
8 On-Line Learning

This chapter presents an introduction to on-line learning, an important area with a

rich literature and multiple connections with game theory and optimization that is

increasingly influencing the theoretical and algorithmic advances in machine learn-

ing. In addition to the intriguing novel learning theory questions that they raise,

on-line learning algorithms are particularly attractive in modern applications since

they provide an efficient solution for large-scale problems.

These algorithms process one sample at a time with an update per iteration

that is often computationally cheap and easy to implement. As a result, they are

typically significantly more efficient both in time and space and more practical than

batch algorithms, when processing modern data sets of several million or billion

points. They are also typically easy to implement. Moreover, on-line algorithms

do not require any distributional assumption; their analysis assumes an adversarial

scenario. This makes them applicable in a variety of scenarios where the sample

points are not drawn i.i.d. or according to a fixed distribution.

We first introduce the general scenario of on-line learning, then present and an-

alyze several key algorithms for on-line learning with expert advice, including the

deterministic and randomized weighted majority algorithms for the zero-one loss

and an extension of these algorithms for convex losses. We also describe and analyze

two standard on-line algorithms for linear classification, the Perceptron and Win-

now algorithms, as well as some extensions. While on-line learning algorithms are

designed for an adversarial scenario, they can be used, under some assumptions, to

derive accurate predictors for a distributional scenario. We derive learning guaran-

tees for this on-line to batch conversion. Finally, we briefly point out the connection

of on-line learning with game theory by describing its use to derive a simple proof

of von Neumann’s minimax theorem.

178 Chapter 8 On-Line Learning

8.1 Introduction

The learning framework for on-line algorithms is in stark contrast to the PAC

learning or stochastic models discussed up to this point. First, instead of learning

from a training set and then testing on a test set, the on-line learning scenario mixes

the training and test phases. Second, PAC learning follows the key assumption

that the distribution over data points is fixed over time, both for training and test

points, and that points are sampled in an i.i.d. fashion. Under this assumption, the

natural goal is to learn a hypothesis with a small expected loss or generalization

error. In contrast, with on-line learning, no distributional assumption is made,

and thus there is no notion of generalization. Instead, the performance of on-line

learning algorithms is measured using a mistake model and the notion of regret . To

derive guarantees in this model, theoretical analyses are based on a worst-case or

adversarial assumption.

The general on-line setting involves T rounds. At the tth round, the algorithm

receives an instance xt ∈ X and makes a prediction ŷt ∈ Y. It then receives

the true label yt ∈ Y and incurs a loss L(ŷt, yt), where L : Y × Y → R+ is a

loss function. More generally, the prediction domain for the algorithm may be

Y′ 6= Y and the loss function defined over Y′ × Y. For classification problems, we

often have Y = {0, 1} and L(y, y′) = |y′ − y|, while for regression Y ⊆ R and

typically L(y, y′) = (y′ − y)2. The objective in the on-line setting is to minimize

the cumulative loss:
∑T
t=1 L(ŷt, yt) over T rounds.

8.2 Prediction with expert advice

We first discuss the setting of online learning with expert advice, and the associated

notion of regret . In this setting, at the tth round, in addition to receiving xt ∈ X,

the algorithm also receives advice yt,i ∈ Y, i ∈ [N], from N experts. Following the

general framework of on-line algorithms, it then makes a prediction, receives the

true label, and incurs a loss. After T rounds, the algorithm has incurred a cumu-

lative loss. The objective in this setting is to minimize the regret RT , also called

external regret , which compares the cumulative loss of the algorithm to that of the

best expert in hindsight after T rounds:

RT =

T∑

t=1

L(ŷt, yt)−
N

min
i=1

T∑

t=1

L(ŷt,i, yt). (8.1)

8.2 Prediction with expert advice 179

Mehryar Mohri - Foundations of Machine Learning page

wunderground.com bbc.com weather.com cnn.com

?
algorithm

Figure 8.1
Weather forecast: an example of a prediction problem based on expert advice.

This problem arises in a variety of different domains and applications. Figure 8.1

illustrates the problem of predicting the weather using several forecasting sources

as experts.

8.2.1 Mistake bounds and Halving algorithm
Here, we assume that the loss function is the standard zero-one loss used in classi-

fication. To analyze the expert advice setting, we first consider the realizable case,

that is the setting where at least one of the experts makes no errors. As such,

we discuss the mistake bound model , which asks the simple question “How many

mistakes before we learn a particular concept?” Since we are in the realizable case,

after some number of rounds T , we will learn the concept and no longer make errors

in subsequent rounds. For any fixed concept c, we define the maximum number of

mistakes a learning algorithm A makes as

MA(c) = max
x1,...,xT

|mistakes(A, c)|. (8.2)

Further, for any concept in a concept class C, the maximum number of mistakes a

learning algorithm makes is

MA(C) = max
c∈C

MA(c). (8.3)

Our goal in this setting is to derive mistake bounds, that is, a bound M on MA(C).

We will first do this for the Halving algorithm, an elegant and simple algorithm for

which we can guarantee surprisingly favorable mistake bounds. At each round, the

Halving algorithm makes its prediction by taking the majority vote over all active

experts. After any incorrect prediction, it deactivates all experts that gave faulty

advice. Initially, all experts are active, and by the time the algorithm has converged

to the correct concept, the active set contains only those experts that are consistent

with the target concept. The pseudocode for this algorithm is shown in figure 8.2.

We also present straightforward mistake bounds in theorems 8.1 and 8.2, where the

former deals with finite hypothesis sets and the latter relates mistake bounds to

VC-dimension. Note that the hypothesis complexity term in theorem 8.1 is identical

to the corresponding complexity term in the PAC model bound of theorem 2.5.

180 Chapter 8 On-Line Learning

Halving(H)

1 H1 ← H

2 for t← 1 to T do

3 Receive(xt)

4 ŷt ←MajorityVote(Ht, xt)

5 Receive(yt)

6 if (ŷt 6= yt) then

7 Ht+1 ← {c ∈ Ht : c(xt) = yt}
8 else Ht+1 ← Ht

9 return HT+1

Figure 8.2
Halving algorithm.

Theorem 8.1 Let H be a finite hypothesis set. Then

MHalving(H) ≤ log2 |H|. (8.4)

Proof: Since at each round the algorithm makes predictions using majority vote

from the active set, at each mistake, the active set is reduced by at least half.

Hence, after log2 |H| mistakes, there can only remain one active hypothesis, and

since we are in the realizable case, this hypothesis must coincide with the target

concept. �

Theorem 8.2 Let opt(H) be the optimal mistake bound for H. Then,

VCdim(H) ≤ opt(H) ≤MHalving(H) ≤ log2 |H|. (8.5)

Proof: The second inequality is true by definition and the third inequality holds

based on theorem 8.1. To prove the first inequality, we let d = VCdim(H). Then

there exists a shattered set of d points, for which we can form a complete binary tree

of the mistakes with height d, and we can choose labels at each round of learning

to ensure that d mistakes are made. Note that this adversarial argument is valid

since the on-line setting makes no statistical assumptions about the data. �

8.2 Prediction with expert advice 181

Weighted-Majority(N)

1 for i← 1 to N do

2 w1,i ← 1

3 for t← 1 to T do

4 Receive(xt)

5 if
∑
i : yt,i=1 wt,i ≥

∑
i : yt,i=0 wt,i then

6 ŷt ← 1

7 else ŷt ← 0

8 Receive(yt)

9 if (ŷt 6= yt) then

10 for i← 1 to N do

11 if (yt,i 6= yt) then

12 wt+1,i ← βwt,i

13 else wt+1,i ← wt,i

14 return wT+1

Figure 8.3
Weighted majority algorithm, yt, yt,i ∈ {0, 1}.

8.2.2 Weighted majority algorithm
In the previous section, we focused on the realizable setting in which the Halving

algorithm simply discarded experts after a single mistake. We now move to the non-

realizable setting and use a more general and less extreme algorithm, the Weighted

Majority (WM) algorithm, that weights the importance of experts as a function

of their mistake rate. The WM algorithm begins with uniform weights over all

N experts. At each round, it generates predictions using a weighted majority

vote. After receiving the true label, the algorithm then reduces the weight of each

incorrect expert by a factor of β ∈ [0, 1). Note that this algorithm reduces to the

Halving algorithm when β = 0. The pseudocode for the WM algorithm is shown

in figure 8.3.

Since we are not in the realizable setting, the mistake bounds of theorem 8.1

cannot apply. However, the following theorem presents a bound on the number of

mistakes mT made by the WM algorithm after T ≥ 1 rounds of on-line learning as

a function of the number of mistakes made by the best expert, that is the expert

182 Chapter 8 On-Line Learning

who achieves the smallest number of mistakes for the sequence y1, . . . , yT . Let us

emphasize that this is the best expert in hindsight.

Theorem 8.3 Fix β ∈ (0, 1). Let mT be the number of mistakes made by algorithm

WM after T ≥ 1 rounds, and m∗T be the number of mistakes made by the best of

the N experts. Then, the following inequality holds:

mT ≤
logN +m∗T log 1

β

log 2
1+β

. (8.6)

Proof: To prove this theorem, we first introduce a potential function. We then

derive upper and lower bounds for this function, and combine them to obtain our

result. This potential function method is a general proof technique that we will use

throughout this chapter.

For any t ≥ 1, we define our potential function as Wt =
∑N
i=1 wt,i. Since predic-

tions are generated using weighted majority vote, if the algorithm makes an error

at round t, this implies that

Wt+1 ≤
[
1/2 + (1/2)β

]
Wt =

[
1 + β

2

]
Wt. (8.7)

Since W1 = N and mT mistakes are made after T rounds, we thus have the following

upper bound:

WT ≤
[

1 + β

2

]mT
N. (8.8)

Next, since the weights are all non-negative, it is clear that for any expert i, WT ≥
wT,i = βmT,i , where mT,i is the number of mistakes made by the ith expert after

T rounds. Applying this lower bound to the best expert and combining it with the

upper bound in (8.8) gives us:

βm
∗
T ≤WT ≤

[
1 + β

2

]mT
N

⇒ m∗T log β ≤ logN +mT log

[
1 + β

2

]

⇒ mT log

[
2

1 + β

]
≤ logN +m∗T log

1

β
,

which concludes the proof. �

Thus, the theorem guarantees a bound of the following form for algorithm WM:

mT ≤ O(logN) + constant× |mistakes of best expert|.

Since the first term varies only logarithmically as a function of N , the theorem

guarantees that the number of mistakes is roughly a constant times that of the best

expert in hindsight. This is a remarkable result, especially because it requires no

8.2 Prediction with expert advice 183

assumption about the sequence of points and labels generated. In particular, the

sequence could be chosen adversarially. In the realizable case where m∗T = 0, the

bound reduces to mT ≤ O(logN) as for the Halving algorithm.

8.2.3 Randomized weighted majority algorithm
In spite of the guarantees just discussed, the WM algorithm admits a drawback that

affects all deterministic algorithms in the case of the zero-one loss: no deterministic

algorithm can achieve a regret RT = o(T) over all sequences. Clearly, for any

deterministic algorithm A and any t ∈ [T], we can adversarially select yt to be

1 if the algorithm predicts 0, and choose it to be 0 otherwise. Thus, A errs at

every point of such a sequence and its cumulative mistake is mT = T . Assume for

example that N = 2 and that one expert always predicts 0, the other one always 1.

The error of the best expert over that sequence (and in fact any sequence of that

length) is then at most m∗T ≤ T/2. Thus, for that sequence, we have

RT = mT −m∗T ≥ T/2,

which shows that RT = o(T) cannot be achieved in general. Note that this does

not contradict the bound proven in the previous section, since for any β ∈ (0, 1),
log 1

β

log 2
1+β

≥ 2. As we shall see in the next section, this negative result does not hold

for any loss that is convex with respect to one of its arguments. But for the zero-one

loss, this leads us to consider randomized algorithms instead.

In the randomized scenario of on-line learning, we assume that a set A = {1, . . . , N}
of N actions is available. At each round t ∈ [T], an on-line algorithm A selects

a distribution pt over the set of actions, receives a loss vector lt, whose ith com-

ponent lt,i ∈ [0, 1] is the loss associated with action i, and incurs the expected

loss Lt =
∑N
i=1 pt,i lt,i. The total loss incurred by the algorithm over T rounds

is LT =
∑T
t=1 Lt. The total loss associated to action i is LT,i =

∑T
t=1 lt,i. The

minimal loss of a single action is denoted by Lmin
T = mini∈A LT,i. The regret RT of

the algorithm after T rounds is then typically defined by the difference of the loss

of the algorithm and that of the best single action:11

RT = LT − Lmin
T .

Here, we consider specifically the case of zero-one losses and assume that lt,i ∈ {0, 1}
for all t ∈ [T] and i ∈ A.

11 Alternative definitions of the regret with comparison classes different from the set of single
actions can be considered.

184 Chapter 8 On-Line Learning

Randomized-Weighted-Majority (N)

1 for i← 1 to N do

2 w1,i ← 1

3 p1,i ← 1/N

4 for t← 1 to T do

5 Receive(lt)

6 for i← 1 to N do

7 if (lt,i = 1) then

8 wt+1,i ← βwt,i

9 else wt+1,i ← wt,i

10 Wt+1 ←
∑N
i=1 wt+1,i

11 for i← 1 to N do

12 pt+1,i ← wt+1,i/Wt+1

13 return wT+1

Figure 8.4
Randomized weighted majority algorithm.

The WM algorithm admits a straightforward randomized version, the random-

ized weighted majority (RWM) algorithm. The pseudocode of this algorithm is

given in figure 8.4. The algorithm updates the weight wt,i of expert i as in the

case of the WM algorithm by multiplying it by β. The following theorem gives a

strong guarantee on the regret RT of the RWM algorithm, showing that it is in

O(
√
T logN).

Theorem 8.4 Fix β ∈ [1/2, 1). Then, for any T ≥ 1, the loss of algorithm RWM on

any sequence can be bounded as follows:

LT ≤
logN

1− β + (2− β)Lmin
T . (8.9)

In particular, for β = max{1/2, 1−
√

(logN)/T}, the loss can be bounded as:

LT ≤ Lmin
T + 2

√
T logN. (8.10)

Proof: As in the proof of theorem 8.3, we derive upper and lower bounds for the

potential function Wt =
∑N
i=1 wt,i, t ∈ [T], and combine these bounds to obtain

8.2 Prediction with expert advice 185

the result. By definition of the algorithm, for any t ∈ [T], Wt+1 can be expressed

as follows in terms of Wt:

Wt+1 =
∑

i : lt,i=0

wt,i + β
∑

i : lt.i=1

wt,i = Wt + (β − 1)
∑

i : lt,i=1

wt,i

= Wt + (β − 1)Wt

∑

i : lt,i=1

pt,i

= Wt + (β − 1)WtLt

= Wt(1− (1− β)Lt).

Thus, since W1 = N , it follows that WT+1 = N
∏T
t=1(1− (1− β)Lt). On the other

hand, the following lower bound clearly holds: WT+1 ≥ maxi∈[N] wT+1,i = βL
min
T .

This leads to the following inequality and series of derivations after taking the log

and using the inequalities log(1 − x) ≤ −x valid for all x < 1, and − log(1 − x) ≤
x+ x2 valid for all x ∈ [0, 1/2]:

βL
min
T ≤ N

T∏

t=1

(1− (1− β)Lt) =⇒ Lmin
T log β ≤ logN +

T∑

t=1

log(1− (1− β)Lt)

=⇒ Lmin
T log β ≤ logN − (1− β)

T∑

t=1

Lt

=⇒ Lmin
T log β ≤ logN − (1− β)LT

=⇒ LT ≤
logN

1− β −
log β

1− βL
min
T

=⇒ LT ≤
logN

1− β −
log(1− (1− β))

1− β Lmin
T

=⇒ LT ≤
logN

1− β + (2− β)Lmin
T .

This shows the first statement. Since Lmin
T ≤ T , this also implies

LT ≤
logN

1− β + (1− β)T + Lmin
T . (8.11)

Differentiating the upper bound with respect to β and setting it to zero gives
logN

(1−β)2 − T = 0, that is β = 1−
√

(logN)/T < 1. Thus, if 1−
√

(logN)/T ≥ 1/2,

β0 = 1 −
√

(logN)/T is the minimizing value of β, otherwise the boundary value

β0 = 1/2 is the optimal value. The second statement follows by replacing β with

β0 in (8.11). �

The bound (8.10) assumes that the algorithm additionally receives as a parameter

the number of rounds T . As we shall see in the next section, however, there exists

a general doubling trick that can be used to relax this requirement at the price of a

186 Chapter 8 On-Line Learning

small constant factor increase. Inequality 8.10 can be written directly in terms of

the regret RT of the RWM algorithm:

RT ≤ 2
√
T logN. (8.12)

Thus, for N constant, the regret verifies RT = O(
√
T) and the average regret or

regret per round RT /T decreases as O(1/
√
T). These results are optimal, as shown

by the following theorem.

Theorem 8.5 Let N = 2. There exists a stochastic sequence of losses for which the

regret of any on-line learning algorithm verifies E[RT] ≥
√
T/8.

Proof: For any t ∈ [T], let the vector of losses lt take the values l01 = (0, 1)> and

l10 = (1, 0)> with equal probability. Then, the expected loss of any randomized

algorithm A is

E[LT] = E
[T∑

t=1

pt · lt
]

=

T∑

t=1

pt · E[lt] =

T∑

t=1

1

2
pt,1 +

1

2
(1− pt,1) = T/2,

where we denoted by pt the distribution selected by A at round t. By definition,

Lmin
T can be written as follows:

Lmin
T = min{LT,1,LT,2} =

1

2
(LT,1 + LT,2 − |LT,1 − LT,2|) = T/2− |LT,1 − T/2|,

using the fact that LT,1 + LT,2 = T . Thus, the expected regret of A is

E[RT] = E[LT]− E[Lmin
T] = E[|LT,1 − T/2|].

Let σt, t ∈ [T], denote Rademacher variables taking values in {−1,+1}, then LT,1
can be rewritten as LT,1 =

∑T
t=1

1+σt
2 = T/2 + 1

2

∑T
t=1 σt. Thus, introducing

scalars xt = 1/2, t ∈ [T], by the Khintchine-Kahane inequality, (D.24) we have:

E[RT] = E
[
|
T∑

t=1

σtxt|
]
≥

√√√√1

2

T∑

t=1

x2
t =

√
T/8,

which concludes the proof. �

More generally, for T ≥ N , a lower bound of RT = Ω(
√
T logN) can be proven for

the regret of any algorithm.

8.2.4 Exponential weighted average algorithm
The WM algorithm can be extended to other loss functions L taking values in

[0, 1]. The Exponential Weighted Average algorithm presented here can be viewed

as that extension for the case where L is convex in its first argument. Note that this

algorithm is deterministic and yet, as we shall see, admits a very favorable regret

8.2 Prediction with expert advice 187

Exponential-Weighted-Average (N)

1 for i← 1 to N do

2 w1,i ← 1

3 for t← 1 to T do

4 Receive(xt)

5 ŷt ←
∑N
i=1 wt,iyt,i∑N
i=1 wt,i

6 Receive(yt)

7 for i← 1 to N do

8 wt+1,i ← wt,i e
−ηL(ŷt,i,yt)

9 return wT+1

Figure 8.5
Exponential weighted average, L(ŷt,i, yt) ∈ [0, 1].

guarantee. Figure 8.5 gives its pseudocode. At round t ∈ [T], the algorithm’s

prediction is

ŷt =

∑N
i=1 wt,iyt,i∑N
i=1 wt,i

, (8.13)

where yt,i is the prediction by expert i and wt,i the weight assigned by the algorithm

to that expert. Initially, all weights are set to one. The algorithm then updates the

weights at the end of round t according to the following rule:

wt+1,i ← wt,i e
−ηL(ŷt,i,yt) = e−ηLt,i , (8.14)

where Lt,i is the total loss incurred by expert i after t rounds. Note that this

algorithm, as well as the others presented in this chapter, are simple, since they

do not require keeping track of the losses incurred by each expert at all previous

rounds but only of their cumulative performance. Furthermore, this property is also

computationally advantageous. The following theorem presents a regret bound for

this algorithm.

Theorem 8.6 Assume that the loss function L is convex in its first argument and

takes values in [0, 1]. Then, for any η > 0 and any sequence y1, . . . , yT ∈ Y, the

regret of the Exponential Weighted Average algorithm after T rounds satisfies

RT ≤
logN

η
+
ηT

8
. (8.15)

188 Chapter 8 On-Line Learning

In particular, for η =
√

8 logN/T , the regret is bounded as

RT ≤
√

(T/2) logN. (8.16)

Proof: We apply the same potential function analysis as in previous proofs but

using as potential Φt = log
∑N
i=1 wt,i, t ∈ [T]. Let pt denote the distribution over

{1, . . . , N} with pt,i =
wt,i∑N
i=1 wt,i

. To derive an upper bound on Φt, we first examine

the difference of two consecutive potential values:

Φt+1 − Φt = log

∑N
i=1 wt,i e

−ηL(ŷt,i,yt)

∑N
i=1 wt,i

= log
(

E
pt

[eηX]
)
,

with X = −L(ŷt,i, yt) ∈ [−1, 0]. To upper bound the expression appearing in the

right-hand side, we apply Hoeffding’s lemma (lemma D.1) to the centered random

variable X − Ept [X], then Jensen’s inequality (theorem B.20) using the convexity

of L with respect to its first argument:

Φt+1 − Φt = log
(

E
pt

[
eη(X−E[X])+η E[X]

])

≤ η2

8
+ η E

pt
[X] =

η2

8
− η E

pt
[L(ŷt,i, yt)] (Hoeffding’s lemma)

≤ −ηL
(

E
pt

[ŷt,i], yt
)

+
η2

8
(convexity of first arg. of L)

= −ηL(ŷt, yt) +
η2

8
.

Summing up these inequalities yields the following upper bound:

ΦT+1 − Φ1 ≤ −η
T∑

t=1

L(ŷt, yt) +
η2T

8
. (8.17)

We obtain a lower bound for the same quantity as follows:

ΦT+1−Φ1 = log

N∑

i=1

e−ηLT,i−logN ≥ log
N

max
i=1

e−ηLT,i−logN = −η
N

min
i=1

LT,i−logN.

Combining the upper and lower bounds yields:

− η
N

min
i=1

LT,i − logN ≤ −η
T∑

t=1

L(ŷt, yt) +
η2T

8

=⇒
T∑

t=1

L(ŷt, yt)−
N

min
i=1

LT,i ≤
logN

η
+
ηT

8
,

and concludes the proof. �

8.2 Prediction with expert advice 189

The optimal choice of η in theorem 8.6 requires knowledge of the horizon T , which is

an apparent disadvantage of this analysis. However, we can use a standard doubling

trick to eliminate this requirement, at the price of a small constant factor. This

consists of dividing time into periods [2k, 2k+1−1] of length 2k with k = 0, . . . , n and

T ≥ 2n−1, and then choosing ηk =
√

8 logN
2k

in each period. The following theorem

presents a regret bound when using the doubling trick to select η. A more general

method consists of interpreting η as a function of time, i.e., ηt =
√

(8 logN)/t,

which can lead to a further constant factor improvement over the regret bound of

the following theorem.

Theorem 8.7 Assume that the loss function L is convex in its first argument and

takes values in [0, 1]. Then, for any T ≥ 1 and any sequence y1, . . . , yT ∈ Y, the

regret of the Exponential Weighted Average algorithm after T rounds is bounded as

follows:

RT ≤
√

2√
2− 1

√
(T/2) logN +

√
logN/2. (8.18)

Proof: Let T ≥ 1 and let Ik = [2k, 2k+1 − 1], for k ∈ [0, n], with n = blog(T + 1)c.
Let LIk denote the loss incurred in the interval Ik. By theorem 8.6 (8.16), for any

k ∈ {0, . . . , n}, we have

LIk −
N

min
i=1

LIk,i ≤
√

2k/2 logN. (8.19)

Thus, we can bound the total loss incurred by the algorithm after T rounds as:

LT =

n∑

k=0

LIk ≤
n∑

k=0

N
min
i=1

LIk,i +

n∑

k=0

√
2k (logN)/2

≤
N

min
i=1

LT,i +
√

(logN)/2 ·
n∑

k=0

2
k
2 , (8.20)

where the second inequality follows from the super-additivity of min, that is

miniXi + mini Yi ≤ mini(Xi +Yi) for any sequences (Xi)i and (Yi)i, which implies∑n
k=0 minNi=1 LIk,i ≤ minNi=1

∑n
k=0 LIk,i. The geometric sum appearing in the right-

hand side of (8.20) can be expressed as follows:

n∑

k=0

2
k
2 =

2(n+1)/2 − 1√
2− 1

≤
√

2
√
T + 1− 1√
2− 1

≤
√

2(
√
T + 1)− 1√
2− 1

=

√
2
√
T√

2− 1
+ 1.

Plugging back into (8.20) and rearranging terms yields (8.18). �

The O(
√
T) dependency on T presented in this bound cannot be improved for

general loss functions.

190 Chapter 8 On-Line Learning

Perceptron(w0)

1 w1 ← w0 . typically w0 = 0

2 for t← 1 to T do

3 Receive(xt)

4 ŷt ← sgn(wt · xt)
5 Receive(yt)

6 if (ŷt 6= yt) then

7 wt+1 ← wt + ytxt .more generally ηytxt, η > 0.

8 else wt+1 ← wt

9 return wT+1

Figure 8.6
Perceptron algorithm.

8.3 Linear classification

This section presents two well-known on-line learning algorithms for linear classifi-

cation: the Perceptron and Winnow algorithms.

8.3.1 Perceptron algorithm
The Perceptron algorithm is one of the earliest machine learning algorithms. It is

an on-line linear classification algorithm. Thus, it learns a decision function based

on a hyperplane by processing training points one at a time. Figure 8.6 gives its

pseudocode.

The algorithm maintains a weight vector wt ∈ RN defining the hyperplane

learned, starting with an arbitrary vector w0. At each round t ∈ [T], it predicts

the label of the point xt ∈ RN received, using the current vector wt (line 4). When

the prediction made does not match the correct label (lines 6-7), it updates wt by

adding ytxt. More generally, when a learning rate η > 0 is used, the vector added

is ηytxt. This update can be partially motivated by examining the inner product of

the current weight vector with ytxt, whose sign determines the classification of xt.

Just before an update, xt is misclassified and thus ytwt · xt is negative; afterward,

ytwt+1 · xt = ytwt · xt + η‖xt‖2, thus, the update corrects the weight vector in the

direction of making the inner product ytwt · xt positive by augmenting it with the

quantity η‖xt‖2 > 0.

8.3 Linear classification 191

w1

w2

w3
w4

w5

Figure 8.7
An example path followed by the iterative stochastic gradient descent technique. Each inner
contour indicates a region of lower elevation.

The Perceptron algorithm can be shown in fact to seek a weight vector w minimiz-

ing an objective function F precisely based on the quantities (−ytw · xt), t ∈ [T].

Since (−ytw · xt) is positive when xt is misclassified by w, F is defined for all

w ∈ RN by

F (w) =
1

T

T∑

t=1

max
(

0,−yt(w · xt)
)

= E
x∼D̂

[F̃ (w,x)], (8.21)

where F̃ (w,x) = max
(
0,−f(x)(w ·x)

)
with f(x) denoting the label of x, and D̂ is

the empirical distribution associated with the sample (x1, . . . ,xT). For any t ∈ [T],

w 7→ −yt(w · xt) is linear and thus convex. Since the max operator preserves

convexity, this shows that F is convex. However, F is not differentiable. Never-

theless, the Perceptron algorithm coincides with the application of the stochastic

subgradient descent technique to F .

The stochastic (or on-line) subgradient descent technique examines one point

xt at a time. Note, the function F̃ (·,xt) is non-differentiable for any wt where

wt · xt = 0. In such a case any subgradient of F̃ , i.e. any vector in the convex

hull of 0 and −ytxt, may be used for the update step (see B.4.1). Choosing the

subgradient −ytxt, we arrive at the following general update for each point xt:

wt+1 ←
{

wt − η∇wF̃ (wt,xt) if wt · xt 6= 0

wt + ηytxt otherwise,
(8.22)

where η > 0 is a learning rate parameter. Figure 8.7 illustrates an example path

the gradient descent follows. In the specific case we are considering, w 7→ F̃ (w,xt)

is differentiable at any w such that yt(w · xt) 6= 0 with ∇wF̃ (w,xt) = −yxt if

yt(w · xt) < 0 and ∇wF̃ (w,xt) = 0 if yt(w · xt) > 0. Thus, the stochastic gradient

192 Chapter 8 On-Line Learning

descent update becomes

wt+1 ←
{

wt + ηytxt if yt(wt · xt) ≤ 0;

wt if yt(wt · xt) > 0,
(8.23)

which coincides exactly with the update of the Perceptron algorithm.

The following theorem gives a margin-based upper bound on the number of mis-

takes or updates made by the Perceptron algorithm when processing a sequence of

T points that can be linearly separated by a hyperplane with margin ρ > 0.

Theorem 8.8 Let x1, . . . ,xT ∈ RN be a sequence of T points with ‖xt‖ ≤ r for all

t ∈ [T], for some r > 0. Assume that there exist ρ > 0 and v ∈ RN such that

for all t ∈ [T], ρ ≤ yt(v·xt)
‖v‖ . Then, the number of updates made by the Perceptron

algorithm when processing x1, . . . ,xT is bounded by r2/ρ2.

Proof: Let I be the subset of the T rounds at which there is an update, and let

M be the total number of updates, i.e., |I| = M . Summing up the assumption

inequalities yields:

Mρ ≤ v ·∑t∈I ytxt

‖v‖ ≤
∥∥∥
∑

t∈I

ytxt

∥∥∥ (Cauchy-Schwarz inequality)

=
∥∥∥
∑

t∈I

(wt+1 −wt)
∥∥∥ (definition of updates)

= ‖wT+1‖ (telescoping sum, w0 = 0)

=

√∑

t∈I

‖wt+1‖2 − ‖wt‖2 (telescoping sum, w0 = 0)

=

√∑

t∈I

‖wt + ytxt‖2 − ‖wt‖2 (definition of updates)

=

√√√√
∑

t∈I

2 ytwt · xt︸ ︷︷ ︸
≤0

+‖xt‖2

≤
√∑

t∈I

‖xt‖2 ≤
√
Mr2.

Comparing the left- and right-hand sides gives
√
M ≤ r/ρ, that is, M ≤ r2/ρ2. �

8.3 Linear classification 193

By definition of the algorithm, the weight vector wT after processing T points is a

linear combination of the vectors xt at which an update was made: wT =
∑
t∈I ytxt.

Thus, as in the case of SVMs, these vectors can be referred to as support vectors

for the Perceptron algorithm.

The bound of theorem 8.8 is remarkable, since it depends only on the normalized

margin ρ/r and not on the dimension N of the space. This bound can be shown

to be tight, that is the number of updates can be equal to r2/ρ2 in some instances

(see exercise 8.3 to show the upper bound is tight).

The theorem required no assumption about the sequence of points x1, . . . ,xT . A

standard setting for the application of the Perceptron algorithm is one where a finite

sample S of size m < T is available and where the algorithm makes multiple passes

over these m points. The result of the theorem implies that when S is linearly

separable, the Perceptron algorithm converges after a finite number of updates and

thus passes. For a small margin ρ, the convergence of the algorithm can be quite

slow, however. In fact, for some samples, regardless of the order in which the points

in S are processed, the number of updates made by the algorithm is in Ω(2N) (see

exercise 8.1). Of course, if S is not linearly separable, the Perceptron algorithm

does not converge. In practice, it is stopped after some number of passes over S.

There are many variants of the standard Perceptron algorithm which are used in

practice and have been theoretically analyzed. One notable example is the voted

Perceptron algorithm, which predicts according to the rule sgn
(
(
∑
t∈I ctwt) · x

)
,

where ct is a weight proportional to the number of iterations that wt survives, i.e.,

the number of iterations between wt and wt+1.

For the following theorem, we consider the case where the Perceptron algorithm

is trained via multiple passes till convergence over a finite sample that is linearly

separable. In view of theorem 8.8, convergence occurs after a finite number of

updates.

For a linearly separable sample S, we denote by rS the radius of the smallest

origin-centered sphere containing all points in S and by ρS the largest margin of

a separating hyperplane for S. We also denote by M(S) the number of updates

made by the algorithm after training over S.

Theorem 8.9 Assume that the data is linearly separable. Let hS be the hypothesis

returned by the Perceptron algorithm after training over a sample S of size m

drawn according to some distribution D. Then, the expected error of hS is bounded

as follows:

E
S∼Dm

[R(hS)] ≤ E
S∼Dm+1

[
min

(
M(S), r2

S/ρ
2
S

)

m+ 1

]
.

Proof: Let S be a linearly separable sample of size m+ 1 drawn i.i.d. according to

D and let x be a point in S. If hS−{x} misclassifies x, then x must be a support

vector for hS . Thus, the leave-one-out error of the Perceptron algorithm on sample

194 Chapter 8 On-Line Learning

S is at most M(S)
m+1 . The result then follows lemma 5.3, which relates the expected

leave-one-out error to the expected error, along with the upper bound on M(S)

given by theorem 8.8. �

This result can be compared with a similar one given for the SVM algorithm (with

no offset) in the following theorem, which is an extension of theorem 5.4. We denote

by NSV(S) the number of support vectors that define the hypothesis hS returned

by SVMs when trained on a sample S.

Theorem 8.10 Assume that the data is linearly separable. Let hS be the hypothesis

returned by SVMs used with no offset (b = 0) after training over a sample S of

size m drawn according to some distribution D. Then, the expected error of hS is

bounded as follows:

E
S∼Dm

[R(hS)] ≤ E
S∼Dm+1

[
min

(
NSV(S), r2

S/ρ
2
S

)

m+ 1

]
.

Proof: The fact that the expected error can be upper bounded by the average

fraction of support vectors (NSV(S)/(m + 1)) was already shown by theorem 5.4.

Thus, it suffices to show that it is also upper bounded by the expected value of

(r2
S/ρ

2
S)/(m + 1). To do so, we will bound the leave-one-out error of the SVM

algorithm for a sample S of size m + 1 by (r2
S/ρ

2
S)/(m + 1). The result will then

follow by lemma 5.3, which relates the expected leave-one-out error to the expected

error.

Let S = (x1, . . . ,xm+1) be a linearly separable sample drawn i.i.d. according to

D and let x be a point in S that is misclassified by hS−{x}. We will analyze the

case where x = xm+1, the analysis of other cases is similar. We denote by S′ the

sample (x1, . . . ,xm).

For any q ∈ [m + 1], let Gq denote the function defined over Rq by Gq : α 7→∑q
i=1 αi − 1

2

∑q
i,j=1 αiαjyiyj(xi · xj). Then, Gm+1 is the objective function of the

dual optimization problem for SVMs associated to the sample S and Gm the one

for the sample S′. Let α ∈ Rm+1 denote a solution of the dual SVM problem

maxα≥0Gm+1(α) and α′ ∈ Rm+1 the vector such that (α′1, . . . , α
′
m)> ∈ Rm is a

solution of maxα≥0Gm(α) and α′m+1 = 0. Let em+1 denote the (m + 1)th unit

vector in Rm+1. By definition of α and α′ as maximizers, maxβ≥0Gm+1(α′ +

βem+1) ≤ Gm+1(α) and Gm+1(α − αm+1em+1) ≤ Gm(α′). Thus, the quantity

A = Gm+1(α)−Gm(α′) admits the following lower and upper bounds:

max
β≥0

Gm+1(α′ + βem+1)−Gm(α′) ≤ A ≤ Gm+1(α)−Gm+1(α− αm+1em+1).

Let w =
∑m+1
i=1 yiαixi denote the weight vector returned by SVMs for the sample

S. Since hS′ misclassifies xm+1, xm+1 must be a support vector for hS , thus

8.3 Linear classification 195

ym+1w · xm+1 = 1. In view of that, the upper bound can be rewritten as follows:

Gm+1(α)−Gm+1(α− αm+1em+1)

= αm+1 −
m+1∑

i=1

(yiαixi) · (ym+1αm+1xm+1) +
1

2
α2
m+1‖xm+1‖2

= αm+1(1− ym+1w · xm+1) +
1

2
α2
m+1‖xm+1‖2

=
1

2
α2
m+1‖xm+1‖2.

Similarly, let w′ =
∑m
i=1 yiα

′
ixi. Then, for any β ≥ 0, the quantity maximized in

the lower bound can be written as

Gm+1(α′ + βem+1)−Gm(α′)

= β
(
1− ym+1(w′ + βym+1xm+1) · xm+1

)
+

1

2
β2‖xm+1‖2

= β(1− ym+1w
′ · xm+1)− 1

2
β2‖xm+1‖2.

The right-hand side is maximized for the following value of β: 1−ym+1w′·xm+1

‖xm+1‖2 .

Plugging in this value in the right-hand side gives 1
2

(1−ym+1w′·xm+1)2

‖xm+1‖2 . Thus,

A ≥ 1

2

(1− ym+1w
′ · xm+1)2

‖xm+1‖2
≥ 1

2‖xm+1‖2
,

using the fact that ym+1w
′·xm+1 < 0, since xm+1 is misclassified by w′. Comparing

this lower bound on A with the upper bound previously derived leads to 1
2‖xm+1‖2 ≤

1
2α

2
m+1‖xm+1‖2, that is

αm+1 ≥
1

‖xm+1‖2
≥ 1

r2
S

.

The analysis carried out in the case x = xm+1 holds similarly for any xi in S that

is misclassified by hS−{xi}. Let I denote the set of such indices i. Then, we can

write: ∑

i∈I

αi ≥
|I|
r2
S

.

By (5.19), the following simple expression holds for the margin:
∑m+1
i=1 αi = 1/ρ2

S .

Using this identity leads to

|I| ≤ r2
S

∑

i∈I

αi ≤ r2
S

m+1∑

i=1

αi =
r2
S

ρ2
S

.

196 Chapter 8 On-Line Learning

Since by definition |I| is the total number of leave-one-out errors, this concludes

the proof. �

Thus, the guarantees given by theorem 8.9 and theorem 8.10 in the separable case

have a similar form. These bounds do not seem sufficient to distinguish the ef-

fectiveness of the SVM and Perceptron algorithms. Note, however, that while the

same margin quantity ρS appears in both bounds, the radius rS can be replaced by

a finer quantity that is different for the two algorithms: in both cases, instead of the

radius of the sphere containing all sample points, rS can be replaced by the radius

of the sphere containing the support vectors, as can be seen straightforwardly from

the proof of the theorems. Thus, the position of the support vectors in the case

of SVMs can provide a more favorable guarantee than that of the support vectors

(update vectors) for the Perceptron algorithm. Finally, the guarantees given by

these theorems are somewhat weak. These are not high probability bounds, they

hold only for the expected error of the hypotheses returned by the algorithms and

in particular provide no information about the variance of their error.

The following two theorems give bounds on the number of updates or mistakes

made by the Perceptron algorithm in the more general scenario of a non-linearly

separable sample in terms of the ρ-Hinge losses of an arbitrary weight vector v.

Theorem 8.11 Let I denote the set of indices t ∈ [T] at which the Perceptron algo-

rithm makes an update when processing a sequence x1, . . . ,xT with ‖xt‖ ≤ r for

some r > 0. Then, the number of updates M = |I| made by the algorithm can be

bounded as follows:

M ≤ inf
ρ>0,‖v‖2≤1



r
ρ +

√
r2

ρ2 + 4‖lρ‖1
2




2

≤ inf
ρ>0,‖v‖2≤1

(
r

ρ
+
√
‖lρ‖1

)2

,

where lρ = (lt)t∈I with lt = max
{

0, 1− yt(v·xt)
ρ

}
.

Proof: Fix ρ > 0 and v with ‖v‖2 = 1. By definition of lt, for any t, we have

1− yt(v·xt)
ρ ≤ lt. Summing up these inequalities over all t ∈ I yields

M ≤
∑

t∈I

lt +
∑

t∈I

yt(v · xt)
ρ

= ‖lρ‖1 +
∑

t∈I

yt(v · xt)
ρ

≤ ‖lρ‖1 +

√
Mr2

ρ
, (8.24)

where the last inequality holds by the bound shown in the proof of the separable

case (theorem 8.8):
v·∑t∈I ytxt
‖v‖ ≤

√
Mr2. Now, solving the resulting second-degree

inequality M ≤ ‖lρ‖1 +
√
Mr2

ρ gives
√
M ≤ 1

2

(
r
ρ +

√
r2

ρ2 + 4‖lρ‖1
)
, which proves

the first inequality. The second inequality follows from the sub-additivity of the

square-root function. �

8.3 Linear classification 197

Theorem 8.12 Let I denote the set of indices t ∈ [T] at which the Perceptron algo-

rithm makes an update when processing a sequence x1, . . . ,xT with ‖xt‖ ≤ r for

some r > 0. Then, the number of updates M = |I| made by the algorithm can be

bounded as follows:

M ≤ inf
ρ>0,‖v‖2≤1

(
r

ρ
+
√
‖lρ‖2

)2

,

where lρ = (lt)t∈I with lt = max
{

0, 1− yt(v·xt)
ρ

}
.

Proof: Fix ρ > 0 and v with ‖v‖2 = 1. Starting with line (8.24) of theorem 8.11

and using ‖lρ‖1 ≤
√
M‖lρ‖2, which holds by the Cauchy-Schwarz inequality, give

M ≤ ‖lρ‖1 +

√
Mr2

ρ
≤
√
M‖lρ‖2 +

√
Mr2

ρ
.

This implies
√
M ≤ ‖lρ‖2 +

√
r2

ρ and proves the statement. �

These bounds strictly generalize the bounds given in the separable case (theo-

rem 8.8) since in that case the vector v can be chosen to be that of a maximum-

margin hyperplane with no Hinge loss at any point. The main difference between

the two bounds is the L1-norm of the vector of Hinge losses in Theorem 8.11 ver-

sus the L2-norm in Theorem 8.12. Note that, since the L2-norm bound follows

from upper bounding inequality (8.24), which is equivalent to the first inequality

of Theorem 8.11, the first L1-norm bound of Theorem 8.11 is always tighter than

the L2-norm bound of Theorem 8.12.

The Perceptron algorithm can be generalized, as in the case of SVMs, to define a

linear separation in a high-dimensional space. It admits an equivalent dual form, the

dual Perceptron algorithm, which is presented in figure 8.8. The dual Perceptron

algorithm maintains a vector α ∈ RT of coefficients assigned to each point xt,

t ∈ [T]. The label of a point xt is predicted according to the rule sgn(w ·xt), where

w =
∑T
s=1 αsysxs. The coefficient αt is incremented by one when this prediction

does not match the correct label. Thus, an update for xt is equivalent to augmenting

the weight vector w with ytxt, which shows that the dual algorithm matches exactly

the standard Perceptron algorithm. The dual Perceptron algorithm can be written

solely in terms of inner products between training instances. Thus, as in the case of

SVMs, instead of the inner product between points in the input space, an arbitrary

PDS kernel can be used, which leads to the kernel Perceptron algorithm detailed

in figure 8.9. The kernel Perceptron algorithm and its average variant, i.e., voted

Perceptron with uniform weights ct, are commonly used algorithms in a variety of

applications.

198 Chapter 8 On-Line Learning

DualPerceptron(α0)

1 α← α0 . typically α0 = 0

2 for t← 1 to T do

3 Receive(xt)

4 ŷt ← sgn(
∑T
s=1 αsys(xs · xt))

5 Receive(yt)

6 if (ŷt 6= yt) then

7 αt ← αt + 1

8 else αt ← αt

9 return α

Figure 8.8
Dual Perceptron algorithm.

8.3.2 Winnow algorithm
This section presents an alternative on-line linear classification algorithm, the Win-

now algorithm. Thus, it learns a weight vector defining a separating hyperplane

by sequentially processing the training points. As suggested by the name, the

algorithm is particularly well suited to cases where a relatively small number of

dimensions or experts can be used to define an accurate weight vector. Many of

the other dimensions may then be irrelevant.

The Winnow algorithm is similar to the Perceptron algorithm, but, instead of

the additive update of the weight vector in the Perceptron case, Winnow’s update

is multiplicative. The pseudocode of the algorithm is given in figure 8.10. The

algorithm takes as input a learning parameter η > 0. It maintains a non-negative

weight vector wt with components summing to one (‖wt‖1 = 1) starting with

the uniform weight vector (line 1). At each round t ∈ [T], if the prediction does

not match the correct label (line 6), each component wt,i, i ∈ [N], is updated by

multiplying it by exp(ηytxt,i) and dividing by the normalization factor Zt to ensure

that the weights sum to one (lines 7–9). Thus, if the label yt and xt,i share the same

sign, then wt,i is increased, while, in the opposite case, it is significantly decreased.

The Winnow algorithm is closely related to the WM algorithm: when xt,i ∈
{−1,+1}, sgn(wt ·xt) coincides with the majority vote, since multiplying the weight

of correct or incorrect experts by eη or e−η is equivalent to multiplying the weight

8.3 Linear classification 199

KernelPerceptron(α0)

1 α← α0 . typically α0 = 0

2 for t← 1 to T do

3 Receive(xt)

4 ŷt ← sgn(
∑T
s=1 αsysK(xs, xt))

5 Receive(yt)

6 if (ŷt 6= yt) then

7 αt ← αt + 1

8 else αt ← αt

9 return α

Figure 8.9
Kernel Perceptron algorithm for PDS kernel K.

of incorrect ones by β = e−2η. The multiplicative update rule of Winnow is of

course also similar to that of AdaBoost.

The following theorem gives a mistake bound for the Winnow algorithm in the

separable case, which is similar in form to the bound of theorem 8.8 for the Per-

ceptron algorithm.

Theorem 8.13 Let x1, . . . ,xT ∈ RN be a sequence of T points with ‖xt‖∞ ≤ r∞ for

all t ∈ [T], for some r∞ > 0. Assume that there exist v ∈ RN , v ≥ 0, and ρ∞ > 0

such that for all t ∈ [T], ρ∞ ≤ yt(v·xt)
‖v‖1 . Then, for η = ρ∞

r2∞
, the number of updates

made by the Winnow algorithm when processing x1, . . . ,xT is upper bounded by

2 (r2
∞/ρ

2
∞) logN .

Proof: Let I ⊆ [T] be the set of iterations at which there is an update, and let M be

the total number of updates, i.e., |I| = M . The potential function Φt, t ∈ [T], used

for this proof is the relative entropy of the distribution defined by the normalized

weights vi/‖v‖1 ≥ 0, i ∈ [N], and the one defined by the components of the weight

vector wt,i, i ∈ [N]:

Φt =

N∑

i=1

vi
‖v‖1

log
vi/‖v‖1
wt,i

.

To derive an upper bound on Φt, we analyze the difference of the potential functions

at two consecutive rounds. For all t ∈ I, this difference can be expressed and

200 Chapter 8 On-Line Learning

Winnow(η)

1 w1 ← 1/N

2 for t← 1 to T do

3 Receive(xt)

4 ŷt ← sgn(wt · xt)
5 Receive(yt)

6 if (ŷt 6= yt) then

7 Zt ←
∑N
i=1 wt,i exp(ηytxt,i)

8 for i← 1 to N do

9 wt+1,i ← wt,i exp(ηytxt,i)
Zt

10 else wt+1 ← wt

11 return wT+1

Figure 8.10
Winnow algorithm, with yt ∈ {−1,+1} for all t ∈ [T].

bounded as follows:

Φt+1 − Φt =

N∑

i=1

vi
‖v‖1

log
wt,i
wt+1,i

=

N∑

i=1

vi
‖v‖1

log
Zt

exp(ηytxt,i)

= logZt − η
N∑

i=1

vi
‖v‖1

ytxt,i

≤ log
[N∑

i=1

wt,i exp(ηytxt,i)
]
− ηρ∞

= log E
i∼wt

[
exp(ηytxt,i)

]
− ηρ∞

= log E
i∼wt

[
exp(ηytxt,i − ηytwt · xt + ηytwt · xt)

]
− ηρ∞

≤ log
[

exp(η2(2r∞)2/8)
]

+ ηyt(wt · xt)︸ ︷︷ ︸
≤0

−ηρ∞
≤ η2r2

∞/2− ηρ∞.

8.4 On-line to batch conversion 201

The first inequality follows the definition of ρ∞. The subsequent equality rewrites

the summation as an expectation over the distribution defined by wt. The next

inequality uses Hoeffding’s lemma (lemma D.1) and the last one the fact that there

has been an update at t, which implies yt(wt · xt) ≤ 0. Summing up these inequal-

ities over all t ∈ I yields:

ΦT+1 − Φ1 ≤M(η2r2
∞/2− ηρ∞).

Next, we derive a lower bound by noting that

Φ1 =

N∑

i=1

vi
‖v‖1

log
vi/‖v‖1

1/N
= logN +

N∑

i=1

vi
‖v‖1

log
vi
‖v‖1

≤ logN .

Additionally, since the relative entropy is always non-negative, we have ΦT+1 ≥ 0.

This yields the following lower bound:

ΦT+1 − Φ1 ≥ 0− logN = − logN .

Combining the upper and lower bounds we see that − logN ≤M(η2r2
∞/2− ηρ∞).

Setting η = ρ∞
r2∞

yields the statement of the theorem. �

The margin-based mistake bounds of theorem 8.8 and theorem 8.13 for the Percep-

tron and Winnow algorithms have a similar form, but they are based on different

norms. For both algorithms, the norm ‖ · ‖p used for the input vectors xt, t ∈ [T],

is the dual of the norm ‖ · ‖q used for the margin vector v, that is p and q are

conjugate: 1/p+ 1/q = 1: in the case of the Perceptron algorithm p = q = 2, while

for Winnow p =∞ and q = 1.

These bounds imply different types of guarantees. The bound for Winnow is fa-

vorable when a sparse set of the experts i ∈ [N] can predict well. For example, if

v = e1 where e1 is the unit vector along the first axis in RN and if xt ∈ {−1,+1}N
for all t, then the upper bound on the number of mistakes given for Winnow by

theorem 8.13 is only 2 logN , while the upper bound of theorem 8.8 for the Percep-

tron algorithm is N . The guarantee for the Perceptron algorithm is more favorable

in the opposite situation, where sparse solutions are not effective.

8.4 On-line to batch conversion

The previous sections presented several algorithms for the scenario of on-line learn-

ing, including the Perceptron and Winnow algorithms, and analyzed their behavior

within the mistake model, where no assumption is made about the way the train-

ing sequence is generated. Can these algorithms be used to derive hypotheses with

small generalization error in the standard stochastic setting? How can the interme-

202 Chapter 8 On-Line Learning

diate hypotheses they generate be combined to form an accurate predictor? These

are the questions addressed in this section.

Let H be a hypothesis of functions mapping X to Y′, and let L : Y′ × Y→ R+ be

a bounded loss function, that is L ≤ M for some M ≥ 0. We assume a standard

supervised learning setting where a labeled sample S = ((x1, y1), . . . , (xT , yT)) ∈
(X× Y)T is drawn i.i.d. according to some fixed but unknown distribution D. The

sample is sequentially processed by an on-line learning algorithm A. The algorithm

starts with an initial hypothesis h1 ∈ H and generates a new hypothesis ht+1 ∈ H,

after processing pair (xt, yt), t ∈ [m]. The regret of the algorithm is defined as

before by

RT =

T∑

t=1

L(ht(xt), yt)− min
h∈H

T∑

t=1

L(h(xt), yt). (8.25)

The generalization error of a hypothesis h ∈ H is its expected loss R(h) =

E(x,y)∼D[L(h(x), y)].

The following lemma gives a bound on the average of the generalization errors of

the hypotheses generated by A in terms of its average loss 1
T

∑T
t=1 L(ht(xt), yt).

Lemma 8.14 Let S = ((x1, y1), . . . , (xT , yT)) ∈ (X × Y)T be a labeled sample drawn

i.i.d. according to D, L a loss bounded by M and h1, . . . , hT the sequence of hy-

potheses generated by an on-line algorithm A sequentially processing S. Then, for

any δ > 0, with probability at least 1− δ, the following holds:

1

T

T∑

t=1

R(ht) ≤
1

T

T∑

t=1

L(ht(xt), yt) +M

√
2 log 1

δ

T
. (8.26)

Proof: For any t ∈ [T], let Vt be the random variable defined by Vt = R(ht) −
L(ht(xt), yt). Observe that for any t ∈ [T],

E[Vt|x1, . . . , xt−1] = R(ht)− E[L(ht(xt), yt)|ht] = R(ht)−R(ht) = 0.

Since the loss is bounded by M , Vt takes values in the interval [−M,+M] for

all t ∈ [T]. Thus, by Azuma’s inequality (theorem D.7), P[1
T

∑T
t=1 Vt ≥ ε] ≤

exp(−2Tε2/(2M)2)). Setting the right-hand side to be equal to δ > 0 yields the

statement of the lemma. �

When the loss function is convex with respect to its first argument, the lemma

can be used to derive a bound on the generalization error of the average of the

hypotheses generated by A, 1
T

∑T
t=1 ht, in terms of the average loss of A on S, or

in terms of the regret RT and the infimum error of hypotheses in H.

Theorem 8.15 Let S = ((x1, y1), . . . , (xT , yT)) ∈ (X× Y)T be a labeled sample drawn

i.i.d. according to D, L a loss bounded by M and convex with respect to its first

argument, and h1, . . . , hT the sequence of hypotheses generated by an on-line algo-

rithm A sequentially processing S. Then, for any δ > 0, with probability at least

8.4 On-line to batch conversion 203

1− δ, each of the following holds:

R

(
1

T

T∑

t=1

ht

)
≤ 1

T

T∑

t=1

L(ht(xt), yt) +M

√
2 log 1

δ

T
(8.27)

R

(
1

T

T∑

t=1

ht

)
≤ inf
h∈H

R(h) +
RT
T

+ 2M

√
2 log 2

δ

T
. (8.28)

Proof: By the convexity of L with respect to its first argument, for any (x, y) ∈ X×
Y, we have L(1

T

∑T
t=1 ht(x), y) ≤ 1

T

∑T
t=1 L(ht(x), y). Taking the expectation gives

R(1
T

∑T
t=1 ht) ≤ 1

T

∑T
t=1R(ht). The first inequality then follows by lemma 8.14.

Thus, by definition of the regret RT , for any δ > 0, the following holds with

probability at least 1− δ/2:

R

(
1

T

T∑

t=1

ht

)
≤ 1

T

T∑

t=1

L(ht(xt), yt) +M

√
2 log 2

δ

T

≤ min
h∈H

1

T

T∑

t=1

L(h(xt), yt) +
RT
T

+M

√
2 log 2

δ

T
.

By definition of infh∈H R(h), for any ε > 0, there exists h∗ ∈ H with R(h∗) ≤
infh∈H R(h) + ε. By Hoeffding’s inequality, for any δ > 0, with probability at least

1 − δ/2, 1
T

∑T
t=1 L(h∗(xt), yt) ≤ R(h∗) + M

√
2 log 2

δ

T . Thus, for any ε > 0, by the

union bound, the following holds with probability at least 1− δ:

R

(
1

T

T∑

t=1

ht

)
≤ 1

T

T∑

t=1

L(h∗(xt), yt) +
RT
T

+M

√
2 log 2

δ

T

≤ R(h∗) +M

√
2 log 2

δ

T
+
RT
T

+M

√
2 log 2

δ

T

= R(h∗) +
RT
T

+ 2M

√
2 log 2

δ

T

≤ inf
h∈H

R(h) + ε+
RT
T

+ 2M

√
2 log 2

δ

T
.

Since this inequality holds for all ε > 0, it implies the second statement of the

theorem. �

The theorem can be applied to a variety of on-line regret minimization algorithms,

for example when RT /T = O(1/
√
T). In particular, we can apply the theorem to

the exponential weighted average algorithm. Assuming that the loss L is bounded

204 Chapter 8 On-Line Learning

by M = 1 and that the number of rounds T is known to the algorithm, we can use

the regret bound of theorem 8.6. The doubling trick (used in theorem 8.7) can be

used to derive a similar bound if T is not known in advance. Thus, for any δ > 0,

with probability at least 1 − δ, the following holds for the generalization error of

the average of the hypotheses generated by exponential weighted average:

R

(
1

T

T∑

t=1

ht

)
≤ inf
h∈H

R(h) +

√
logN

2T
+ 2

√
2 log 2

δ

T
,

where N is the number of experts, or the dimension of the weight vectors.

8.5 Game-theoretic connection

The existence of regret minimization algorithms can be used to give a simple proof

of von Neumann’s theorem. For any m ≥ 1, we will denote by ∆m the set of all

distributions over {1, . . . ,m}, that is ∆m = {p ∈ Rm : p ≥ 0 ∧ ‖p‖1 = 1}.
Theorem 8.16 (Von Neumann’s minimax theorem) Let m,n ≥ 1. Then, for any two-

person zero-sum game defined by matrix M ∈ Rm×n,

min
p∈∆m

max
q∈∆n

p>Mq = max
q∈∆n

min
p∈∆m

p>Mq . (8.29)

Proof: The inequality maxq minp p>Mq ≤ minp maxq p>Mq is straightforward,

since by definition of min, for all p ∈ ∆m,q ∈ ∆n, we have minp p>Mq ≤ p>Mq.

Taking the maximum over q of both sides gives: maxq minp p>Mq ≤ maxq p>Mq

for all p, subsequently taking the minimum over p proves the inequality.12

To show the reverse inequality, consider an on-line learning setting where at each

round t ∈ [T], algorithm A returns pt and incurs loss Mqt. We can assume that

qt is selected in the optimal adversarial way, that is qt ∈ argmaxq∈∆m
p>t Mq,

and that A is a regret minimization algorithm, that is RT /T → 0, where RT =∑T
t=1 p>t Mqt −minp∈∆m

∑T
t=1 p>Mqt. Then, the following holds:

min
p∈∆m

max
q∈∆n

p>Mq ≤ max
q

(1

T

T∑

t=1

pt

)>
Mq ≤ 1

T

T∑

t=1

max
q

p>t Mq =
1

T

T∑

t=1

p>t Mqt.

12 More generally, the maxmin is always upper bounded by the minmax for any function or two
arguments and any constraint sets, following the same proof.

8.6 Chapter notes 205

By definition of regret, the right-hand side can be expressed and bounded as follows:

1

T

T∑

t=1

p>t Mqt = min
p∈∆m

1

T

T∑

t=1

p>Mqt +
RT
T

= min
p∈∆m

p>M
(1

T

T∑

t=1

qt

)
+
RT
T

≤ max
q∈∆n

min
p∈∆m

p>Mq +
RT
T
.

This implies that the following bound holds for the minmax for all T ≥ 1:

min
p∈∆m

max
q∈∆n

p>Mq ≤ max
q∈∆n

min
p∈∆m

p>Mq +
RT
T

Since limT→+∞
RT
T = 0, this shows that minp maxq p>Mq ≤ maxq minp p>Mq.�

8.6 Chapter notes

Algorithms for regret minimization were initiated with the pioneering work of Han-

nan [1957] who gave an algorithm whose regret decreases as O(
√
T) as a function

of T but whose dependency on N is linear. The weighted majority algorithm and

the randomized weighted majority algorithm, whose regret is only logarithmic in

N , are due to Littlestone and Warmuth [1989]. The exponential weighted aver-

age algorithm and its analysis, which can be viewed as an extension of the WM

algorithm to convex non-zero-one losses is due to the same authors [Littlestone

and Warmuth, 1989, 1994]. The analysis we presented follows Cesa-Bianchi [1999]

and Cesa-Bianchi and Lugosi [2006]. The doubling trick technique appears in Vovk

[1990] and Cesa-Bianchi et al. [1997]. The algorithm of exercise 8.7 and the analysis

leading to a second-order bound on the regret are due to Cesa-Bianchi et al. [2005].

The lower bound presented in theorem 8.5 is from Blum and Mansour [2007].

While the regret bounds presented are logarithmic in the number of the experts

N , when N is exponential in the size of the input problem, the computational

complexity of an expert algorithm could be exponential. For example, in the on-

line shortest paths problem, N is the number of paths between two vertices of

a directed graph. However, several computationally efficient algorithms have been

presented for broad classes of such problems by exploiting their structure [Takimoto

and Warmuth, 2002, Kalai and Vempala, 2003, Zinkevich, 2003].

The notion of regret (or external regret) presented in this chapter can be gen-

eralized to that of internal regret or even swap regret , by comparing the loss of

the algorithm not just to that of the best expert in retrospect, but to that of any

modification of the actions taken by the algorithm by replacing each occurrence of

some specific action with another one (internal regret), or even replacing actions via

an arbitrary mapping (swap regret) [Foster and Vohra, 1997, Hart and Mas-Colell,

2000, Lehrer, 2003]. Several algorithms for low internal regret have been given

206 Chapter 8 On-Line Learning

[Foster and Vohra, 1997, 1998, 1999, Hart and Mas-Colell, 2000, Cesa-Bianchi and

Lugosi, 2001, Stoltz and Lugosi, 2003], including a conversion of low external regret

to low swap regret by Blum and Mansour [2005].

The Perceptron algorithm was introduced by Rosenblatt [1958]. The algorithm

raised a number of reactions, in particular by Minsky and Papert [1969], who ob-

jected that the algorithm could not be used to recognize the XOR function. Of

course, the kernel Perceptron algorithm already given by Aizerman et al. [1964]

could straightforwardly succeed to do so using second-degree polynomial kernels.

The margin bound for the Perceptron algorithm was proven by Novikoff [1962]

and is one of the first results in learning theory. We presented two extensions of

Novikoff’s result which hold in the more general non-separable case: Theorem 8.12

due to Freund and Schapire [1999a] and Theorem 8.11 due to Mohri and Ros-

tamizadeh [2013]. Our proof of Theorem 8.12 is significantly more concise that

the original proof given by Freund and Schapire [1999a] and shows that the bound

of Theorem 8.11 is always tighter than that of Theorem 8.12. See [Mohri and

Rostamizadeh, 2013] for other more general data-dependent upper bounds on the

number of updates made by the Perceptron algorithm in the non-separable case.

The leave-one-out analysis for SVMs is described by Vapnik [1998]. The Winnow

algorithm was introduced by Littlestone [1987].

The analysis of the on-line to batch conversion and exercises 8.10 and 8.11 are

from Cesa-Bianchi et al. [2001, 2004] (see also Littlestone [1989]). Von Neumann’s

minimax theorem admits a number of different generalizations. See Sion [1958] for a

generalization to quasi-concave-convex functions semi-continuous in each argument

and the references therein. The simple proof of von Neumann’s theorem presented

here is entirely based on learning-related techniques. A proof of a more general

version using multiplicative updates was presented by Freund and Schapire [1999b].

On-line learning is a very broad and fast-growing research area in machine learn-

ing. The material presented in this chapter should be viewed only as an introduction

to the topic, but the proofs and techniques presented should indicate the flavor of

most results in this area. For a more comprehensive presentation of on-line learning

and related game theory algorithms and techniques, the reader could consult the

book of Cesa-Bianchi and Lugosi [2006].

8.7 Exercises

8.1 Perceptron lower bound. Let S be a labeled sample of m points in RN with

xi = ((−1)i, . . . , (−1)i, (−1)i+1

︸ ︷︷ ︸
i first components

, 0, . . . , 0) and yi = (−1)i+1. (8.30)

8.7 Exercises 207

On-line-SVM(w0)

1 w1 ← w0 . typically w0 = 0

2 for t← 1 to T do

3 Receive(xt, yt)

4 if yt(wt · xt) < 1 then

5 wt+1 ← wt − η(wt − Cytxt)
6 elseif yt(wt · xt) > 1 then

7 wt+1 ← wt − ηwt

8 else wt+1 ← wt

9 return wT+1

Figure 8.11
On-line SVM algorithm.

Show that the Perceptron algorithm makes Ω(2N) updates before finding a

separating hyperplane, regardless of the order in which it receives the points.

8.2 Generalized mistake bound. Theorem 8.8 presents a margin bound on the maxi-

mum number of updates for the Perceptron algorithm for the special case η = 1.

Consider now the general Perceptron update wt+1 ← wt + ηytxt, where η > 0.

Prove a bound on the maximum number of mistakes. How does η affect the

bound?

8.3 Sparse instances. Suppose each input vector xt, t ∈ [T], coincides with the tth

unit vector of RT . How many updates are required for the Perceptron algorithm

to converge? Show that the number of updates matches the margin bound of

theorem 8.8.

8.4 Tightness of lower bound. Is the lower bound of theorem 8.5 tight? Explain

why or show a counter-example.

8.5 On-line SVM algorithm. Consider the algorithm described in figure 8.11. Show

that this algorithm corresponds to the stochastic gradient descent technique

applied to the SVM problem (5.24) with hinge loss and no offset (i.e., fix p = 1

and b = 0).

208 Chapter 8 On-Line Learning

MarginPerceptron()

1 w1 ← 0

2 for t← 1 to T do

3 Receive(xt)

4 Receive(yt)

5 if
(
(wt = 0) or (ytwt·xt

‖wt‖ < ρ
2)
)

then

6 wt+1 ← wt + ytxt

7 else wt+1 ← wt

8 return wT+1

Figure 8.12
Margin Perceptron algorithm.

8.6 Margin Perceptron. Given a training sample S that is linearly separable with a

maximum margin ρ > 0, theorem 8.8 states that the Perceptron algorithm run

cyclically over S is guaranteed to converge after at most R2/ρ2 updates, where R

is the radius of the sphere containing the sample points. However, this theorem

does not guarantee that the hyperplane solution of the Perceptron algorithm

achieves a margin close to ρ. Suppose we modify the Perceptron algorithm to

ensure that the margin of the hyperplane solution is at least ρ/2. In particular,

consider the algorithm described in figure 8.12. In this problem we show that

this algorithm converges after at most 16R2/ρ2 updates. Let I denote the set

of times t ∈ [T] at which the algorithm makes an update and let M = |I| be the

total number of updates.

(a) Using an analysis similar to the one given for the Perceptron algorithm, show

that Mρ ≤ ‖wT+1‖. Conclude that if ‖wT+1‖ < 4R2

ρ , then M < 4R2/ρ2.

(For the remainder of this problem, we will assume that ‖wT+1‖ ≥ 4R2

ρ .)

(b) Show that for any t ∈ I (including t = 0), the following holds:

‖wt+1‖2 ≤ (‖wt‖+ ρ/2)2 +R2.

(c) From (b), infer that for any t ∈ I we have

‖wt+1‖ ≤ ‖wt‖+ ρ/2 +
R2

‖wt‖+ ‖wt+1‖+ ρ/2
.

8.7 Exercises 209

(d) Using the inequality from (c), show that for any t ∈ I such that either

‖wt‖ ≥ 4R2

ρ or ‖wt+1‖ ≥ 4R2

ρ , we have

‖wt+1‖ ≤ ‖wt‖+
3

4
ρ.

(e) Show that ‖w1‖ ≤ R ≤ 4R2/ρ. Since by assumption we have ‖wT+1‖ ≥ 4R2

ρ ,

conclude that there must exist a largest time t0 ∈ I such that ‖wt0‖ ≤ 4R2

ρ

and ‖wt0+1‖ ≥ 4R2

ρ .

(f) Show that ‖wT+1‖ ≤ ‖wt0‖+ 3
4Mρ. Conclude that M ≤ 16R2/ρ2.

8.7 Second-order regret bound. Consider the randomized algorithm that differs from

the RWM algorithm only by the weight update, i.e., wt+1,i ← (1−(1−β)lt,i)wt,i,

t ∈ [T], which is applied to all i ∈ [N] with 1/2 ≤ β < 1. This algorithm can be

used in a more general setting than RWM since the losses lt,i are only assumed

to be in [0, 1]. The objective of this problem is to show that a similar upper

bound can be shown for the regret.

(a) Use the same potential Wt as for the RWM algorithm and derive a simple

upper bound for logWT+1:

logWT+1 ≤ logN − (1− β)LT .

(Hint : Use the inequality log(1− x) ≤ −x for x ∈ [0, 1/2].)

(b) Prove the following lower bound for the potential for all i ∈ [N]:

logWT+1 ≥ −(1− β)LT,i − (1− β)2
T∑

t=1

l2t,i .

(Hint : Use the inequality log(1 − x) ≥ −x − x2, which is valid for all x ∈
[0, 1/2].)

(c) Use upper and lower bounds to derive the following regret bound for the

algorithm: RT ≤ 2
√
T logN .

8.8 Polynomial weighted algorithm. The objective of this problem is to show how

another regret minimization algorithm can be defined and studied. Let L be a

loss function convex in its first argument and taking values in [0,M].

We will assume N > e2 and then for any expert i ∈ [N], we denote by rt,i the

instantaneous regret of that expert at time t ∈ [T], rt,i = L(ŷt, yt)− L(yt,i, yt),

210 Chapter 8 On-Line Learning

and by Rt,i its cumulative regret up to time t: Rt,i =
∑t
s=1 rt,i. For conve-

nience, we also define R0,i = 0 for all i ∈ [N]. For any x ∈ R, (x)+ denotes

max(x, 0), that is the positive part of x, and for x = (x1, . . . , xN)> ∈ RN ,

(x)+ = ((x1)+, . . . , (xN)+)>.

Let α > 2 and consider the algorithm that predicts at round t ∈ [T] according

to ŷt =
∑n
i=1 wt,iyt,i∑n
i=1 wt,i

, with the weight wt,i defined based on the αth power of

the regret up to time (t − 1): wt,i = (Rt−1,i)
α−1
+ . The potential function we

use to analyze the algorithm is based on the function Φ defined over RN by

Φ: x 7→ ‖(x)+‖2α =
[∑N

i=1(xi)
α
+

] 2
α .

(a) Show that Φ is twice differentiable over RN−B, where B is defined as follows:

B = {u ∈ RN : (u)+ = 0}.

(b) For any t ∈ [T], let rt denote the vector of instantaneous regrets, rt =

(rt,1, . . . , rt,N)>, and similarly Rt = (Rt,1, . . . , Rt,N)>. We define the po-

tential function as Φ(Rt) = ‖(Rt)+‖2α. Compute ∇Φ(Rt−1) for Rt−1 6∈ B
and show that ∇Φ(Rt−1) · rt ≤ 0 (Hint : use the convexity of the loss with

respect to the first argument).

(c) Prove the inequality r>[∇2Φ(u)]r ≤ 2(α − 1)‖r‖2α valid for all r ∈ RN and

u ∈ RN −B (Hint : write the Hessian ∇2Φ(u) as a sum of a diagonal matrix

and a positive semidefinite matrix multiplied by (2− α). Also, use Hölder’s

inequality generalizing Cauchy-Schwarz: for any p > 1 and q > 1 with
1
p + 1

q = 1 and u,v ∈ RN , |u · v| ≤ ‖u‖p‖v‖q).
(d) Using the answers to the two previous questions and Taylor’s formula, show

that for all t ≥ 1, Φ(Rt)−Φ(Rt−1) ≤ (α−1)‖rt‖2α, if γRt−1 +(1−γ)Rt 6∈ B
for all γ ∈ [0, 1].

(e) Suppose there exists γ ∈ [0, 1] such that (1− γ)Rt−1 + γRt ∈ B. Show that

Φ(Rt) ≤ (α− 1)‖rt‖2α.

(f) Using the two previous questions, derive an upper bound on Φ(RT) expressed

in terms of T , N , and M .

(g) Show that Φ(RT) admits as a lower bound the square of the regret RT of

the algorithm.

(h) Using the two previous questions give an upper bound on the regret RT . For

what value of α is the bound the most favorable? Give a simple expression of

the upper bound on the regret for a suitable approximation of that optimal

value.

8.7 Exercises 211

8.9 General inequality. In this exercise we generalize the result of exercise 8.7 by

using a more general inequality: log(1− x) ≥ −x− x2

α for some 0 < α < 2.

(a) First prove that the inequality is true for x ∈ [0, 1 − α
2]. What does this

imply about the valid range of β?

(b) Give a generalized version of the regret bound derived in exercise 8.7 in terms

of α, which shows:

RT ≤
logN

1− β +
1− β
α

T .

What is the optimal choice of β and the resulting bound in this case?

(c) Explain how α may act as a regularization parameter. What is the optimal

choice of α?

8.10 On-line to batch — non-convex loss.

The on-line to batch result of theorem 8.15 heavily relies on the fact that the

loss is convex in order to provide a generalization guarantee for the uniformly

averaged hypothesis 1
T

∑T
i=1 hi. For general losses, instead of using the averaged

hypothesis we will use a different strategy and try to estimate the best single

base hypothesis and show the expected loss of this hypothesis is bounded.

Let mi denote the cumulative loss of hypothesis hi on the points (xi, . . . , xT),

that is mi =
∑T
t=i L(hi(xt), yt). Then we define the penalized risk estimate of

hypothesis hi as,

mi

T − i+ 1
+ cδ(T − i+ 1) where cδ(x) =

√
1

2x
log

T (T + 1)

δ
.

The term cδ penalizes the empirical error when the test sample is small. Define

ĥ = hi∗ where i∗ = argminimi/(T − i+ 1) + cδ(T − i+ 1). We will then show

under the same conditions of theorem 8.15 (with M = 1 for simplicity), but

without requiring the convexity of L, that the following holds with probability

at least 1− δ:

R(ĥ) ≤ 1

T

T∑

i=1

L(hi(xi), yi) + 6

√
1

T
log

2(T + 1)

δ
. (8.31)

(a) Prove the following inequality:

min
i∈[T]

(R(hi) + 2cδ(T − i+ 1)) ≤ 1

T

T∑

i=1

R(hi) + 4

√
1

T
log

T + 1

δ
.

212 Chapter 8 On-Line Learning

(b) Use part (a) to show that with probability at least 1− δ,

min
i∈[T]

(R(hi) + 2cδ(T − i+ 1))

<

T∑

i=1

L(hi(xi), yi) +

√
2

T
log

1

δ
+ 4

√
1

T
log

T + 1

δ
.

(c) By design, the definition of cδ ensures that with probability at least 1− δ
R(ĥ) ≤ min

i∈[T]
(R(hi) + 2cδ(T − i+ 1)) .

Use this property to complete the proof of (8.31).

8.11 On-line to batch — kernel Perceptron margin bound. In this problem, we give a

margin-based generalization guarantee for the kernel Perceptron algorithm. Let

h1, . . . , hT be the sequence of hypotheses generated by the kernel Perceptron

algorithm and let ĥ be defined as in exercise 8.10. Finally, let L denote the

zero-one loss. We now wish to more precisely bound the generalization error of

ĥ in this setting.

(a) First, show that

T∑

i=1

L(hi(xi), yi) ≤ inf
h∈H:‖h‖≤1

T∑

i=1

max

(
0, 1− yih(xi)

ρ

)
+

1

ρ

√∑

i∈I
K(xi, xi),

where I is the set of indices where the kernel Perceptron makes an update

and where δ and ρ are defined as in theorem 8.12.

(b) Now, use the result of exercise 8.10 to derive a generalization guarantee for

ĥ in the case of kernel Perceptron, which states that for any 0 < δ ≤ 1, the

following holds with probability at least 1− δ:

R(ĥ) ≤ inf
h∈H:‖h‖≤1

R̂S,ρ(h) +
1

ρT

√∑

i∈I
K(xi, xi) + 6

√
1

T
log

2(T + 1)

δ
,

where R̂S,ρ(h) = 1
T

∑T
i=1 max

(
0, 1− yih(xi)

ρ

)
. Compare this result with the

margin bounds for kernel-based hypotheses given by corollary 6.13.

