
7 Boosting

Ensemble methods are general techniques in machine learning for combining sev-

eral predictors to create a more accurate one. This chapter studies an important

family of ensemble methods known as boosting , and more specifically the AdaBoost

algorithm. This algorithm has been shown to be very effective in practice in some

scenarios and is based on a rich theoretical analysis. We first introduce AdaBoost,

show how it can rapidly reduce the empirical error as a function of the number

of rounds of boosting, and point out its relationship with some known algorithms.

Next, we present a theoretical analysis of the generalization properties of AdaBoost

based on the VC-dimension of its hypothesis set and then based on the notion of

margin. The margin theory developed in this context can be applied to other similar

ensemble algorithms. A game-theoretic interpretation of AdaBoost further helps

analyzing its properties and revealing the equivalence between the weak learning

assumption and a separability condition. We end with a discussion of AdaBoost’s

benefits and drawbacks.

7.1 Introduction

It is often difficult, for a non-trivial learning task, to directly devise an accurate

algorithm satisfying the strong PAC-learning requirements of chapter 2. But, there

can be more hope for finding simple predictors guaranteed only to perform slightly

better than random. The following gives a formal definition of such weak learners.

As in the PAC-learning chapter, we let n be a number such that the computational

cost of representing any element x ∈ X is at most O(n) and denote by size(c) the

maximal cost of the computational representation of c ∈ C.

Definition 7.1 (Weak learning) A concept class C is said to be weakly PAC-learnable

if there exists an algorithm A, γ > 0, and a polynomial function poly(·, ·, ·) such

that for any δ > 0, for all distributions D on X and for any target concept c ∈ C,

146 Chapter 7 Boosting

AdaBoost(S = ((x1, y1), . . . , (xm, ym)))

1 for i← 1 to m do

2 D1(i)← 1
m

3 for t← 1 to T do

4 ht ← base classifier in H with small error εt = Pi∼Dt

[
ht(xi) 6= yi

]

5 αt ← 1
2 log 1−εt

εt

6 Zt ← 2
[
εt(1− εt)

] 1
2 . normalization factor

7 for i← 1 to m do

8 Dt+1(i)← Dt(i) exp(−αtyiht(xi))
Zt

9 f ←∑T
t=1 αtht

10 return f

Figure 7.1
AdaBoost algorithm for a base classifier set H ⊆ {−1,+1}X.

the following holds for any sample size m ≥ poly(1/δ, n, size(c)):

P
S∼Dm

[
R(hS) ≤ 1

2
− γ
]
≥ 1− δ , (7.1)

where hS is the hypothesis returned by algorithm A when trained on sample S.

When such an algorithm A exists, it is called a weak learning algorithm for C or

a weak learner. The hypotheses returned by a weak learning algorithm are called

base classifiers.

The key idea behind boosting techniques is to use a weak learning algorithm

to build a strong learner , that is, an accurate PAC-learning algorithm. To do so,

boosting techniques use an ensemble method: they combine different base classifiers

returned by a weak learner to create a more accurate predictor. But which base

classifiers should be used and how should they be combined? The next section

addresses these questions by describing in detail one of the most prevalent and

successful boosting algorithms, AdaBoost.

7.2 AdaBoost

We denote by H the hypothesis set out of which the base classifiers are selected,

which we will sometimes refer to as the base classifier set . Figure 7.1 gives the

7.2 AdaBoost 147

t = 1 t = 2 t = 3

decision
boundary

updated
weights

(a)

=α1 +α3+α2

(b)

Figure 7.2
Example of AdaBoost with axis-aligned hyperplanes as base classifiers. (a) The top row shows
decision boundaries at each boosting round. The bottom row shows how weights are updated at
each round, with incorrectly (resp., correctly) points given increased (resp., decreased) weights. (b)
Visualization of final classifier, constructed as a non-negative linear combination of base classifiers.

pseudocode of AdaBoost in the case where the base classifiers are functions mapping

from X to {−1,+1}, thus H ⊆ {−1,+1}X.

The algorithm takes as input a labeled sample S = ((x1, y1), . . . , (xm, ym)), with

(xi, yi) ∈ X×{−1,+1} for all i ∈ [m], and maintains a distribution over the indices

{1, . . . ,m}. Initially (lines 1-2), the distribution is uniform (D1). At each round

of boosting, that is each iteration t ∈ [T] of the loop 3–8, a new base classifier

ht ∈ H is selected that minimizes the error on the training sample weighted by the

distribution Dt:

ht ∈ argmin
h∈H

P
i∼Dt

[
h(xi) 6= yi

]
= argmin

h∈H

m∑

i=1

Dt(i)1h(xi) 6=yi .

148 Chapter 7 Boosting

Zt is simply a normalization factor to ensure that the weights Dt+1(i) sum to one.

The precise reason for the definition of the coefficient αt will become clear later.

For now, observe that if εt, the error of the base classifier, is less than 1
2 , then

1−εt
εt

> 1 and αt is positive (αt > 0). Thus, the new distribution Dt+1 is defined

from Dt by substantially increasing the weight on i if point xi is incorrectly classified

(yiht(xi) < 0), and, on the contrary, decreasing it if xi is correctly classified. This

has the effect of focusing more on the points incorrectly classified at the next round

of boosting, less on those correctly classified by ht.

After T rounds of boosting, the classifier returned by AdaBoost is based on the

sign of function f , which is a non-negative linear combination of the base classifiers

ht. The weight αt assigned to ht in that sum is a logarithmic function of the ratio

of the accuracy 1 − εt and error εt of ht. Thus, more accurate base classifiers are

assigned a larger weight in that sum. Figure 7.2 illustrates the AdaBoost algorithm.

The size of the points represents the distribution weight assigned to them at each

boosting round.

For any t ∈ [T], we will denote by ft the linear combination of the base classifiers

after t rounds of boosting: ft =
∑t
s=1 αshs. In particular, we have fT = f . The

distribution Dt+1 can be expressed in terms of ft and the normalization factors Zs,

s ∈ [t], as follows:

∀i ∈ [m], Dt+1(i) =
e−yift(xi)

m
∏t
s=1 Zs

. (7.2)

We will make use of this identity several times in the proofs of the following sections.

It can be shown straightforwardly by repeatedly expanding the definition of the

distribution over the point xi:

Dt+1(i) =
Dt(i)e

−αtyiht(xi)

Zt
=

Dt−1(i)e−αt−1yiht−1(xi)e−αtyiht(xi)

Zt−1Zt

=
e−yi

∑t
s=1 αshs(xi)

m
∏t
s=1 Zs

.

The AdaBoost algorithm can be generalized in several ways:

• Instead of a hypothesis with minimal weighted error, ht can be more generally

the base classifier returned by a weak learning algorithm trained on Dt;

• The range of the base classifiers could be [−1,+1], or more generally a bounded

subset of R. The coefficients αt can then be different and may not even admit

a closed form. In general, they are chosen to minimize an upper bound on the

empirical error, as discussed in the next section. Of course, in that general case,

the hypotheses ht are not binary classifiers, but their sign could define the label,

and their magnitude could be interpreted as a measure of confidence.

7.2 AdaBoost 149

In rest of this chapter, the range of the base classifiers in H will be assumed to

be included in [−1,+1]. We now further analyze the properties of AdaBoost and

discuss its typical use in practice.

7.2.1 Bound on the empirical error
We first show that the empirical error of AdaBoost decreases exponentially fast as

a function of the number of rounds of boosting.

Theorem 7.2 The empirical error of the classifier returned by AdaBoost verifies:

R̂S(f) ≤ exp

[
− 2

T∑

t=1

(1

2
− εt

)2
]
. (7.3)

Furthermore, if for all t ∈ [T], γ ≤
(

1
2 − εt

)
, then

R̂S(f) ≤ exp(−2γ2T) . (7.4)

Proof: Using the general inequality 1u≤0 ≤ exp(−u) valid for all u ∈ R and iden-

tity 7.2, we can write:

R̂S(f) =
1

m

m∑

i=1

1yif(xi)≤0 ≤
1

m

m∑

i=1

e−yif(xi) =
1

m

m∑

i=1

[
m

T∏

t=1

Zt

]
DT+1(i) =

T∏

t=1

Zt.

Since for all t ∈ [T], Zt is a normalization factor, it can be expressed in terms of εt
by:

Zt =

m∑

i=1

Dt(i)e
−αtyiht(xi) =

∑

i:yiht(xi)=+1

Dt(i)e
−αt +

∑

i:yiht(xi)=−1

Dt(i)e
αt

= (1− εt)e−αt + εte
αt

= (1− εt)
√

εt
1− εt

+ εt

√
1− εt
εt

= 2
√
εt(1− εt) .

Thus, the product of the normalization factors can be expressed and upper bounded

as follows:
T∏

t=1

Zt =

T∏

t=1

2
√
εt(1− εt) =

T∏

t=1

√
1− 4

(
1
2 − εt

)2 ≤
T∏

t=1

exp
[
− 2
(

1
2 − εt

)2]

= exp
[
− 2

T∑

t=1

(
1
2 − εt

)2]
,

where the inequality follows from the inequality 1− x ≤ e−x valid for all x ∈ R. �

Note that the value of γ, which is known as the edge, and the accuracy of the base

classifiers do not need to be known to the algorithm. The algorithm adapts to their

150 Chapter 7 Boosting

Figure 7.3
Visualization of the zero-one loss (blue) and the convex and differentiable upper bound on the
zero-one loss (red) that is optimized by AdaBoost.

accuracy and defines a solution based on these values. This is the source of the

extended name of AdaBoost: adaptive boosting .

The proof of theorem 7.2 reveals several other important properties. First, observe

that αt is the minimizer of the function ϕ : α 7→ (1 − εt)e−α + εte
α. Indeed, ϕ is

convex and differentiable, and setting its derivative to zero yields:

ϕ′(α) = −(1− εt)e−α + εte
α = 0⇔ (1− εt)e−α = εte

α ⇔ α =
1

2
log

1− εt
εt

. (7.5)

Thus, αt is chosen to minimize Zt = ϕ(αt) and, in light of the bound R̂S(f) ≤∏T
t=1 Zt shown in the proof, these coefficients are selected to minimize an upper

bound on the empirical error. In fact, for base classifiers whose range is [−1,+1]

or R, αt can be chosen in a similar fashion to minimize Zt, and this is the way

AdaBoost is extended to these more general cases.

Observe also that the equality (1 − εt)e−αt = εte
αt just shown in (7.5) implies

that at each iteration, AdaBoost assigns equal distribution mass to correctly and

incorrectly classified instances, since (1− εt)e−αt is the total distribution assigned

to correctly classified points and εte
αt that of incorrectly classified ones. This

may seem to contradict the fact that AdaBoost increases the weights of incorrectly

classified points and decreases that of others, but there is in fact no inconsistency:

the reason is that there are always fewer incorrectly classified points, since the base

classifier’s accuracy is better than random.

7.2.2 Relationship with coordinate descent
AdaBoost was originally designed to address the theoretical question of whether

a weak learning algorithm could be used to derive a strong learning one. Here,

7.2 AdaBoost 151

we will show that it coincides in fact with a very simple algorithm, which consists

of applying a general coordinate descent technique to a convex and differentiable

objective function.

For simplicity, in this section, we assume that the base classifier set H is finite,

with cardinality N : H = {h1, . . . , hN}. An ensemble function f such as the one

returned by AdaBoost can then be written as f =
∑N
j=1 ᾱjhj , with ᾱj ≥ 0. Given a

labeled sample S = ((x1, y1), . . . , (xm, ym)), let F be the objective function defined

for all ᾱ = (ᾱ1, . . . , ᾱN) ∈ RN by

F (ᾱ) =
1

m

m∑

i=1

e−yif(xi) =
1

m

m∑

i=1

e−yi
∑N
j=1 ᾱjhj(xi) . (7.6)

Since the exponential loss u 7→ e−u is an upper bound on the zero-one loss u 7→ 1u≤0

(see figure 7.3), F is an upper bound on the empirical error:

R̂S(f) =
1

m

m∑

i=1

1yif(xi)≤0 ≤
1

m

m∑

i=1

e−yif(xi). (7.7)

F is a convex function of ᾱ since it is a sum of convex functions, each obtained by

composition of the (convex) exponential function with an affine function of ᾱ. F

is also differentiable since the exponential function is differentiable. We will show

that F is the objective function minimized by AdaBoost.

Different convex optimization techniques can be used to minimize F . Here, we will

use a variant of the coordinate descent technique. Coordinate descent is applied over

T rounds. Let ᾱ0 = 0 and let ᾱt denote the parameter vector at the end of iteration

t. At each round t ∈ [T], a direction ek corresponding to the kth coordinate of ᾱ

in RN is selected, as well as a step size η along that direction. ᾱt is obtained from

ᾱt−1 according to the update ᾱt = ᾱt−1+ηek, where η is the step size chosen along

the direction ek. Observe that if we denote by ḡt the ensemble function defined by

ᾱt, that is ḡt =
∑N
j=1 ᾱt,jhj , then the coordinate descent update coincides with

the update ḡt = ḡt−1 + ηhk, which is also the AdaBoost update. Thus, since both

algorithms start with ḡ0 = 0, to show that AdaBoost coincides with coordinate

descent applied to F , it suffices to show at every iteration t, coordinate descent

selects the same base hypothesis hk and step η as AdaBoost. We will assume by

induction that this holds up to iteration t−1, which implies the equality ḡt−1 = ft−1,

and will show then that it also holds at iteration t.

The variant of coordinate descent we consider here consists of selecting, at each

iteration, the maximum descent direction, that is the direction ek along which

the derivative of F is the largest in absolute value, and of selecting the best step

along that direction, that is of choosing η to minimize F (ᾱt−1 + ηek). To give the

expressions of the direction and the step at each iteration, we first introduce similar

152 Chapter 7 Boosting

quantities to those appearing in the analysis of the boosting algorithm. For any

t ∈ [T], we define a distribution D̄t over the indices {1, . . . ,m} as follows:

D̄t(i) =
e−yi

∑N
j=1 ᾱt−1,jhj(xi)

Z̄t
=
e−yiḡt−1(xi)

Z̄t
,

where Z̄t is the normalization factor Z̄t =
∑m
i=1 e

−yi
∑N
j=1 ᾱt−1,jhj(xi). Observe that,

since ḡt−1 = ft−1, D̄t coincides with Dt. We also define for any base hypothesis hj ,

j ∈ [N], its expected error ε̄t,j with respect to the distribution D̄t:

ε̄t,j = E
i∼D̄t

[
1yihj(xi)≤0

]
.

The directional derivative of F at ᾱt−1 along ek is denoted by F ′(ᾱt−1, ek) and

defined by

F ′(ᾱt−1, ek) = lim
η→0

F (ᾱt−1 + ηek)− F (ᾱt−1)

η
.

Since F (ᾱt−1 + ηek) =
∑m
i=1 e

−yi
∑N
j=1 ᾱt−1,jhj(xi)−ηyihk(xi), the directional deriva-

tive along ek can be expressed as follows:

F ′(ᾱt−1, ek) = − 1

m

m∑

i=1

yihk(xi)e
−yi

∑N
j=1 ᾱt−1,jhj(xi)

= − 1

m

m∑

i=1

yihk(xi)D̄t(i)Z̄t

= −
[

m∑

i=1

D̄t(i)1yihk(xi)=+1 −
m∑

i=1

D̄t(i)1yihk(xi)=−1

]
Z̄t
m

= −
[
(1− ε̄t,k)− ε̄t,k

] Z̄t
m

=
[
2ε̄t,k − 1

] Z̄t
m
.

Since Z̄t
m does not depend on k, the maximum descent direction k is the one mini-

mizing ε̄t,k. Thus, the hypothesis hk selected by coordinate descent at iteration t is

the one with the smallest expected error on the sample S, where the expectation is

taken with respect to D̄t = Dt. This matches exactly the choice made by AdaBoost

at the tth round.

The step size η is selected to minimize the function along the direction ek chosen:

argminη F (ᾱt−1 + η ek). Since F (ᾱt−1 + η ek) is a convex function of η, to find the

7.2 AdaBoost 153

Figure 7.4
Examples of several convex upper bounds on the zero-one loss.

minimum, it suffices to set its derivative to zero:

dF (ᾱt−1 + ηek)

dη
= 0⇔ −

m∑

i=1

yihk(xi)e
−yi

∑N
j=1 ᾱt−1,jhj(xi)e−ηyihk(xi) = 0

⇔ −
m∑

i=1

yihk(xi)D̄t(i)Z̄te
−ηyihk(xi) = 0

⇔ −
m∑

i=1

yihk(xi)D̄t(i)e
−ηyihk(xi) = 0

⇔ −
[
(1− ε̄t,k)e−η − ε̄t,keη

]
= 0

⇔ η =
1

2
log

1− ε̄t,k
ε̄t,k

.

This proves that the step size chosen by coordinate descent coincides with the weight

αt assigned by AdaBoost to the classifier chosen in the tth round. Thus, coordinate

descent applied to exponential objective F precisely coincides with AdaBoost and

F can be viewed as the objective function that AdaBoost seeks to minimize.

In light of this relationship, one may wish to consider similar applications of

coordinate descent to other convex and differentiable functions of ᾱ upper-bounding

the zero-one loss. In particular, the logistic loss x 7→ log2(1 + e−x) is convex and

differentiable and upper bounds the zero-one loss. Figure 7.4 shows other examples

of alternative convex loss functions upper-bounding the zero-one loss. Using the

logistic loss, instead of the exponential loss used by AdaBoost, leads to an objective

that coincides with logistic regression.

154 Chapter 7 Boosting

7.2.3 Practical use
Here, we briefly describe the standard practical use of AdaBoost. An important

requirement for the algorithm is the choice of the base classifiers or that of the weak

learner. The family of base classifiers typically used with AdaBoost in practice is

that of decision trees, which are equivalent to hierarchical partitions of the space

(see chapter 9, section 9.3.3). Among decision trees, those of depth one, also known

as stumps, are by far the most frequently used base classifiers.

Boosting stumps are threshold functions associated to a single feature. Thus,

a stump corresponds to a single axis-aligned partition of the space, as illustrated

in figure 7.2. If the data is in RN , we can associate a stump to each of the N

components. Thus, to determine the stump with the minimal weighted error at each

round of boosting, the best component and the best threshold for each component

must be computed.

To do so, we can first presort each component in O(m logm) time with a total

computational cost of O(mN logm). For a given component, there are only m+ 1

possible distinct thresholds, since two thresholds between the same consecutive

component values are equivalent. To find the best threshold at each round of

boosting, all of these possible m + 1 values can be compared, which can be done

in O(m) time. Thus, the total computational complexity of the algorithm for T

rounds of boosting is O(mN logm+mNT).

Observe, however, that while boosting stumps are widely used in combination

with AdaBoost and can perform well in practice, the algorithm that returns the

stump with the minimal (weighted) empirical error is not a weak learner (see defi-

nition 7.1)! Consider, for example, the simple XOR example with four data points

lying in R2 (see figure 6.3a), where points in the second and fourth quadrants are

labeled positively and those in the first and third quadrants negatively. Then, no

decision stump can achieve an accuracy better than 1
2 .

7.3 Theoretical results

In this section we present a theoretical analysis of the generalization properties of

AdaBoost.

7.3.1 VC-dimension-based analysis
We start with an analysis of AdaBoost based on the VC-dimension of its hypothesis

set. The family of functions FT out of which AdaBoost selects its output after T

rounds of boosting is

FT =

{
sgn

(
T∑

t=1

αtht

)
: αt ≥ 0, ht ∈ H, t ∈ [T]

}
. (7.8)

7.3 Theoretical results 155

training error

test error

er
ro

r

0
10 100 1000

number of rounds - log(T)

Figure 7.5
An empirical result using AdaBoost with C4.5 decision trees as base learners. In this example, the
training error goes to zero after about 5 rounds of boosting (T ≈ 5), yet the test error continues
to decrease for larger values of T .

The VC-dimension of FT can be bounded as follows in terms of the VC-dimension

d of the family of base hypothesis H (exercise 7.1):

VCdim(FT) ≤ 2(d+ 1)(T + 1) log2((T + 1)e) . (7.9)

The upper bound grows as O(dT log T), thus, the bound suggests that AdaBoost

could overfit for large values of T , and indeed this can occur. However, in many

cases, it has been observed empirically that the generalization error of AdaBoost

decreases as a function of the number of rounds of boosting T , as illustrated in

figure 7.5! How can these empirical results be explained? The following sections

present a margin-based analysis in support of AdaBoost that can serve as a theo-

retical explanation for these empirical observations.

7.3.2 L1-geometric margin
In chapter 5, we introduced the definition of confidence margin and presented a

series of general learning bounds based on that notion which, in particular, provided

strong learning guarantees for SVMs. Here, we will similarly derive general learning

bounds based on that same notion of confidence margin for ensemble methods,

which we will use, in particular, to derive learning guarantees for AdaBoost.

Recall that the confidence margin of a real-valued function f at a point x labeled

with y is the quantity yf(x). For SVMs, we also defined the notion of geometric

margin which, in the separable case, is a lower bound on the confidence margin of a

linear hypothesis with a normalized weighted vector w, ‖w‖2 = 1. Here, we will also

define a notion of geometric margin for linear hypotheses with a norm-1 constraint,

such as the ensemble hypotheses returned by AdaBoost, and similarly relate that

notion to that of confidence margin. This will also serve as an opportunity for us

to point out the connection between several concepts and terminology used in the

context of SVMs and those used in the context of boosting.

156 Chapter 7 Boosting

Norm || · ||2. Norm || · ||∞.

Figure 7.6
Maximum margin hyperplanes for norm-2 and norm-∞.

First note that a function f =
∑T
t=1 αtht that is a linear combination of base

hypotheses h1, . . . , hT can be equivalently expressed as an inner product f = α ·h,

where α = (α1, . . . , αT)> and h = [h1, . . . , hT]>. This makes the similarity between

the linear hypotheses considered in this chapter and those of chapter 5 and chapter 6

evident: the vector of base hypothesis values h(x) can be viewed as a feature vector

associated to x, which was denoted by Φ(x) in previous chapters, and α is the

weight vector that was denoted by w. For ensemble linear combinations such as

those returned by AdaBoost, additionally, the weight vector is non-negative: α ≥ 0.

Next, we introduce a notion of geometric margin for such ensemble functions which

differs from the one introduced for SVMs only by the norm-1 used instead of norm-2,

using the notation just introduced.

Definition 7.3 (L1-geometric margin) The L1-geometric margin ρf (x) of a linear func-

tion f =
∑T
t=1 αtht with α 6= 0 at a point x ∈ X is defined by

ρf (x) =
|f(x)|
‖α‖1

=
|∑T

t=1 αtht(x)|
‖α‖1

=

∣∣α · h(x)
∣∣

‖α‖1
. (7.10)

The L1-margin of f over a sample S = (x1, . . . , xm) is its minimum margin at the

points in that sample:

ρf = min
i∈[m]

ρf (xi) = min
i∈[m]

∣∣α · h(xi)
∣∣

‖α‖1
. (7.11)

This definition of geometric margin differs from definition 5.1 given in the context

of the SVM algorithm only by the norm used for the weight vector: L1-norm here,

L2-norm in definition 5.1. To distinguish them in the discussion that follows, let

ρ1(x) denote the L1-margin and ρ2(x) the L2-margin at point x (definition 5.1):

ρ1(x) =
|α · h(x)|
‖α‖1

and ρ2(x) =
|α · h(x)|
‖α‖2

.

7.3 Theoretical results 157

ρ2(x) is then the norm-2 distance of the vector h(x) to the hyperplane of equation

α ·x = 0 in RT . Similarly, ρ1(x) is the norm-∞ distance of h(x) to that hyperplane.

This geometric difference is illustrated by figure 7.6.8

We will denote by

f̄ =
f

∑T
t=1 αt

=
f

‖α‖1
the normalized version of the function f returned by AdaBoost. Note that if a point

x with label y is correctly classified by f (or f̄), then the confidence margin of f̄

at x coincides with the L1-geometric margin of f : yf̄(x) = yf(x)
‖α‖1 = ρf (x). Observe

that, since the coefficients αt are non-negative, ρf (x) is then a convex combination

of the base hypothesis values ht(x). In particular, if the base hypotheses ht take

values in [−1,+1], then ρf (x) is in [−1,+1].

7.3.3 Margin-based analysis
To analyze the generalization properties of AdaBoost, we start by examining the

Rademacher complexity of convex linear ensembles. For any hypothesis set H of

real-valued functions, we denote by conv(H) its convex hull defined by

conv(H) =

{ p∑

k=1

µkhk : p ≥ 1,∀k ∈ [p], µk ≥ 0, hk ∈ H,

p∑

k=1

µk ≤ 1

}
. (7.12)

The following lemma shows that, remarkably, the empirical Rademacher complexity

of conv(H), which in general is a strictly larger set including H, coincides with that

of H.

Lemma 7.4 Let H be a set of functions mapping from X to R. Then, for any sample

S, we have

R̂S

(
conv(H)

)
= R̂S(H) .

8 More generally, for p, q ≥ 1, p and q conjugate, that is 1
p

+ 1
q

= 1,
|α·h(x)|
‖α‖p

is the norm-q distance

of h(x) to the hyperplane of equation α · h(x) = 0.

158 Chapter 7 Boosting

Proof: The proof follows from a straightforward series of equalities:

R̂S

(
conv(H)

)
=

1

m
E
σ

[
sup

h1,...,hp∈H,µ≥0,‖µ‖1≤1

m∑

i=1

σi

p∑

k=1

µkhk(xi)

]

=
1

m
E
σ

[
sup

h1,...,hp∈H
sup

µ≥0,‖µ‖1≤1

p∑

k=1

µk

m∑

i=1

σihk(xi)

]

=
1

m
E
σ

[
sup

h1,...,hp∈H
max
k∈[p]

m∑

i=1

σihk(xi)

]

=
1

m
E
σ

[
sup
h∈H

m∑

i=1

σih(xi)

]
= R̂S(H),

where the third equality follows the definition of the dual norm (see section A.1.2)

or the observation that the maximizing vector µ for a convex combination of p

terms is the one placing all the weight on the largest term. �

This theorem can be used directly in combination with theorem 5.8 to derive the

following Rademacher complexity generalization bound for convex combination en-

sembles of hypotheses. Recall that R̂S,ρ(h) denotes the empirical margin loss with

margin ρ.

Corollary 7.5 (Ensemble Rademacher margin bound) Let H denote a set of real-valued

functions. Fix ρ > 0. Then, for any δ > 0, with probability at least 1 − δ, each of

the following holds for all h ∈ conv(H):

R(h) ≤ R̂S,ρ(h) +
2

ρ
Rm

(
H
)

+

√
log 1

δ

2m
(7.13)

R(h) ≤ R̂S,ρ(h) +
2

ρ
R̂S

(
H
)

+ 3

√
log 2

δ

2m
. (7.14)

Using corollary 3.8 and corollary 3.18 to bound the Rademacher complexity in

terms of the VC-dimension yields immediately the following VC-dimension-based

generalization bounds for convex combination ensembles of hypotheses.

Corollary 7.6 (Ensemble VC-Dimension margin bound) Let H be a family of functions

taking values in {+1,−1} with VC-dimension d. Fix ρ > 0. Then, for any δ > 0,

with probability at least 1− δ, the following holds for all h ∈ conv(H):

R(h) ≤ R̂S,ρ(h) +
2

ρ

√
2d log em

d

m
+

√
log 1

δ

2m
. (7.15)

These bounds can be generalized to hold uniformly for all ρ ∈ (0, 1], at the price

of an additional term of the form

√
log log2

2
δ

m as in theorem 5.9. They cannot be

7.3 Theoretical results 159

directly applied to the function f returned by AdaBoost, since it is not a convex

combination of base hypotheses, but they can be applied to its normalized version,

f̄ =
∑T
t=1 αtht
‖α‖1 ∈ conv(H). Notice that from the point of view of binary classifica-

tion, f and f̄ are equivalent since sgn(f) = sgn
(

f
‖α‖1

)
, thus R(f) = R

(
f
‖α‖1

)
, but

their empirical margin losses are distinct.

Let f =
∑T
t=1 αtht denote the function defining the classifier returned by Ad-

aBoost after T rounds of boosting when trained on sample S. Then, in view of

(7.13), for any δ > 0, the following holds with probability at least 1− δ:

R(f) ≤ R̂S,ρ
(
f̄
)

+
2

ρ
Rm

(
H
)

+

√
log 1

δ

2m
. (7.16)

Similar bounds can be derived from (7.14) and (7.15). Remarkably, the number of

rounds of boosting T does not appear in the generalization bound (7.16). The bound

depends only on the confidence margin ρ, the sample size m, and the Rademacher

complexity of the family of base classifiers H. Thus, the bound guarantees an

effective generalization if the margin loss Rρ
(
f̄
)

is small for a relatively large ρ.

Recall that the margin loss can be upper bounded by the fraction of the points x

labeled with y in the training sample with confidence margin at most ρ, that is
yf(x)
‖α‖1 ≤ ρ (see (5.38)). With our definition of L1-margin, this can also be written

as follows:

R̂S,ρ
(
f̄
)
≤ |{i ∈ [m] : yi ρf (xi) ≤ ρ}|

m
. (7.17)

Additionally, the following theorem provides a bound on the empirical margin loss,

which decreases with T under conditions discussed later.

Theorem 7.7 Let f =
∑T
t=1 αtht denote the function returned by AdaBoost after T

rounds of boosting and assume for all t ∈ [T] that εt <
1
2 , which implies αt > 0.

Then, for any ρ > 0, the following holds:

R̂S,ρ(f̄) ≤ 2T
T∏

t=1

√
ε1−ρt (1− εt)1+ρ .

Proof: Using the general inequality 1u≤0 ≤ exp(−u) valid for all u ∈ R, identity 7.2,

that is Dt+1(i) = e−yif(xi)

m
∏T
t=1 Zt

, the equality Zt = 2
√
εt(1− εt) from the proof of

160 Chapter 7 Boosting

theorem 7.2, and the definition of αt = 1
2 log(1−εt

εt
) in AdaBoost, we can write:

1

m

m∑

i=1

1yif(xi)−ρ‖α‖1≤0 ≤
1

m

m∑

i=1

exp(−yif(xi) + ρ‖α‖1)

=
1

m

m∑

i=1

eρ‖α‖1
[
m

T∏

t=1

Zt

]
DT+1(i)

= eρ‖α‖1
T∏

t=1

Zt = eρ
∑
t′ αt′

T∏

t=1

Zt

= 2T
T∏

t=1

[√
1−εt
εt

]ρ√
εt(1− εt) ,

which concludes the proof. �

Moreover, if for all t ∈ [T] we have γ ≤ (1
2 − εt) and ρ ≤ 2γ, then the expression

4ε1−ρt (1 − εt)
1+ρ is maximized at εt = 1

2 − γ.9 Thus, the upper bound on the

empirical margin loss can then be bounded by

R̂S,ρ(f̄) ≤
[
(1− 2γ)1−ρ(1 + 2γ)1+ρ

]T
2

. (7.18)

Observe that (1 − 2γ)1−ρ(1 + 2γ)1+ρ = (1 − 4γ2)
(

1+2γ
1−2γ

)ρ
. This is an increasing

function of ρ since we have
(

1+2γ
1−2γ

)
> 1 as a consequence of γ > 0. Thus, if ρ < γ,

it can be strictly upper bounded as follows

(1− 2γ)1−ρ(1 + 2γ)1+ρ < (1− 2γ)1−γ(1 + 2γ)1+γ .

The function γ 7→ (1− 2γ)1−γ(1 + 2γ)1+γ is strictly upper bounded by 1 over the

interval (0, 1/2), thus, if ρ < γ, then (1−2γ)1−ρ(1 +2γ)1+ρ < 1 and the right-hand

side of (7.18) decreases exponentially with T . Since the condition ρ� O(1/
√
m) is

necessary in order for the given margin bounds to converge, this places a condition

of γ � O(1/
√
m) on the edge value. In practice, the error εt of the base classifier at

round t may increase as a function of t. Informally, this is because boosting presses

the weak learner to concentrate on instances that are harder and harder to classify,

for which even the best base classifier could not achieve an error significantly better

than random. If εt becomes close to 1
2 relatively fast as a function of t, then the

bound of theorem 7.7 becomes uninformative.

9 The differential of f : ε 7→ log[ε1−ρ(1− ε)1+ρ] = (1− ρ) log ε+ (1 + ρ) log(1− ε) over the interval

(0, 1) is given by f ′(ε) = 1−ρ
ε
− 1+ρ

1−ε = 2
(1
2
− ρ

2
)−ε

ε(1−e) . Thus, f is an increasing function over (0, 1
2
− ρ

2
),

which implies that it is increasing over (0, 1
2
− γ) when γ ≥ ρ

2
.

7.3 Theoretical results 161

The analysis and discussion that precede show that if AdaBoost admits a positive

edge (γ > 0), then, for ρ < γ, the empirical margin loss R̂S,ρ(f̄) becomes zero for

T sufficiently large (it decreases exponentially fast). Thus, AdaBoost achieves an

L1-geometric margin of γ over the training sample. In section 7.3.5, we will see that

the edge γ is positive if and only if the training sample is separable. In that case,

the edge can be chosen to be as large as half the maximum L1-geometric margin

ρmax that can be achieved on the sample: γ = ρmax

2 . Thus, for a separable data

set, AdaBoost can asymptotically achieve a geometric margin that is at least half

the maximum geometric margin, ρmax

2 .

This analysis can serve as a theoretical explanation of the empirical observation

that, in some tasks, the generalization error decreases as a function of T even after

the error on the training sample is zero: the geometric margin continues to increase

when the training sample is separable. In (7.16), for the ensemble function f

determined by AdaBoost after T rounds, as T increases, ρ can be chosen as a larger

quantity for which the first term on the right-hand side vanishes (R̂S,ρ(f̄) = 0)

while the second term becomes more favorable since it decreases as 1
ρ .

But, does AdaBoost achieve the maximum L1-geometric margin ρmax? No. It

has been shown that AdaBoost may converge, for a linearly separable sample, to a

geometric margin that is significantly smaller than the maximum margin (e.g., 1
3

instead of 3
8).

7.3.4 Margin maximization
In view of these results, several algorithms have been devised with the explicit goal

of maximizing the L1-geometric margin. These algorithms correspond to different

methods for solving a linear program (LP).

By definition of the L1-margin, the maximum margin for a linearly separable

sample S = ((x1, y1), . . . , (xm, ym)) is given by

ρ = max
α

min
i∈[m]

yi
(
α · h(xi)

)

‖α‖1
. (7.19)

By definition of the maximization, the optimization problem can be written as:

max
α

ρ

subject to:
yi
(
α · h(xi)

)

‖α‖1
≥ ρ, ∀i ∈ [m].

Since α·h(xi)
‖α‖1 is invariant to the scaling of α, we can restrict ourselves to ‖α‖1 = 1.

Further seeking a non-negative α as in the case of AdaBoost leads to the following

162 Chapter 7 Boosting

optimization:

max
α

ρ

subject to: yi
(
α · h(xi)

)
≥ ρ, ∀i ∈ [m];

(
T∑

t=1

αt = 1

)
∧
(
αt ≥ 0,∀t ∈ [T]

)
.

This is a linear program (LP), that is, a convex optimization problem with a linear

objective function and linear constraints. There are several different methods for

solving relative large LPs in practice, using the simplex method, interior-point

methods, or a variety of special-purpose solutions.

Note that the solution of this algorithm differs from the margin-maximization

defining SVMs in the separable case only by the definition of the geometric mar-

gin used (L1 versus L2) and the non-negativity constraint on the weight vector.

Figure 7.6 illustrates the margin-maximizing hyperplanes found using these two

distinct margin definitions in a simple case. The left figure shows the SVM solu-

tion, where the distance to the closest points to the hyperplane is measured with

respect to the norm ‖ · ‖2. The right figure shows the solution for the L1-margin,

where the distance to the closest points to the hyperplane is measured with respect

to the norm ‖ · ‖∞.

By definition, the solution of the LP just described admits an L1-margin that

is larger or equal to that of the AdaBoost solution. However, empirical results do

not show a systematic benefit for the solution of the LP. In fact, it appears that in

many cases, AdaBoost outperforms that algorithm. The margin theory described

does not seem sufficient to explain that performance.

7.3.5 Game-theoretic interpretation
In this section, we show that AdaBoost admits a natural game-theoretic inter-

pretation. The application of von Neumann’s theorem then helps us relate the

maximum margin and the optimal edge and clarify the connection of AdaBoost’s

weak-learning assumption with the notion of L1-margin. We first introduce the

definition of the edge of a base classifier for a particular distribution.

Definition 7.8 The edge of a base classifier ht for a distribution D over the training

sample S = ((x1, y1), . . . , (xm, ym)) is defined by

γt(D) =
1

2
− εt =

1

2

m∑

i=1

yiht(xi)D(i). (7.20)

AdaBoost’s weak learning condition can now be formulated as follows: there exists

γ > 0 such that for any distribution D over the training sample and any base

7.3 Theoretical results 163

Table 7.1
The loss matrix for the standard rock-paper-scissors game.

rock paper scissors

rock 0 +1 -1

paper -1 0 +1

scissors +1 -1 0

classifier ht, the following holds:

γt(D) ≥ γ. (7.21)

This condition is required for the analysis of theorem 7.2 and the non-negativity of

the coefficients αt. We will frame boosting as a two-person zero-sum game.

Definition 7.9 (Zero-sum game) A finite two-person zero-sum game consists of a loss

matrix M ∈ Rm×n, where m is the number of possible actions (or pure strategies)

for the row player and n the number of possible actions for the column player. The

entry Mij is the loss for the row player (or equivalently the payoff for the column

payer) when the row player takes action i and the column player takes action j.10

An example of a loss matrix for the familiar “rock-paper-scissors” game is shown

in table 7.1.

Definition 7.10 (Mixed strategy) A mixed strategy for the row player is a distribution

p over the m possible row actions; a mixed strategy for the column player is a

distribution q over the n possible column actions. The expected loss for the row

player (expected payoff for the column player) with respect to the mixed strategies p

and q is

E
i∼p
j∼q

[Mij] =

m∑

i=1

n∑

j=1

piMijqj = p>Mq.

The following is a fundamental result in game theory proven in chapter 8.

Theorem 7.11 (Von Neumann’s minimax theorem) For any finite two-person zero-sum

game defined by the matrix M, the following equality holds:

min
p

max
q

p>Mq = max
q

min
p

p>Mq . (7.22)

The common value in (7.22) is called the value of the game. The theorem states that

for any two-person zero-sum game, there exists a mixed strategy for each player

10 To be consistent with the results discussed in other chapters, we consider the loss matrix as
opposed to the payoff matrix (its opposite).

164 Chapter 7 Boosting

such that the expected loss for one is the same as the expected payoff for the other,

both of which are equal to the value of the game.

Note that, given the row player’s strategy, the column player can choose a pure

strategy optimizes their payoff. That is, the column player can choose the sin-

gle strategy corresponding the largest coordinate of the vector p>M. A similar

comment applies to the reverse. Thus, an alternative and equivalent form of the

minimax theorem is

min
p

max
j∈[n]

p>Mej = max
q

min
i∈[m]

e>i Mq, (7.23)

where ei denotes the ith unit vector.

We can now view AdaBoost as a zero-sum game, where an action of the row

player is the selection of a training instance xi, i ∈ [m], and an action of the

column player the selection of a base learner ht, t ∈ [T]. A mixed strategy for the

row player is thus a distribution D over the training points’ indices [m]. A mixed

strategy for the column player is a distribution over the based classifiers’ indices

[T]. This can be defined from a non-negative vector α ≥ 0: the weight assigned

to t ∈ [T] is αt/‖α‖1. The loss matrix M ∈ {−1,+1}m×T for AdaBoost is defined

by Mit = yiht(xi) for all (i, t) ∈ [m]× [T]. By von Neumann’s theorem (7.23), the

following holds:

min
D∈D

max
t∈[T]

m∑

i=1

D(i)yiht(xi) = max
α≥0

min
i∈[m]

T∑

t=1

αt
‖α‖1

yiht(xi), (7.24)

where D denotes the set of all distributions over the training sample. Let ρα(x)

denote the margin of point x for the classifier defined by f =
∑T
t=1 αtht. The result

can be rewritten as follows in terms of the margins and edges:

2γ∗ = 2 min
D

max
t∈[T]

γt(D) = max
α

min
i∈[m]

ρα(xi) = ρ∗, (7.25)

where ρ∗ is the maximum margin of a classifier and γ∗ the best possible edge. This

result has several implications. First, it shows that the weak learning condition

(γ∗ > 0) implies ρ∗ > 0 and thus the existence of a classifier with positive margin,

which motivates the search for a non-zero margin. AdaBoost can be viewed as an

algorithm seeking to achieve such a non-zero margin, though, as discussed earlier,

AdaBoost does not always achieve an optimal margin and is thus suboptimal in that

respect. Furthermore, we see that the “weak learning” assumption, which originally

appeared to be the weakest condition one could require for an algorithm (that of

performing better than random), is in fact a strong condition: it implies that the

training sample is linearly separable with margin 2γ∗ > 0. Linear separability often

does not hold for the data sets found in practice.

7.4 L1-regularization 165

7.4 L1-regularization

In practice, the training sample may not be linearly separable and AdaBoost may

not admit a positive edge, in which case the weak learning condition does not hold.

It may also be that AdaBoost does admit a positive edge but with γ very small. In

such cases, running AdaBoost may result in large total mixture weights for some

base classifiers hj . This can be because the algorithm increasingly concentrates on

a few examples that are hard to classify and whose weights keep growing. Only

a few base classifiers might achieve the best performance for those examples and

the algorithm keeps selecting them, thereby increasing their total mixture weights.

These base classifiers with relatively large total mixture weight end up dominating

in an ensemble f and therefore solely dictating the classification decision. The

performance of the resulting ensemble is typically poor since it almost entirely

hinges on that of a few base classifiers.

There are several methods for avoiding such situations. One consists of limiting

the number of rounds of boosting T , which is also known as early-stopping . Another

one consists of controlling the magnitude of the mixture weights. This can be done

by augmenting the objective function of AdaBoost with a regularization term based

on a norm of the vector of mixture weights. Using a norm-1 regularization leads

to an algorithm that we will refer to as L1-regularized AdaBoost . Given a labeled

sample S = ((x1, y1), . . . , (xm, ym)), the objective function G minimized by L1-

regularized AdaBoost is defined for all ᾱ = (ᾱ1, . . . , ᾱN) ∈ RN by

G(ᾱ) =
1

m

m∑

i=1

e−yif(xi) + λ‖ᾱ‖1 =
1

m

m∑

i=1

e−yi
∑N
j=1 ᾱjhj(xi) + λ‖ᾱ‖1, (7.26)

where, as for AdaBoost, f is an ensemble function defined by f =
∑N
j=1 ᾱjhj , with

ᾱj ≥ 0. The objective function G is a convex function of ᾱ as the sum of the convex

objective of AdaBoost and the norm-1 of ᾱ. L1-regularized AdaBoost consists of

applying coordinate-descent to the objective function G.

We now show that the algorithm can be directed derived from the margin-based

guarantee for ensemble methods of Corollary 7.5 or Corollary 7.6. Thus, in that way,

L1-regularized AdaBoost benefits from a more favorable and natural theoretical

guarantee than AdaBoost.

By the generalization of Corollary 7.5 to a uniform convergence bound over ρ,

for any δ > 0, with probability at least 1 − δ, the following holds for all ensemble

functions f =
∑N
j=1 ᾱjhj with ‖ᾱ‖1 ≤ 1 and all ρ ∈ (0, 1]:

R(f) ≤ 1

m

m∑

i=1

1f(xi)≤ρ +
2

ρ
Rm

(
H
)

+

√
log log2

2
ρ

m
+

√
log 2

δ

2m
. (7.27)

166 Chapter 7 Boosting

The inequality also trivially holds for ρ > 1 since, in that case, the first term on

the right-hand side of the bound is equal to one. Indeed, in that case, by Hölder’s

inequality, for any x ∈ X, we have f(x) =
∑N
j=1 ᾱihj(x) ≤ ‖ᾱ‖1 maxj∈[N] |hj(x)| ≤

‖ᾱ‖1 ≤ 1 < ρ.

Now, in view of the general upper bound 1u≤0 ≤ e−u valid for all u ∈ R, with

probability at least 1− δ, the following holds for all f =
∑N
j=1 ᾱjhj with ‖ᾱ‖1 ≤ 1

and all ρ > 0:

R(f) ≤ 1

m

m∑

i=1

e1− f(xi)ρ +
2

ρ
Rm

(
H
)

+

√
log log2

2
ρ

m
+

√
log 2

δ

2m
. (7.28)

Since for any ρ > 0, f/ρ admits the same generalization error as f , with probability

at least 1−ρ, the following inequality holds for all f =
∑N
j=1 ᾱjhj with ‖ᾱ‖1 ≤ 1/ρ

and all ρ > 0:

R(f) ≤ 1

m

m∑

i=1

e1−f(xi) +
2

ρ
Rm

(
H
)

+

√
log log2

2
ρ

m
+

√
log 2

δ

2m
. (7.29)

This inequality can be used to derive an algorithm that selects ᾱ and ρ > 0 to

minimize the right-hand side. The minimization with respect to ρ does not lead

to a convex optimization and depends on theoretical constant factors affecting the

second and third terms, which may not be optimal. Thus, instead, ρ is left as a

free parameter of the algorithm, typically determined via cross-validation.

Now, since only the first term of the right-hand side depends on ᾱ, the bound

suggests selecting ᾱ as the solution of the following optimization problem:

min
‖ᾱ‖1≤ 1

ρ

1

m

m∑

i=1

e−f(xi) =
1

m

m∑

i=1

e−
∑N
j=1 ᾱjhj(xi). (7.30)

Introducing a Lagrange variable λ ≥ 0, the optimization problem can be written

equivalently as

min
‖ᾱ‖1≤ 1

ρ

1

m

m∑

i=1

e−
∑N
j=1 ᾱjhj(xi) + λ‖ᾱ‖1. (7.31)

Since for any choice of ρ in the constraint of (7.30) there exists an equivalent dual

variable λ in the formulation (7.31) that achieves the same optimal ᾱ, λ ≥ 0 can

be freely selected via cross-validation. The resulting objective function therefore

precisely coincides with that of L1-regularized AdaBoost.

7.5 Discussion 167

7.5 Discussion

AdaBoost offers several advantages: it is simple, its implementation is straightfor-

ward, and the time complexity of each round of boosting as a function of the sample

size is rather favorable. As already discussed, when using decision stumps, the time

complexity of each round of boosting is in O(mN). Of course, if the dimension of

the feature space N is very large, then the algorithm could become in fact quite

slow.

AdaBoost additionally benefits from a rich theoretical analysis. Nevertheless,

there are still many theoretical questions related to the algorithm. For example, as

we saw, the algorithm in fact does not maximize the margin, and yet algorithms

that do maximize the margin do not always outperform it. This suggests that

perhaps a finer analysis based on a notion different from that of minimal margin

could shed more light on the properties of the algorithm.

A minor drawback of the algorithm is the need to select the parameter T and

the base classifier set. The choice of the number of rounds of boosting T (stopping

criterion) is crucial to the performance of the algorithm. As suggested by the VC-

dimension analysis, larger values of T can lead to overfitting. In practice, T is

typically determined via cross-validation. The choice of the base classifiers is also

crucial. The complexity of the family of base classifiers H appeared in all the bounds

presented and it is important to control it in order to guarantee generalization. On

the other hand, insufficiently complex hypothesis sets could lead to low margins.

Probably the most serious disadvantage of AdaBoost is its performance in the

presence of noise, at least in some tasks. The distribution weight assigned to exam-

ples that are harder to classify substantially increases with the number of rounds of

boosting, by the nature of the algorithm. These examples may end up dominating

the selection of the base classifiers, which, with a large enough number of rounds,

will play a detrimental role in the definition of the linear combination defined by

AdaBoost. Several solutions have been proposed to address these issues. One con-

sists of using a “less aggressive” objective function than the exponential function

of AdaBoost, such as the logistic loss, to penalize less incorrectly classified points.

Another solution is based on a regularization, e.g., the L1-regularized AdaBoost

described in the previous section.

An empirical study of AdaBoost has shown that uniform noise severely damages

its accuracy. This has also been corroborated by recent theoretical results showing

that boosting algorithms based on convex potentials do not tolerate even low levels

of random noise. Moreover, these issues have been shown to persist even when

using L1-regularization or early stopping. However, the uniform noise model used

in those experiments or analysis is rather unrealistic and seems unlikely to appear

168 Chapter 7 Boosting

in practice. The model assumes that a label corruption with some fixed probability

affects all instances uniformly. Clearly, the performance of any algorithm should

degrade in the presence of such noise. Empirical results suggest, however, that the

performance of AdaBoost tends to degrade more than that of other algorithms for

this uniform noise model.

Finally, notice that the behavior of AdaBoost in the presence of noise can be

used, in fact, as a useful feature for detecting outliers, that is, examples that are

incorrectly labeled or that are hard to classify. Examples with large weights after

a certain number of rounds of boosting can be identified as outliers.

7.6 Chapter notes

The question of whether a weak learning algorithm could be boosted to derive a

strong learning algorithm was first posed by Kearns and Valiant [1988, 1994], who

also gave a negative proof of this result for a distribution-dependent setting. The

first positive proof of this result in a distribution-independent setting was given by

Schapire [1990], and later by Freund [1990].

These early boosting algorithms, boosting by filtering [Schapire, 1990] or boosting

by majority [Freund, 1990, 1995] were not practical. The AdaBoost algorithm

introduced by Freund and Schapire [1997] solved several of these practical issues.

Freund and Schapire [1997] further gave a detailed presentation and analysis of the

algorithm including the bound on its empirical error, a VC-dimension analysis, and

its applications to multi-class classification and regression.

Early experiments with AdaBoost were carried out by Drucker, Schapire, and

Simard [1993], who gave the first implementation in OCR with weak learners based

on neural networks and Drucker and Cortes [1995], who reported the empirical per-

formance of AdaBoost combined with decision trees, in particular decision stumps.

The fact that AdaBoost coincides with coordinate descent applied to an exponen-

tial objective function was later shown by Duffy and Helmbold [1999], Mason et al.

[1999], and Friedman [2000]. Friedman, Hastie, and Tibshirani [2000] also gave an

interpretation of boosting in terms of additive models. They also pointed out the

close connections between AdaBoost and logistic regression, in particular the fact

that their objective functions have a similar behavior near zero or the fact that

their expectation admit the same minimizer, and derived an alternative boosting

algorithm, LogitBoost, based on the logistic loss. Lafferty [1999] showed how an

incremental family of algorithms, including LogitBoost, can be derived from Breg-

man divergences and designed to closely approximate AdaBoost when varying a

parameter. Kivinen and Warmuth [1999] gave an equivalent view of AdaBoost as

an entropy projection. They showed that the distribution over the sample found

7.6 Chapter notes 169

by Adaboost at each round is approximately the solution to the problem of finding

the closest distribution to the one at the previous round, subject to the constraint

that it be orthogonal to the vector of errors of the current base hypotheses. Here,

closeness is measured by a Bregman divergence, which, for AdaBoost is the un-

normalized relative entropy. Collins, Schapire, and Singer [2002] later showed that

boosting and logistic regression were special instances of a common framework

based on Bregman divergences and used that to give the first convergence proof of

AdaBoost. Another direct relationship between AdaBoost and logistic regression

is given by Lebanon and Lafferty [2001] who showed that the two algorithms min-

imize the same extended relative entropy objective function subject to the same

feature constraints, except from an additional normalization constraint for logistic

regression.

A margin-based analysis of AdaBoost was first presented by Schapire, Freund,

Bartlett, and Lee [1997], including theorem 7.7 which gives a bound on the empirical

margin loss. Our presentation is based on the elegant derivation of margin bounds

by Koltchinskii and Panchenko [2002] using the notion of Rademacher complexity.

Rudin et al. [2004] gave an example showing that, in general, AdaBoost does not

maximize the L1-margin. Rätsch and Warmuth [2002] provided asymptotic lower

bounds for the margin achieved by AdaBoost under some conditions. The L1-

margin maximization based on an LP is due to Grove and Schuurmans [1998].

Rätsch, Onoda, and Müller [2001] suggested a modification of that algorithm using

a soft-margin instead and pointed out its connections with SVMs. The game-

theoretic interpretation of boosting and the application of von Neumann’s minimax

theorem [von Neumann, 1928] in that context were pointed out by Freund and

Schapire [1996, 1999b]; see also Grove and Schuurmans [1998] and Breiman [1999].

The L1-regularized AdaBoost algorithm described in Section 7.4 is presented and

analyzed by Rätsch, Mika, and Warmuth [2001]. Cortes, Mohri, and Syed [2014]

introduced a new boosting algorithm, DeepBoost , which they proved to benefit

from finer learning guarantees, including favorable ones even when using as base

classifier set relatively rich families, for example a family of very deep decision trees,

or other similarly complex families. In DeepBoost, the decisions in each iteration of

which classifier to add to the ensemble and which weight to assign to that classifier,

depend on the (data-dependent) complexity of the sub-family to which the classifier

belongs. Cortes, Mohri, and Syed [2014] further showed that empirically DeepBoost

achieves a better performance than AdaBoost, Logistic Regression, and their L1-

regularized variants. Both AdaBoost and L1-regularized AdaBoost can be viewed

as special instances of DeepBoost.

Dietterich [2000] provided extensive empirical evidence for the fact that uniform

noise can severely damage the accuracy of AdaBoost. This has been reported by

170 Chapter 7 Boosting

a number of other authors since then. Long and Servedio [2010] further recently

showed the failure of boosting algorithms based on convex potentials to tolerate

random noise, even with L1-regularization or early stopping.

There are several excellent surveys and tutorials related to boosting [Schapire,

2003, Meir and Rätsch, 2002, Meir and Rätsch, 2003], including the recent book of

Schapire and Freund [2012] fully dedicated to this topic, with an extensive list of

references and a detailed presentation.

7.7 Exercises

7.1 VC-dimension of the hypothesis set of AdaBoost. Prove the upper bound on the

VC-dimension of the hypothesis set FT of AdaBoost after T rounds of boosting,

as stated in equation (7.9).

7.2 Alternative objective functions. This problem studies boosting-type algorithms

defined with objective functions different from that of AdaBoost. We assume

that the training data are given as m labeled examples (x1, y1), . . . , (xm, ym) ∈
X × {−1,+1}. We further assume that Φ is a strictly increasing convex and

differentiable function over R such that: ∀x ≥ 0,Φ(x) ≥ 1 and ∀x < 0,Φ(x) > 0.

(a) Consider the loss function L(α) =
∑m
i=1 Φ(−yif(xi)) where f is a linear

combination of base classifiers, i.e., f =
∑T
t=1 αtht (as in AdaBoost). Derive

a new boosting algorithm using the objective function L. In particular,

characterize the best base classifier hu to select at each round of boosting if

we use coordinate descent.

(b) Consider the following functions: (1) zero-one loss Φ1(−u) = 1u≤0; (2) least

squared loss Φ2(−u) = (1 − u)2; (3) SVM loss Φ3(−u) = max{0, 1 − u};
and (4) logistic loss Φ4(−u) = log(1 + e−u). Which functions satisfy the

assumptions on Φ stated earlier in this problem?

(c) For each loss function satisfying these assumptions, derive the corresponding

boosting algorithm. How do the algorithm(s) differ from AdaBoost?

7.3 Update guarantee. Assume that the main weak learner assumption of AdaBoost

holds. Let ht be the base learner selected at round t. Show that the base learner

ht+1 selected at round t+ 1 must be different from ht.

7.4 Weighted instances. Let the training sample be S = ((x1, y1), . . . , (xm, ym)).

Suppose we wish to penalize differently errors made on xi versus xj . To do that,

we associate some non-negative importance weight wi to each point xi and define

7.7 Exercises 171

the objective function F (α) =
∑m
i=1 wie

−yif(xi), where f =
∑T
t=1 αtht. Show

that this function is convex and differentiable and use it to derive a boosting-

type algorithm.

7.5 Define the unnormalized correlation of two vectors x and x′ as the inner product

between these vectors. Prove that the distribution vector (Dt+1(1), . . . ,Dt+1(m))

defined by AdaBoost and the vector of components yiht(xi) are uncorrelated.

7.6 Fix ε ∈ (0, 1/2). Let the training sample be defined by m points in the plane

with m
4 negative points all at coordinate (1, 1), another m

4 negative points all

at coordinate (−1,−1), m(1−ε)
4 positive points all at coordinate (1,−1), and

m(1+ε)
4 positive points all at coordinate (−1,+1). Describe the behavior of

AdaBoost when run on this sample using boosting stumps. What solution does

the algorithm return after T rounds?

7.7 Noise-tolerant AdaBoost. AdaBoost may be significantly overfitting in the pres-

ence of noise, in part due to the high penalization of misclassified examples. To

reduce this effect, one could use instead the following objective function:

F =

m∑

i=1

G(−yif(xi)), (7.32)

where G is the function defined on R by

G(x) =

{
ex if x ≤ 0

x+ 1 otherwise.
(7.33)

(a) Show that the function G is convex and differentiable.

(b) Use F and greedy coordinate descent to derive an algorithm similar to Ad-

aBoost.

(c) Compare the reduction of the empirical error rate of this algorithm with that

of AdaBoost.

7.8 Simplified AdaBoost. Suppose we simplify AdaBoost by setting the parameter

αt to a fixed value αt = α > 0, independent of the boosting round t.

(a) Let γ be such that (1
2 − εt) ≥ γ > 0. Find the best value of α as a function

of γ by analyzing the empirical error.

(b) For this value of α, does the algorithm assign the same probability mass to

correctly classified and misclassified examples at each round? If not, which

set is assigned a higher probability mass?

172 Chapter 7 Boosting

AdaBoost(M, tmax)

1 λ1,j ← 0 for i = 1, . . . ,m

2 for t← 1 to tmax do

3 dt,i ← exp(−(Mλt)i)∑m
k=1 exp(−(Mλt)k) for i = 1, . . . ,m

4 jt ← argmaxj(d
>
t M)j

5 rt ← (d>t M)jt
6 αt ← 1

2 log
(

1+rt
1−rt

)

7 λt+1 ← λt + αtejt, where ejt is 1 in position jt and 0 elsewhere.

8 return λtmax

‖λtmax‖1

Figure 7.7
AdaBoost defined with respect to a matrix M, which encodes the accuracy of each weak classifier
on each training point.

(c) Using the previous value of α, give a bound on the empirical error of the

algorithm that depends only on γ and the number of rounds of boosting T .

(d) Using the previous bound, show that for T > logm
2γ2 , the resulting hypothesis

is consistent with the sample of size m.

(e) Let s be the VC-dimension of the base learners used. Give a bound on the

generalization error of the consistent hypothesis obtained after T =
⌊

logm
2γ2

⌋
+

1 rounds of boosting. (Hint : Use the fact that the VC-dimension of the fam-

ily of functions {sgn(
∑T
t=1 αtht) : αt ∈ R} is bounded by 2(s+1)T log2(eT)).

Suppose now that γ varies with m. Based on the bound derived, what can

be said if γ(m) = O(
√

logm
m)?)

7.9 AdaBoost example.

In this exercise we consider a concrete example that consists of eight training

points and eight weak classifiers.

(a) Define an m× n matrix M where Mij = yihj(xi), i.e., Mij = +1 if training

example i is classified correctly by weak classifier hj , and −1 otherwise. Let

dt,λt ∈ Rn, ‖dt‖1 = 1 and dt,i (respectively λt,i) equal the ith component

of dt (respectively λt). Now, consider AdaBoost as described in figure 7.7

7.7 Exercises 173

and define M as below with eight training points and eight weak classifiers.

M =




−1 1 1 1 1 −1 −1 1

−1 1 1 −1 −1 1 1 1

1 −1 1 1 1 −1 1 1

1 −1 1 1 −1 1 1 1

1 −1 1 −1 1 1 1 −1

1 1 −1 1 1 1 1 −1

1 1 −1 1 1 1 −1 1

1 1 1 1 −1 −1 1 −1




Assume that we start with the following initial distribution over the data-

points:

d1 =

(
3−
√

5

8
,

3−
√

5

8
,

1

6
,

1

6
,

1

6
,

√
5− 1

8
,

√
5− 1

8
, 0

)>

Compute the first few steps of the AdaBoost algorithm using M, d1, and

tmax = 7. What weak classifier is picked at each round of boosting? Do you

notice any pattern?

(b) What is the L1 norm margin produced by AdaBoost for this example?

(c) Instead of using AdaBoost, imagine we combined our classifiers using the

following coefficients: [2, 3, 4, 1, 2, 2, 1, 1] × 1
16 . What is the margin in this

case? Does AdaBoost maximize the margin?

7.10 Boosting in the presence of unknown labels. Consider the following variant

of the classification problem where, in addition to the positive and negative

labels +1 and −1, points may be labeled with 0. This can correspond to cases

where the true label of a point is unknown, a situation that often arises in

practice, or more generally to the fact that the learning algorithm incurs no

loss for predicting −1 or +1 for such a point. Let X be the input space and let

Y = {−1, 0,+1}. As in standard binary classification, the loss of f : X → R on

a pair (x, y) ∈ X× Y is defined by 1yf(x)<0.

Consider a sample S = ((x1, y1), . . . , (xm, ym)) ∈ (X×Y)m and a hypothesis set

H of base functions taking values in {−1, 0,+1}. For a base hypothesis ht ∈ H

and a distribution Dt over indices i ∈ [m], define εst for s ∈ {−1, 0,+1} by

εst = Ei∼Dt [1yiht(xi)=s].

174 Chapter 7 Boosting

(a) Derive a boosting-style algorithm for this setting in terms of εst s, using the

same objective function as that of AdaBoost. You should carefully justify

the definition of the algorithm.

(b) What is the weak-learning assumption in this setting?

(c) Write the full pseudocode of the algorithm.

(d) Give an upper bound on the training error of the algorithm as a function of

the number of rounds of boosting and εst s.

7.11 HingeBoost. As discussed in the chapter, AdaBoost can be viewed as coordinate

descent applied to an exponential objective function. Here, we consider an

alternative ensemble method algorithm, HingeBoost, that consists of applying

coordinate descent to an objective function based on the hinge loss. Consider

the function F defined for all α ∈ RN by

F (α) =

m∑

i=1

max


0, 1− yi

N∑

j=1

αjhj(xi)


 , (7.34)

where the hjs are base classifiers belonging to a hypothesis set H of functions

taking values −1 or +1.

(a) Show that F is convex and admits a right- and left-derivative along any

direction.

(b) For any j ∈ [N], let ej denote the direction corresponding to the base hy-

pothesis hj . Let αt denote the vector of coefficients αt,j , j ∈ [N] obtained

after t ≥ 0 iterations of coordinate descent and ft =
∑N
j=1 αt,jhj the predic-

tor obtained after t iterations.

Give the expression of the right-derivative F ′+(αt−1, ej) and the left-derivative

F ′−(αt−1, ej) after t− 1 iterations in terms of ft−1.

(c) For any j ∈ [N], define the maximum directional derivative δF (αt−1, ej) at

αt−1 as follows:

δF (αt−1, ej) =



0 if F ′−(αt−1, ej) ≤ 0 ≤ F ′+(αt−1, ej)

F ′+(αt−1, ej) if F ′−(αt−1, ej) ≤ F ′+(αt−1, ej) ≤ 0

F ′−(αt−1, ej) if 0 ≤ F ′−(αt−1, ej) ≤ F ′+(αt−1, ej).

The direction ej considered by the coordinate descent considered here is the

one maximizing |δF (αt−1, ej)|. Once the best direction j is selected, the

7.7 Exercises 175

step η can be determined by minimizing F (αt−1 + ηej) using a grid search.

Give the pseudocode of HingeBoost.

7.12 Empirical margin loss boosting. As discussed in the chapter, AdaBoost can be

viewed as coordinate descent applied to a convex upper bound on the empirical

error. Here, we consider an algorithm seeking to minimize the empirical margin

loss. For any 0 ≤ ρ < 1 let R̂S,ρ(f) = 1
m

∑m
i=1 1yif(xi)≤ρ denote the empirical

margin loss of a function f of the form f =
∑T
t=1 αtht∑T
t=1 αt

for a labeled sample

S = ((x1, y1), . . . , (xm, ym)).

(a) Show that R̂S,ρ(f) can be upper bounded as follows:

R̂S,ρ(f) ≤ 1

m

m∑

i=1

exp

(
−yi

T∑

t=1

αtht(xi) + ρ

T∑

t=1

αt

)
.

(b) For any ρ > 0, let Gρ be the objective function defined for all α ≥ 0 by

Gρ(α) =
1

m

m∑

i=1

exp


−yi

N∑

j=1

αjhj(xi) + ρ
N∑

j=1

αj


 ,

with hj ∈ H for all j ∈ [N], with the notation used in class in the boosting

lecture. Show that Gρ is convex and differentiable.

(c) Derive a boosting-style algorithm Aρ by applying (maximum) coordinate

descent to Gρ. You should justify in detail the derivation of the algorithm,

in particular the choice of the base classifier selected at each round and that

of the step. Compare both to their counterparts in AdaBoost.

(d) What is the equivalent of the weak learning assumption for Aρ (Hint : use

non-negativity of the step value)?

(e) Give the full pseudocode of the algorithm Aρ. What can you say about the

A0 algorithm?

(f) Provide a bound on R̂S,ρ(f).

i. Prove the upper bound R̂S,ρ(f) ≤ exp
(∑T

t=1 αtρ
)∏T

t=1 Zt, where the

normalization factors Zt are defined as in the case of AdaBoost (with αt
the step chosen by Aρ at round t).

ii. Give the expression of Zt as a function of ρ and εt, where εt is the weighted

error of the hypothesis found by Aρ at round t (defined in the same way

176 Chapter 7 Boosting

as for AdaBoost in class). Use that to prove the following upper bound

R̂S,ρ(f) ≤
(
u

1+ρ
2 + u−

1−ρ
2

)T T∏

t=1

√
ε1−ρt (1− εt)1+ρ,

where u = 1−ρ
1+ρ .

iii. Assume that for all t ∈ [T], 1−ρ
2 − εt > γ > 0. Use the result of the

previous question to show that

R̂S,ρ(f) ≤ exp

(
− 2γ2T

1− ρ2

)
.

(Hint : you can use without proof the following identity:

(
u

1+ρ
2 + u−

1−ρ
2

)√
ε1−ρt (1− εt)1+ρ ≤ 1− 2

(
1−ρ

2 − εt
)2

1− ρ2
,

valid for 1−ρ
2 − εt > 0.) Show that for T ≥ (logm)(1−ρ2)

2γ2 , all points of the

training data have margin at least ρ.

