Reinforcement Learning

From basic concepts to deep Q-networks

Reinforcement learning

1. Learning agent tries a sequence of actions (a;). Dynamic
‘ System
2. Observes outcomes (state s,, 4, rewards r;) of
those actions. @ @
Learning
Agent

Reinforcement learning

1. Learning agent tries a sequence of actions (a;). Dynamic
l— System
2. Observes outcomes (state s,, 4, rewards r;) of
those actions. @ @
3. Statistically estimates relationship between Learning

action choice and outcomes, Pr(s;|s;.4,a;). Agent

Reinforcement learning

1. Learning agent tries a sequence of actions (a;).

2. Observes outcomes (state s;,,, rewards r;) of
those actions.

3. Statistically estimates relationship between
action choice and outcomes, Pr(s|s;.4,a;).

After some time... learns action selection policy,
17(s), that optimizes selected outcomes.

argmax, E_ [ro+r,+ ... +r1|Sy]

[Bellman, 1957; Sutton, 1988; Sutton&Barto, 1998.]

Many applications of RL

* Robotics

* Medicine

* Advertisement
* Resource management
* (Game playing ...

RL system circa 1990’s: TD-Gammon

predicted probability
of winning, V,

TD error, V1~ V, — Reward function:
""" +100 if win
Qe+ (D) -+ - hidden units (40-80) - 100 if lose

RSRSE 0 for all other states
o0 0O... 0.0
backgammon position (128 input units)

hite pieces move Trained by playing 1.5x108

- W
l!U § ' 8 - r\ counterclockwise million games against itself.

- Enough to beat the

- i i § best human player.

7 8 9 12 10 12 black pieces
move clockwise

-
-

Human-level Atari agent (2015)

Human-level control
through deep reinforcement
learning

DeepMind’s AlphaGo (2016)

.:’\:o Google DeepMind

LChatlenge Match

When to use RL?

+ Data in the form of trajectories.

* Need to make a sequence of (related) decisions.

« Observe (partial, noisy) feedback to state or choice of actions.

« There is a gain when optimizing action choice over a portion of
the trajectory.

RL vs supervised learning

Training signal = desired (target outputs), e.g. class

Inputs Outputs

11

RL vs supervised learning

Training signal = desired (target outputs), e.g. class

Inputs Outputs

Traming signal = “rewards”

Inputs Outputs (“actions™)

RL vs supervised learning

Training signal = desired (target outputs), e.g. class

Inputs Outputs

Traming signal = “rewards”

Inputs Outputs (“actions™)

RL vs supervised learning

Training signal = desired (target outputs), e.g. class

Challenges:

Inputs Outputs Jointly learning

AND planning
from correlated
samples.

Data distribution
changes with
action choice.

Traming signal = “rewards”

Need access to

Inputs Outputs (“actions”) :
the environment.

Markov Decision Process (MDP)

Defined by:
S: Set of states
A: Set of actions

Pr(s|s.s,a). Probabilistic effects

r,: Reward function
U, - Initial state distribution

The Markov property

The distribution over future states depends only on the present
state, not on any previous events.

Pr(s;| St1, ..., So) = Pr(s; | s¢.4)

16

Maximizing utility

« Define: U, the utility for a trajectory, starting from step .

« Episodic tasks (e.g. games, trips through a maze, etc.)

Lls = B Pt T gt F s F P

« Continuing tasks (e.g. tasks which may go on forever)

_ 2 _
Ui =1+ Yriwg F Prso+ Prsg oo = 2 pe0-0 Yk

The discount factor, y

« Discount factor, v € [0, 1) (usually close to 1).

« Two interpretations:

— At each time step, there is a 7- y chance that the agent dies,
and does not receive rewards afterwards.

— Inflation rate: receiving an amount of money tomorrow, is
worth less than today by a factor of v.

18

The policy

A policy defines the action-selection strategy at every state:

(s,a) = P(a~a | s&~S)

(Can be stochastic as above, or deterministic, S—A.)

@oal: Find the policy that maximizes expected total rewardﬁ
(But there are many policies!)

argmax_ E _[rop+r,+ ... +r;]| sp]

- J

Example: Career Options

0.8 02

n=Do Nothing

: 1 = Apply to industr
U loved | 1 0.6_ | Indust 1 ppLy y
rz%”C[n(eg;p o b_{ "m =10 2= Apply to grad school
a = Apply to academia

n _ 04
. 05 . 09
24
0.5
Y 0.1
Grad School 0.9 »[Academia
(G) \J) a T L_(A) .
0.1

What is the best policy?

20

Value functions

« |f we want to find a policy that maximizes the expected return,
it is useful to estimate the expected return.

« Then we can search through the space of policies for a good
policy.

« Value functions represent the expected return, for every state,
given a certain policy.

Vi) = E [+ rut ... +rr|s;=s]

The value of a policy

Vi(s) = Eq i+ rugt ... tre| si=s]

Vi(s) =E_[r| s;=8] + Exl gt ... +rr| s=58]

VI(S) = d aca(S,@)r(s,@) + Ex [fugt ...+ 17| 8= 8]

Immediate reward Future expected sum of rewards

The value of a policy

Vo(s) =E_[ri+ st ... +ry| S;=8]

Vi(s) =E_[r| s;=8] + Exl gt ... +rr| s=58]
V(S) = 2 aent(s,a)r(s,a) + E,[rust ... + 11| s;=58]

V(S) = Sacan(s,a)r(s,a) + lZaEA H(S,a)Zs’esT(S,a,S:)lEn [Fest- . F 17| Sq=S7]

|
Expectation over 1-step transition

The value of a policy

Vo(s) =E_[ri+ st ... +ry| S;=8]

Vi(s) = E [l ss=s] + Exl gt ... 17| 8=58]

VE(S) = D aeam(S@)r(s,a) + E [rust ...t rp| 8i=58]

VE(S) = Sacami(s,a)r(s,a) + T aeamn(s, 8)2sesT(5,8,5)Ex gt * 17| Stey=s']
VE(S) = 2 acant(S,@)r(S,a) + 2 acani(S,8)2 sesT(s,a,8) V(S)

I e
By definition

This is a dynamic programming algorithm.

24

The value of a policy

State value function (for a fixed policy):

VA(S) = Socat(s.8) (1(5,8) + 1 Ses T(5.a,5)VA(s))

T
Immediate Future expected sum of rewards

State-action value function:

Qv(s,a) = r(s,a) +y > P(s’|s,a) max, Q*(s’,a’)

These are (two forms of) Bellman’s equation.

The value of a policy

State value function:

VI(S) = 2 acami(s,8) (1(5,8) + ¥ 2 ses T(S,a,8)V7(S))

When S is a finite set of states, this is a system of linear equations
(one per state) with a unique solution V™.

Bellman’s equation in matrix form: VE= Re+y T®V*

Which can solved exactly: Ve=(l-yT°)T R"

Iterative Policy Evaluation

Main idea: turn Bellman equations into update rules.

1. Start with some initial guess V,(s), V's. (Canbe 0, orr(s,-).)

lterative Policy Evaluation

Main idea: turn Bellman equations into update rules.
1. Start with some initial guess V,(s), V's. (Canbe 0, orr(s,-).)

2. During every iteration k, update the value function for all states:

Vier(s) < (R(s, 1(s)) +y Toes T(s, 7(s), S)Vi(s))

lterative Policy Evaluation

Main idea: turn Bellman equations into update rules.
1. Start with some initial guess V,(s), ¥'s. (Canbe0, or r(s,-).)

2. During every iteration k, update the value function for all states:

Vier(s) < (R(s, 1(s)) +y Toes T(s, 7(s), S)Vi(s))

3. Stop when the maximum changes between two iterations is smaller

than a desired threshold (the values stop changing.)

Convergence of Iterative Policy Evaluation

« Consider the absolute error in our estimate V,.4(S):

[Vi+1(s) = V7 (s)| =

S n(s,a)(R(s,a) +7 3 T(s,a,')Vi(s")
— 3 (s, a)(R(s,0) +7 3 T(s,a,8)V"(s))

=0

Z 7‘-(3’ a) Z T(3= a, 3,)(Vk (S,) -3 (3,))
< fwa(s,a) ZT(s,a, $)|Vi(s') = V™ ()]

« Aslong as y<1, the error contracts and eventually goes to 0.

Optimal policies and optimal value functions

The optimal value function V/*is defined as the best value that

can be achieved at any state:

V*(s) = max, V™(s)

« Any policy that achieves the optimal value function is called an

optimal policy, denoted x*.

« There exists a unique optimal value function (Bellman, 1957).

« The optimal policy is not necessarily unique.

Optimal policies and optimal value functions

« Ifwe know V*(and R, T, y), then we can compute n* easily:

n'(s) = argmaxeea(1(s,8) +v 2 sesI(s,a,8)V*(s))

* [fweknow n*(and R, T, v), then we can compute V* easily:
V¥(s) =3aean’(s8)(r(sa) +v¥sesT(s,as)V(s))
V¥(s) =r(s,ni(s)) +v YsesT(s, n(s),s)V'(s)

Finding a good policy: Policy lteration

« Start with an initial policy «, (e.g. random)
* Repeat:

— Compute V7, using policy evaluation.
— Compute a new policy =’ that is greedy with respect to V*

* Terminate when=xt ==’

Finding a good policy: Value iteration

Main idea: Turn the Bellman optimality equation into an iterative update
rule (same as done in policy evaluation):

1. Start with an arbitrary initial approximation V,(s)

2. On each iteration, update the value function estimate:
Vi(s) = maXaep (R(s,8) +v 2 ses 1(5,8,5)Vi4(S))

3. Stop when max value change between iterations is below threshold.

The algorithm converges (in the limit) to the true V*.

A 4x3 gridworld example

« 11 discrete states, 4 motion actions (N, S, E, W) in each state.

« Transitions are mildly stochastic.

 Reward is +1 in top right state, -10 in state directly below, -0 elsewhere.
« Episode terminates when the agent reaches +1 or -10 state.

» Discount factory = 0.99.

T 0.1 S +1

-10

0.7 0.1
& —
Intended
direction

Value lteration (1)

Value lteration (2)

0 0 0 |-0.99

Bellman residual: |Vy(s) - V,(s)| = 0.99

Value lteration (5)

048 | 0.70 |1 0.76 | +1

0.23 -0.55| -10

0]-0.20]-0.23|-1.40

Bellman residual: |[Vs(s) - V,(s)| = 0.23

Value lteration (20)

0.78 | 0.80 1 0.81 | +1

0.77 -0.44 | -10

0.75 | 0.69 | 0.37 [-0.92

Bellman residual: |Vs(s) - V,(s)| = 0.008

Asynchronous value iteration

+ |Instead of updating all states on every iteration, focus on
important states.

— E.g., board positions that occur on every game, rather than
just once in 100 games.

 Asynchronous dynamic programming algorithm:

— Generate trajectories through the MDP.

— Update states whenever they appear on such a trajectory.

* Focuses the updates on states that are actually possible.

Want to know more?

Reinforcement .
Learning

Sutton & Barto, 1998

‘Algorithms for
Reinforcement
l.earnin g

T Csaba Szepesviiri

SYNTHESIS LECTURES ON ARTIF ICLAL
INTELLIGENCE AND MACHINE LEARNING

Szepesvari, 2010

Key challenges in RL

* Designing the problem domain
— State representation

— Action choice

— Cost/reward signal

« Acquiring data for training
— Exploration / exploitation

— High cost actions

— Time-delayed cost/reward signal

* Function approximation
« Validation / confidence measures

A4

The RL lingo

Episodic / Continuing task

« Tabular / Function approximation

« Batch/ Online

* On-policy / Off-policy

« Exploration / Exploitation

* Model-based / Model-free

« Policy optimization / Value function methods

Episodic / Continuing

« Let U; be the utility for a trajectory, starting from step .

« Episodic tasks: e.g. games, trips through a maze, etc.

Up=hit gt hiet . trr

* Some subtleties about value iteration, e.q. need to keep V,(s), t=0..T

« Continuing tasks: e.g. tasks which may go on forever

_ 2 3 _ K
U=+ g T YT Y 9T oo = Dkt ¥ Tk

* Need to use a discount factor. Interesting new ideas on how to set.

Tabular / Function approximation

« Tabular: Can store in memory a list of the states and their value.

To.1 * Can prove many more

theoretical properties
07 0.1 in this case, about
Intended : ° convergence, sample
directi
irection

complexity.

Batch / Online

* Learning from a batch (more on this later).
* Get all data at once, collected from a fixed (unknown?) policy.

« Learning online from repeated interactions:
* Can vary the collection policy. Non-stationary data distribution.

Act

O n

Adjust Q-function New transition

8§, =2t 5

u’.l 8

Online learning

« Monte-Carlo value estimate: Use the empirical return, U(s;) as
a target estimate for the actual value function:

* Not a Bellman

V(St) ~ V(Sz) + a(U(St) - V(St)) equation. More like

a gradient equation.

— Here «a is the learning rate (a parameter).

— Need to wait until the end of the trajectory to compute U(s,).

« Temporal difference learning: Use an estimate of the return.

V(s) < V(s)+a(r+yV(s,)-V(s))

Temporal-Difference with function approx.

Tabular TD(0):
Vist) < V(st) + a(ripr + vV (si41) — V(se)) VE=10,1,2,...

Gradient-descent TD(0):
<0 + o (Tt—i—l ~+ ’)/V(St_|_1) s V(St)) VQV(St), Y= 0, 1, 2, &% o

Use the TD-error, instead of the “supervised” error.

Online learning with eligibility: TD(\)

Ot
€ G
L] € | ™~ .
.3 >)
‘.- 2 ° : er __‘?f;
1 - a
| sr T";}t—a
. ._-->- \ /
N\

« On every time step {, we compute the TD error:

6t =l T YV(St+1) - V(St)
« Update all states V(s,) < V(s;) + a 6;e(s)

« Decrease eligibility e(s;) < yAie(s), where A1 € [0, 1]is a parameter.

51

TD-Gammon (Tesauro, 1992)

predicted probability
of winning, V,

TDerror, Vi y- Vy —=

Q.- Q Q . O hidden units (40-80)

O O'O O O
backgammon position (128 input units)

white pieces move
"O '§ . 8 — ‘I counterclockwise

black pieces
move clockwise

Reward function:

+100 if win
- 100 if lose
O for all other states

Trained by playing 1.5x108
million games against itself.

Enough to beat the
best human player.

The RL lingo

Episodic / Continuing task

« Tabular / Function approximation

« Batch/ Online

* On-policy / Off-policy

« Exploration / Exploitation

* Model-based / Model-free

« Policy optimization / Value function methods

On-policy / Off-policy

« Policy induces a distribution over the states (data).
— Data distribution changes every time you change the policy!

54

On-policy / Off-policy

« Policy induces a distribution over the states (data).
— Data distribution changes every time you change the policy!

« Evaluating several policies with the same batch:

— Need very big batch!

— Need policy to adequately cover all (s,a) pairs.

55

On-policy / Off-policy

« Policy induces a distribution over the states (data).
— Data distribution changes every time you change the policy!

« Evaluating several policies with the same batch:
— Need very big batch!

— Need policy to adequately cover all (s,a) pairs.
« Use importance sampling to reweigh data samples to compute
unbiased estimates of a new policy.

- W(Staat)
pt o b(st,at)

56

Exploration / Exploitation

Exploration / Exploitation

Exploration: Increase knowledge
for long-term gain, possibly at the
expense of short-term gain

Exploitation: Leverage current knowledge
to maximize short-term gain

58

Model-based vs Model-free RL

« Option #1: Collect large amounts of observed trajectories.
Learn an approximate model of the dynamics (e.g. with
supervised learning). Pretend the model is correct and apply
value iteration.

« Option #2: Use data to directly learn the value function or
optimal policy.

59

Policy Optimization / Value Function

Policy Optimization Dynamic Programming
DFO / Evolution Policy Gradients Policy Iteration Value Iteration

\ Q-Learning TD-Learning
Actor-Critic

Methods

60

The RL lingo — done!

Episodic / Continuing task

« Tabular / Function approximation

« Batch/ Online

* On-policy / Off-policy

« Exploration / Exploitation

* Model-based / Model-free

« Policy optimization / Value function methods

61

Action Selection Policies

As mentioned above, there are three common policies used for action selection. The aim of these policies is to balance the
trade-off between exploitation and exploration, by not always exploiting what has been learnt so far.

g-greedy - most of the time the action with the highest estimated reward is chosen, called the greediest action.
Every once in a while, say with a small probability €, an action is selected at random. The action is selected
uniformly, independent of the action-value estimates. This method ensures that if enough trials are done, each
action will be tried an infinite number of times, thus ensuring optimal actions are discovered.

€-soft - very similar to e-greedy. The best action is selected with probability 1 - € and the rest of the time a random
action is chosen uniformly.

softmax - one drawback of e-greedy and e-soft is that they select random actions uniformly. The worst possible
action is just as likely to be selected as the second best. Softmax remedies this by assigning a rank or weight to
each of the actions, according to their action-value estimate. A random action is selected with regards to the weight
associated with each action, meaning the worst actions are unlikely to be chosen. This is a good approach to take
where the worst actions are very unfavourable.

It is not clear which of these policies produces the best results overall. The nature of the task will have some bearing on how
well each policy influences learning. If the problem we are trying to solve is of a game playing nature, against a human
opponent, human factors may also be influential.

Q-Learning

Q-Learning is an Off-Policy algorithm for Temporal Difference learning. It can be proven that given sufficient training under any e-soft policy, the algorithm converges with probability 1 to a
close approximation of the action-value function for an arbitrary target policy. Q-Learning learns the optimal policy even when actions are selected according to a more exploratory or even
random policy. The procedural form of the algorithm is:

Initialize Q({s, a) arbitrarily
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose @ from S using policy derived from @
(e.g., E-greedy)
Take action &, observe ¥, s'
(s, a) <-- Q(s, a) + a [r + ¥ maxq,Q(s', a') - Q(s, a)l

8 <-— 8';
until & 1s terminal

The parameters used in the Q-value update process are:

a - the learning rate, set between 0 and 1. Setting it to 0 means that the Q-values are never updated, hence nothing is learned. Setting a high value such as 0.9 means that
learning can occur quickly.

y - discount factor, also set between 0 and 1. This models the fact that future rewards are worth less than immediate rewards. Mathematically, the discount factor needs to be
set less than 0 for the algorithm to converge.

max - the maximum reward that is attainable in the state following the current one. i.e the reward for taking the optimal action thereafter.

This procedural approach can be translated into plain english steps as follows:

Initialize the Q-values table, Q(s, a).

Observe the current state, s.

Choose an action, a, for that state based on one of the action selection policies explained on the previous slide (g-soft, e-greedy or softmax).
Take the action, and observe the reward, r, as well as the new state, s".

Update the Q-value for the state using the observed reward and the maximum reward possible for the next state. The updating is done according to the formulla and parameters
described above.

6. Set the state to the new state, and repeat the process until a terminal state is reached.

abkowbd-~

Sarsa

The Sarsa algorithm is an On-Policy algorithm for TD-Learning. The major difference between it and Q-Learning, is that
the maximum reward for the next state is not necessarily used for updating the Q-values. Instead, a new action, and
therefore reward, is selected using the same policy that determined the original action. The name Sarsa actually comes
from the fact that the updates are done using the quintuple Q(s, a, r, s', a'). Where: s, a are the original state and action,
r is the reward observed in the following state and s', a' are the new state-action pair. The procedural form of Sarsa
algorithm is comparable to that of Q-Learning:

Initialize Q(s, a) arbitrarily
Repeat (for each episode):
Initialize s
Choose a from & using policy derived from Q
(e.g., &-greedy)
Repeat (for each step of episode):
Take action a, observe xr, s'
Choosge a' from 8' using policy derived from
fe.g., €-greedy)
Q(s, a) <-- Q(s, a) + a[r + yQ(s', a")- Q(s, a)l
s <-- 8'; a <-- a’;
until s is terminal

As you can see, there are two action selection steps needed, for determining the next state-action pair along with the
first. The parameters y and a have the same meaning as they do in Q-Learning.

Q-Learning vs SARSA

The reason that Q-learning is off-policy is that it updates its Q-values using the Q-value of the next state s’ and the greedy action a’. In other
words, it estimates the return (total discounted future reward) for state-action pairs assuming a greedy policy were followed despite the fact
that it's not necessary following a greedy policy.

The reason that SARSA is on-policy is that it updates its Q-values using the Q-value of the next state s’ and the current policy's action a". It
estimates the return for state-action pairs assuming the current policy continues to be followed.

-26-

(‘.'-4'— ! ‘h‘* A '1 A i“w faa's! 7\ Vq- A[I
rmct | v | e=dapah Roward .sao (v ° Oy N WAAIUNTE A
psar Q-Laarning
3 Trial
aplirmal pah
7 =76
5 Tha Cliff G
-100 T T T T 1
ym-i Q 100 200 300 440 1]
Trials

The world consists of a small grid. The goal-state of the world is the square marked G on the lower right-hand corner,
and the start is the S square in the lower left-hand corner. There is a reward of negative 100 associated with moving off
the cliff and negative 1 when in the top row of the world. Q-Learning correctly learns the optimal path along the edge of
the cliff, but falls off every now and then due to the e-greedy action selection. Sarsa learns the safe path, along the top
row of the grid because it takes the action selection method into account when learning. Because Sarsa learns the safe
path, it actually receives a higher average reward per trial than Q-Learning even though it does not walk the optimal
path.

An.+l
Incremental Average Computation

The terms of the average are arranged in a way to have both A(n+1) and A(n).

Notice that 1/(n+1) represents the term alpha in the State-Value and Action-Value functions.

Initialize Q({(s, a) arbitrarily
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose @ from S8 using policy derived from Q@

{e.g., E-greedy)
Take action &, observe I, S'
Q(s, a) <-- Q(s, a) + a [r + y max_,Q(s', a') - Q(s, a)]
S <=— 8';
until 8§ is terminal

27:11 Ui

n+1
S0+ Uy
n+1
nA, 4+ Vi1
n+1

Uns1 + 1A, + A, — A,
n+1

hs1 +(n+1)A, — A,
n+1

A, + ol En __A"
n+1

OpenAl Gym

Gym is a toolkit for developing and comparing reinforcement learning algorithms. It supports teaching agents everything from

walking to playing games like Pong or Pinball.

View documentation »
View on GitHub »

import gym

env = gym.make("CartPole-v1")

observation = env.reset()

for _ in range(1000):
env.render()
action = env.action_space.sample() # your agent here (this takes random actions)
observation, reward, done, info = env.step(action)

if done:
observation = env.reset() Episode 6

e R ———

RandomAgent on CartPole-vl

https://gym.openai.com/

In large state spaces: Need approximation

Challenge finding good featyres

Q" (s 292@ s, a)
T

feature vector

Fitted Q-iteration

« Use supervised learning to estimate the Q-function from a batch
of training data.

— Input: x;,:=<s;, a>, i=1.N
— Output: vy, :=r, +vy max,Qy(s;,a)

— Loss: >i |l i+ vy max,Qy(s/,a) - Qy(s;a) ||

* Regression with linear function, neural network, etc.
(Can use other functions, e.g. random forests.)

Fitted Q-iteration

« Use supervised learning to estimate the Q-function from a batch
of training data.

— Input: x;,:=<s;, a>, i=1.N
— Qutput: y;:=r +y max,Qy(s/,a)

— Loss: >i |l i+ vy max,Qy(s/,a) - Qy(s;a) ||

* Regression with linear function, neural network, etc.
(Can use other functions, e.g. random forests.)

« Important note: Q,appears twice in the loss => Hard to learn!
— And in addition, r can be very sparse.

64

The Arcade Learning Environment

 Several Atari 2600 Games
+ States:

— 210x160 colour video at 60Hz
* Actions:

— Discrete, small set

Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider

65

Learning representations for RL

Qo(s.a)
P(s)? —)

Original state

Deep Q-network (DQN)

Qols,a)

®

®

®
HERBREEECARRARNAE

Convolutional Neural Net

Original state

Trained with stochastic gradient descent.

[DeepMind: Mnih et al., 201E&].

Deep Q-network (DQN)

Initialize network @
Initialize target network Q

N

r+7 max Q(s'.a': ()i_)— Q(s.a: ()i)) Initialize experience replay memory D
a Initialize the Agent to interact with the Environment
Target Prediction while not converged do
/* Sample phase
€ < setting new epsilon with e-decay
Choose an action a from state s using policy e-greedy(Q)
Agent takes action a, observe reward r, and next state s’
Parameter update at every Store transition (s,a,r, s’,done) in the experience replay memory D
C iterations
’ if enough experiences in D then
Q < Q /* Learn phase
. Sample a random minibatch of N transitions from D
Target Network Prediction Network for every transition (si,ai,ri,s.,done;) in minibatch do
if done; then
| Y =74
else
Y; = 7; +ymaxgeq Q(s),a’)
end
end
Calculate the loss £ =1/N Z?LBI(Q(&‘, a;) — y;)?
Input Update @ using the SGD algorithm by minimizing the loss £
Every C steps, copy weights from Q to Q
end
end

Train / Test protocol for RL

Choose an exploration policy. Run it. Get a batch of data.
« Train your Q-function. (Stop training, fix Q().)

« Use your learned Q-function to generate new trajectories.
Measure the utility on these new trajectories.

* Repeat.

(Never report results for a hold-out test set.)

68

[DeepMind: Mnih et al., 201£].

i :
A .
: 2
-8
g
8
-—t lm
===——}-E—l‘tr-.r—nwwﬁ m
mm W W wm L mMm mm 1 me Mw
) 5

m m mw w mmw um

DQN: Useful tips for stability

« Experience replay [Mnih et al., 2015]
— Store large batch of observed experiences: <s;, a;, r;, Si.s+>.

— Update Q-function by randomly drawing mini-batch of experiences.

« Prioritized experience replay [Schaul et al., 2016]
— Replay important transitions more frequently.

— Higher TD error => higher probability of being sampled.

DQN: Useful tips for stability

« Periodic updates to target value [Mnih et al., 2015]
— Use a fixed target network Qg () to calculate the error.

— Apply updates to a separate network Q,7() .
— Every k iterations substitute Qg () <= Qp() .

« Gradient clipping

DQN: Useful tips for stability

« Periodic updates to target value [Mnih et al., 2015]
— Use a fixed target network Qg () to calculate the error.

— Apply updates to a separate network Q,7() .
— Every k iterations substitute Qg () <= Qp() .

« Gradient clipping

 Double DQN [van Hasselt et al., 2016]
— Q-values are biased (over-estimated) due to max operator.
— Use output: y;:=r; +y Qu.(S/, argmax,Qu.(s/,a))
» Q. is used to select the action

» Q,.is used to calculate the error.

Wizard of Wor

Value estimates
(log scale)
=)

DQN
Double DQN
0 50 100 150 200
Wizard of Wor
4000 - Double' DQN
o 3000 -
5
S 2000
7))
1000 - I
DQN
0°

0 50 100 150 200
Training steps (in millions)

Astgrix

‘ ‘ Double DQN
50 100 150 200

| Double DQN

0 50 100 150 200
Training steps (in millions)

[DeepMind: van Hasselt et al., 201£].

74

Dueling Q-networks

Standard DOQN
/|

o

/

Dueli_ng ()-network

A=

174

I V
> Ooap=Vopt Ana

A: The advantage function

[DeepMind: Wang et al., 201€].

Deep RL in Minecraft

First-Person
View

View

Top-Down

Q
? F F
[Context | | Comext‘) Context | Context |) | Context
IﬁCNN
Xt—M Xt Xt Xe Xt X¢

(a) DQON (b) DRQN (c) MQN (d) RMQN (e) FRMQN

(a) t=3 (b) t=10 (c) t=11 (d) =19

Figure 1. Example task in Minecraft. In this task, the agent should
visit the red block if the indicator (next to the start location) is
yellow. Otherwise, if the indicator is green, it should visit the blue
block. The top row shows the agent’s first-person observation.

Many possible architectures,
Incl. memory and context

Online videos: n# ps://sites. google.com/a/umich.edu/juntiyuk-oh/icml2016-minecr ft

[U.Michigan: Oh et al., 201€].
77

RL Libraries (short list)

raeens “JF TensorFlow

pyglearning

X ,
RL Baselines3 Zoo %
¢

https://code.accel-brain.com/Reinforcement-Learning/
https://spinningup.openai.com/en/latest/index.html
https://github.com/DLR-RM/rl-baselines3-zoo
https://www.tensorflow.org/agents
https://github.com/wau/keras-rl2

Deep Q-learning in the real world?

* More work on Mario, Starcraft, Doom,
* All these results make extensive use of a simulator.
« Domain is often (near-)deterministic.

« Relative small set of actions (=small policy space).

78

