (mathematically convenient)



Aside: McDiarmid’s Inequality

If we have a function:

F(X1se s X oo Xim) = F(X1, o, X xm) S 6

then:

Prif(x1,...,xm) = E[f(X1,..., Xm)] + €] Sexp{—



Aside: McDiarmid’s Inequality

If we have a function:

/

[F(Xtseos Xir oo Xim) = F(Xty e, X oo Xm) | S G (9)

then:

—262
Pr[f(x1,...,xm) >E [f(X1,...,Xm)] —|—€] SGXP{TZ} (10)
2 ¢
Proof in Mohri (appendix D.7, p.442) (requires Martingale, constructing
Vk=E[V]x1...x] —E[V|x1...xk-1])



Aside: McDiarmid’s Inequality

Theorem D.8 (McDiarmid’s inequality) Let Xi,..., X, € X' be a set of m > 1 independent
random variables and assume that there exist c1,...,cm > 0 such that f: X™ — R satisfies the
following conditions:

‘f(xly vy Ly e ;Im) - f(fly cee 755{“ .- ~17m)| <ci, (D~15)
for all i € [m] and any points x1,...,xm,x, € X. Let f(S) denote f(X1,...,Xm), then, for all
€ > 0, the following inequalities hold:

22

PI(S) - E[f(S)] > €] < exp <Z%lcg) (D.16)
o2

PIF(S) — E[f(S)] < —] < exp <Z%12> . (D.17)

McDiarmid’s inequality is used in several of the proofs in this book. It can be understood
in terms of stability: if changing any of its argument affects f only in a limited way, then,
its deviations from its mean can be exponentially bounded.

E&aitiag Tewv 800 avigottwv €xoupe To O(). BAéue Bepnua 3.3 o€ Mohri.
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Aside: McDiarmid’s Inequality

If we have a function:

F(X1se s X oo Xim) = F(X1, o, X xm) S 6 (9)

then: 5
pr[f(x1,...,xm)zE[f(x1,...,Xm)]+e]Sexp{%} (10)

¢
Proof in Mohri (appendix D.7, p.442) (requires Martingale, constructing
Vk=E[V]x1...x] —E[V|x1...xk-1])
What function do we care about for Rademacher complexity? Let’s define

o(8) = sup (1]~ Es[1]) = sup (E - 1;Zf(z,-)) (1)

i



Step 1: Bounding divergence from true Expectation

Lemma

Moving to Expectation With probability at least1— 0,
Int

®(S) <Es[P(S)] + 1/ 5=

Since f(z1) €0, 1], changing any z; to z/ in the training set will change
#Z, f(z;) by at most 15 so we can apply McDiarmid’s inequality with

Int C 5 ;(*/'/ [:Z - 4 Lzﬂ,“
e=1/zZandc=~. ) < exp |, ) = exp (-2n€)

1)
- 7 | 7/
"ﬂ”’(fz se =2 | L U
2 | 2wm



Step 2: Comparing two different empirical expectations

Define a ghost sample S’ = (Z},...,z/,) ~ D. How much can two samples
from the same distribution vary?

Lemma
Two Different Samples

Es[®(S)] =Es |sup(E [f]-Es[f]) (12)



Step 2: Comparing two different empirical expectations

Define a ghost sample S’ = (Z},...,z/,) ~ D. How much can two samples
from the same distribution vary?

Lemma
Two Different Samples

s [0(5)] ~Bs [sup( 1]~ s[1)] 12)
=Es [?gg(Es' [Es [1]] - s [f])] (13)
(14)

The expectation is equal to the expectation of the empirical expectation of all
sets &



Step 2: Comparing two different empirical expectations

Define a ghost sample &’ = (Z},...,2/,) ~ D. How much can two samples

from the same distribution vary?

Lemma
Two Different Samples

s [0(S)] =5 |sup( 1]~ s [f])]

g5 [sup(Es [ [1] - Ea1))

=Eg ?gE(Es/ [IAES/ [f]-Es [f]] )]

S and &’ are distinct random variables, so we can move inside the
expectation



Step 2: Comparing two different empirical expectations
Define a ghost sample S’ = (Z},...,z/,) ~ D. How much can two samples
from the same distribution vary?

Lemma
Two Different Samples

Es[0(5)] =85 [sup(1] - Es[1)] 12)
g5 [sup(as [ [~ sl (13)
<Bss [sup(Es [1-Eel1)] (14

The expectation of a max over some function is at least the max of that
expectation over that function



Step 3: Adding in Rademacher Variables

From S, S’ we'll create T, T’ by swapping elements between S and S’ with
probability .5. This is still idependent, identically distributed (iid) from D. They
have the same distribution:

Es [f1-Es[f]~Er []-Er[f] (15)



Step 3: Adding in Rademacher Variables

From S, S’ we'll create T, T’ by swapping elements between S and S’ with
probability .5. This is still idependent, identically distributed (iid) from D. They
have the same distribution:

Eg [f]-Es[f]~ By [f] - Er [1] (15)
Let’s introduce o;:
) with prob .5
B (- el = 1 1) (16
) f(z, ) with prob .5

oi(f(z]) = () (17)



Step 3: Adding in Rademacher Variables

From S, S’ we'll create T, T’ by swapping elements between S and S’ with
probability .5. This is still idependent, identically distributed (iid) from D. They
have the same distribution:

fg [f]—Ks[f] ~ B [f] —Er [f] (15)
Let’s introduce o;:

B[]~ Bor ] = f(2;) = () with prob .5
' m ( ‘/)_f(Zi)Withprob_5

:—Za, '\~ (z)) 17)

Thus:
Ess [SupfeF (IAES' [f]-Es [f])] =Ess,0 [SUprF (Z,a,-(f(zf) - f(zi)))] -



Step 4: Making These Rademacher Complexities

Before, we had Eg g » [supfe,_-zl.cr,-(f(z{) - f(z,-))]



Step 4: Making These Rademacher Complexities

Before, we had Eg g/ [sup,epzia,-(f(zf) - f(z,-))]

<Esso SUpfeFZUif(Z,-/) + SUprFZ(_Ui)f(Zi)
7

i

Taking the sup jointly must be less than or equal the individual sup.



Step 4: Making These Rademacher Complexities

Before, we had Eg g/ [supfepzia,-(f(zf) - f(z,-))]
<Ess,0 lSUpfeFZUI )+ SUIOfeFZ(—Ui)f(Zi)] (18)

I
<Esg,o lsupZU if(Z

Sup +Ess.o [supz —0)) z,)] (19)
S

feF

(20)

Linearity



Step 4: Making These Rademacher Complexities

Before, we had Eg g & [supfeFZ oi(f(z))— f(z,))]

<Es s o [SUprFZU: )+ SUpfeFZ(—U/)f(Zi)] (18)

I

<Ess,o ngIEZO'I +Ess,0 lsupz Ul)f Z,)] (19)
=Rm(F)+RZm(F) (20)

Definition



Putting the Pieces Together

With probability > 1 —6:

®(S)<Es[®(5)] +

Step 1

1
|ng

2m

(21)



Putting the Pieces Together

With probability > 1 —6:

Definition of ®

(21)



Putting the Pieces Together

With probability > 1 — 6

A In+
E[f]-Es[f] <Es[®(S)]+ \/;

Drop the sup, still true

(21)



Putting the Pieces Together

With probability > 1 — 6

A o ~ In%
B[]~ Bal1]<Bos |sup(s 1 Esl) | + | 52

Step 2

(21)



Putting the Pieces Together

With probability > 1 —6:

E [f] —I/E::s [f] < Esys/lg |:$;g£_) (Z O','(f(Zl-/) — f(Z,')))

Step 3

_|_

(21)



Putting the Pieces Together

With probability > 1 —6:

E[f]-RBs[f] <2%m(F)+

Step 4

1
|ng

2m



Putting the Pieces Together

With probability > 1 —6:

E[f]-Bs[f] <2%,(F)+ \/%

Recall that Zs(F) =Eo [sup, - Z,O',-f(z,-)] , so we apply McDiarmid’s
inequality again (because f € [0,1]):

(22)



Putting the Pieces Together

With probability > 1 — 6

E[f]-Rs[f]<2%,(F)+

(21)
Recall that Zs(F) =E, [sup, :—n Z,U,-f(z,-)], so we apply McDiarmid’s
inequality again (because f €0, 1]):

~ In+
Rm(F) < Rg (F)+
Putting the two together:

— (22)
N Int
E[f]<B[f]+224 (F)+0 | 7"

(23)



What about hypothesis classes?

Define:

Z=Xx{-1,+1}

fo(x,y) =1 [h(x) # y]
Fy E{fh ‘he H}

P

N
NG

~

\}
$)]

~

N
(2]

~



What about hypothesis classes?

Define:
Z=Xx{-1,+1} (24)
fo(x,y) =L [h(x) # y] (25)
Fn=i{f,: he H} (26)

We can use this to create expressions for generalization and empirical error:

R(h) =E(yy)~o [L[h(x) # y]] = E [f1] (27)

AR) = "1 [A(x) £ Y1 =[] 29



What about hypothesis classes?

Define:
Z=Xx{-1,+1} (24)
fo(x, y) =1 [h(x) # y] (25)
Fy E{fh ‘he H} (26)

We can use this to create expressions for generalization and empirical error:

R(h) =E(yy)~o [L[h(x) # y]] = E [f1] (27)

AR) = "1 [A(x) £ Y1 =[] 29

We can plug this into our theorem!



Generalization bounds

* We started with expectations

E[f]<Es[f] +2%s(F)+ 0

R(h

)= > 1) £] = Bsln]

(29)
¢ We also had our definition of the generalization and empirical error:

R(h) =E(xy)~o[L[h(x) # y]] = E[f]



Generalization bounds

~ 1 .
As (Fu) = 5 %s (H) (30)
Rs(9) = %ﬁsx (H). (3.16)
Proof: For any sample S = ((z1,y1),.... (Tm, ym)) of elements in X x {—1,+1},

by definition. the empirical Rademacher complexity of G can be written as:

5“»5(9) E [ sup — Zazlh (= )#y,]

7165—(771
- 1— yzh(:c }

su T4

[hEﬂI?CTnZ ¢
1 1 &
—IE[‘* =N oyl ]
5 & ;gcm; oiyih ()
JE| Z )] = 535, (%)
g sup — aiR(T; = = - Lo N
" 2o lyebem =" 27

where we used the fact that 1p,(5,)2y, = (1 —y:h(2;))/2 and the fact that for a fixed
y; € {—1,+1}, 0; and —y,0; are distributed in the same way. O



Generalization bounds

* We started with expectations

E[f]<Es[f] +2%s(F)+ 0

A

(29)
¢ We also had our definition of the generalization and empirical error:

R(h) =E(xy)~o[L[h(x) # y]] = E[f]

R(h
e Combined with the previous result:

)= > 1) £] = Bsln]

Rs(Fy) =
¢ All together:

1 A
— H
2933( )

(30)

(31)



Wrapup

¢ Interaction of data, complexity, and accuracy
e Still very theoretical

¢ Next up: How to evaluate generalizability of specific hypothesis classes



Recap

* Rademacher complexity provides nice guarantees

) X log 5
R(h) < R(h)+ 925 (H)+ 0 | || =2

e But in practice hard to compute for real hypothesis classes

¢ |s there a relationship with simpler combinatorial measures?

(32)



Growth Function

Define the growth function 1y : N — N for a hypothesis set H as:

VmeN,My(m)= max |{(h(x1),...,h(xm):h€H}{ (33)

{X1 ..... X,-,,}GX



Growth Function

Define the growth function 1y : N — N for a hypothesis set H as:

VmeN,My(m)= max |{(h(x1),...,h(xm):h€H}{ (33)

{X1 ..... X,-,,}GX

i.e., the number of ways m points can be classified using H.



Rademacher Complexity vs. Growth Function

If Gis a function taking values in {—1,41}, then

%m(G)S M

(34)
m
Uses Masart’s lemma (Theorem 3.7)

for any h € H,

Corollary 3.9 (Growth function generalization bound) Let H be a family of functions
taking values in {—1,41}. Then, for any 6 > 0, with probability at least 1 — 0,

¢ . 1
R(h) < I 2log ls;}((m logg

2m

(3.22)
Not very convenient since it requires computing M(m),Vm



Vapnik-Chervonenkis Dimension

VC(H)=max{m:My(m)=2"} (35)



Vapnik-Chervonenkis Dimension

VC(H)=max{m:My(m)=2"} (35)
The size of the largest set that can be fully shattered (Bpuppartiorei) by H.
Entropy Properties of a Decision Rule Class with ML abilities - Alexey Chervonenkis lecture



https://www.youtube.com/watch?v=yhcTe8GPpWU

VC Dimension for Hypotheses

¢ Need upper and lower bounds
e Lower bound: example

e Upper bound: Prove that no set of d 41 points can be shattered by H
(harder)



Intervals

What is the VC dimension of [a, b] intervals on the real line.
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e Two points can be perfectly classified, so VC dimension > 2
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Intervals

What is the VC dimension of [a, b] intervals on the real line.

¢ Two points can be perfectly classified, so VC dimension > 2

¢ What about three points?

— |




Intervals

What is the VC dimension of [a, b] intervals on the real line.

e Two points can be perfectly classified, so VC dimension > 2
e What about three points?

* No set of three points can be shattered



Intervals

What is the VC dimension of [a, b] intervals on the real line.

e Two points can be perfectly classified, so VC dimension > 2

What about three points?

No set of three points can be shattered

Thus, VC dimension of intervals is 2



Hyperplanes

-+ + o+
(a) (h)

Figure 3.2
Unrealizable dichotomies for four points using hyperplanes in R?. (a) All four points lie on the
convex hull. (b) Three points lie on the convex hull while the remaining point is interior.



Axis-alighed-rectangles

+ + + +

Figure 3.3

VC-dimension of axis-aligned rectangles. (a) Examples of realizable dichotomies for four points
in a diamond pattern. (b) No sample of five points can be realized if the interior point and the
remaining points have opposite labels.



Sine Functions

¢ Consider hypothesis that classifies points on a line as either being above
or below a sine wave
{t—osin(wx): weR} (36)

¢ Can you shatter three points?



Sine Functions

e Consider hypothesis that classifies points on a line as either being above
or below a sine wave
{t—sin(wx) : w R} (36)

¢ Can you shatter three points?
4 /\,

I




Sine Functions

¢ Consider hypothesis that classifies points on a line as either being above
or below a sine wave
{t—osin(wx): weR} (36)

¢ Can you shatter four points?



Sine Functions

¢ Consider hypothesis that classifies points on a line as either being above
or below a sine wave
{t—osin(wx): weR} (36)

* How many points can you shatter?



Sine Functions

¢ Consider hypothesis that classifies points on a line as either being above

or below a sine wave
{t > sin(wx) : w eR}

® Thus, VC dim of sine on line is 00

10

05 4

00 o) 8]

sin(S0 * 9

-05 4

(36)



Connecting VC with growth function

VC dimension obviously encodes the complexity of a hypothesis class, but
we want to connect that to Rademacher complexity and the growth function
SO we can prove generalization bounds.



Connecting VC with growth function

VC dimension obviously encodes the complexity of a hypothesis class, but
we want to connect that to Rademacher complexity and the growth function
SO we can prove generalization bounds.

Theorem
Sauer’s Lemma Let H be a hypothesis set with VC dimension d. Then
VmeN ;
m
My(m) < =dy(m 37
m <32(7) =outm) )



Connecting VC with growth function

VC dimension obviously encodes the complexity of a hypothesis class, but
we want to connect that to Rademacher complexity and the growth function
SO we can prove generalization bounds.

Theorem
Sauer’s Lemma Let H be a hypothesis set with VC dimension d. Then
VmeN

This is good because the sum when multiplied out becomes

(T) = M = 0 (m?). When we plug this into the learning error limits:

Iog(HH(2m)) =log(@ (m9)) = 0 (dlogm).



Sauer’s Lemma

Sauer’s Lemma

Definition. Growth Function:
Il (n) = max{|F, : s € X,[s| =n}
Definition. VC dimension
dyc(F) = max{|s| : s C X, f shatters s}
Here, we say that a family of binary functions F' shatters a set S € X if F|s = 2151,

Theorem 2.1. Sauer’s Lemma: If F C {#1}* and dyc = d, then IIg(n) < E?:o (7). And for n > d,
en d
Ie(n) < ()

That means: if dyo(F) is 0o, we always get exponential growth function; however, if dy¢(F) = d is finite,
the growth function increases exponentially up to d and polynomially for n > d.

ProoF. Fix (x1,...,2,) € X, and consider a table containing the values of functions in the class Flan
restricted to the sample. For instance, consider the following example:

Ty | L2 | X3 | T4 | X5
-+ ] -]+]+
ol +]-]-]+]+
B+ |+ +] -]+
Ja| - |+ |+ -] -
sl -1 -1 -1+]-

Each row is one possible evaluation of the functions in F' on the fixed sample, and the cardinality of F},n
equals to the number of rows. We transform the table by ”shifting” columns.

W

Definition. shifting column i: for each row, replace a “4+” in column ¢ with a unless it would produce

a row that is already in the table.

After applying the shifting operation in order from x; to x5, we get the table(F";?):

T1 | T2 | T3 | T4 | T
Al -+ ]-]-]-
f2 - - - + | +
Fo| = |- -] -]+
Bl-|--1-]-
fs | - - -+ -

Observations:

(1) Size of the table unchanged, because the rows in F are still distinct;

(2) The table T
“+” with a “-” produces another row in the table.

. exhibits ”closed below” property, i.e., for each row containing a “+”, replacing that

(3) dVC(FF;?) < dyc(Flgn). To see this, consider the application of the shifting operation to a single
column, and notice that if F* (after shifting) shatters a subset of columns, then so does F (before
shifting).

Therefore,

(3) and (2) = F™* can not have more than d ”4"’s in a row. Hence, #row of F'* < Z?:o (™)

(1) = [Fap| <X, ()



Wait a minute ...

Is this combinatorial expression really 0 (m?)?



Generalization Bounds

Combining our previous generalization results with Sauer’s lemma, we have
that for a hypothesis class H with VC dimension d, for any 6 > 0 with
probability at least 1 — 6, for any he H,

. 2dlog ¥ log £
R(h)SR(h)+\/ C;: d +\/095 (43)

2m




Whew!

¢ Infinite hypothesis class is PAC-learnable iff it has finite VC dimension

* We'’re now going to see if we can find an algorithm that has good VC
dimension

e And works well in practice ... Support Vector Machines
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