Language model

Goal: determine P(s = wy ... wy) in some domain of interest

K
P(s) = HP (Wi | Wy ... Wj_1)
i=1

e.g., P (wywowz) =P (wy) P (wy 1wy) P (wsz l wywy)

Traditional n-gram language model assumption:
“the probability of a word depends only on context of n — 1 previous words

29

k
5P = | [P 1 Wines o wiy)
i=1

Typical ML-smoothing learning process (e.g., Katz 1987):

#Wi_nt1--Wi—1 Wj

1. compute P (Wj | Wi_piq o Wj_q1) = on training corpus

#Wi_n+1--Wi-1

2. smooth to avoid zero probabilities

Traditional n-gram language model
Limitation 1): curse of dimensionality

Example

train a 10-gram LM on a corpus of 100.000 unique words

space: 10-dimensional hypercube where each dimension has 100.000 slots
model training < assigning a probability to each of the 100.0001° slots
probability mass vanishes — more data is needed to fill the huge space
the more data, the more unique words! — vicious circle

what about corpuses of 10° unique words?

— In practice, contexts are typically limited to size 2 (trigram model)
e.g., famous Katz (1987) smoothed trigram model

— such short context length is a limitation: a lot of information is not captured

Traditional n-gram language model
Limitation 2): word similarity ignorance

« We should assign similar probabilities to obama speaks to the media

in Illinois and the President addresses the press in Chicago

« This does not happen because of the “one-hot” vector space representation:

—

~ obama. president = 0

obama=[0000 .. 0100] |
president=[0001 ... 000 0] |
speaks=[0010 .. 0000] |
addresses=[0000 ... 001 0]
illincis=[1000 ... 000 0]

|]

chicago=[(0100..0000

~ speaks.addresses = 0

)\

~ illinois. chicago = 0

« Ineach case, word pairs share no similarity
« This is obviously wrong
* We need to encode word similarity to be able to generalize

Word embeddings: distributed representation of words

Each unique word is mapped to a point in a real continuous m-dimensional space
Typically, |V| > 10°, 100 < m < 500

wi €V mapping C , R
w; obama wyy feature, featurep,
v ool : ! !
obama = [0 1..... 0] obama=[0.12...— 0.25]
< > < >
\4 m < |V|

\ J \ J
Y Y

“one-hot” vector u feature vector

- compression (dimensionality reduction)
- smoothing (discrete to continuous)
- densification (sparse to dense)

Fighting the curse of
dimensionality with:

Similar words end up close to each other in the feature space

Google’s word2vec (Mikolov et al. 2013a)

» Key idea of word2vec: achieve better performance not by using a more complex model
(i.e., with more layers), but by allowing a simpler (shallower) model to be trained on
much larger amounts of data

« Two algorithms for learning words vectors:

- CBOW: from context predict target (focus of what follows)
- Skip-gram: from target predict context

* Compared to Bengio et al.’s (2003) NNLM:
- no hidden layer (leads to 1000X speedup)
- projection layer is shared (not just the weight matrix)
- context: words from both history & future:
“You shall know a word by the company it keeps” (John R. Firth 1957:11):

..Pelé has called Neymar an excellent player..
..At the age of just 22 years, Neymar had scored 40 goals in 58 internationals..
..occasionally as an attacking midfielder, Neymar was called a true phenomenon..

\ These words will represent Neymar /

word2vec’s Continuous Bag-of-Words (CBOW)

For each training sequence: input = (context, target) pair: (Wt—§ e Wl Wigq e Wy + Wt)

objective: minimize E = —log P(wy IW¢_p/2 . Wee1Wegq o Wegn/2)
hierarchical softmax. tt™h output =P (w; = w, IWi_n/2 o We—1We41 - Wegn/2)
OUTPUT V| probabilities
LAYER O O that sumto 1
_____________________><______________C_i____
averaging
PROJECTION O — [100 <m < 1000
LAYER typically
linear 1
H'C(El)

______________ table lookup in shared Cryym ™\

INPUT LAYER [§=| 10001000000...... 100100000010 | [|v|
0000...0010 0000...0010 0000...0010 0000...0010

\ L | n = 8 typically

T T

input context: n/2 history words: w,_n ...wg_; n/2 future words: wyyq + -+ w,,n
2 2

Weight updating intuition
For each (context, target=w,) pair, only the word vectors from matrix C corresponding
to the context words are updated
Recall that we compute P (w; = w; | context) V w; € V. We compare this distribution to
the true probability distribution (1 for wy, 0 elsewhere)
If P (w; = w; | context) is overestimated (i.e., > 0, happens in potentially |V| — 1 cases),
some portion of C’(w;) is subtracted from the context word vectors in C, proportionally to
the magnitude of the error
Reversely, if P (w; = w; | context) is underestimated (< 1, happens in potentially 1 case),
some portion of C’(w;) is added to the context word vectors in C
— at each step the words move away or get closer to each other in the feature space — clustering
— analogy with a spring force layout. See online demo with Chrome

C(wy)
: constant
C(Wi_n/2) adjustments f\ prediction
. m oo e : error
C(Wt+n/2)
C(wyyp) 3 , o
) i o C'(wy) C'(wj) C'(wyy) -~ mlV|
i 1 1 ’m - -
Input — projection projection — output

weight matrix weight matrix

http://bit.ly/wevi-online

word2vec facts

Complexity is n * m + m * log|V| (Mikolov et al. 2013a)
On Google news 6B words training corpus, with |V| ~ 10°:

- CBOW with m = 1000 took 2 days to train on 140 cores

- Skip-gram with m = 1000 took 2.5 days on 125 cores

- NNLM (Bengio et al. 2003) took 14 days on 180 cores, for m = 100 only!
(note that m = 1000 was not reasonably feasible on such a large training set)

word2vec training speed = 100K-5M words/s
Quiality of the word vectors:

- 2 significantly with amount of training data and dimension of the word vectors (m),
with diminishing relative improvements

- measured in terms of accuracy on 20K semantic and syntactic association tasks.
e.g., words in bold have to be returned:

Capital-Country

Past tense

Superlative

Male-Female

Opposite

Athens: Greece

walking: walked

easy: easiest

brother: sister

ethical: unethical

Adapted from Mikolov et al. (2013a)

* Best NNLM: 12.3% overall accuracy. Word2vec (with Skip-gram): 53.3%

References: http://www.scribd.com/doc/285890694/NIPS-DeepLearningWorkshop-NNforText#scribd

https://code.google.com/p/word2vec/

http://www.scribd.com/doc/285890694/NIPS-DeepLearningWorkshop-NNforText#scribd
http://www.scribd.com/doc/285890694/NIPS-DeepLearningWorkshop-NNforText#scribd
http://www.scribd.com/doc/285890694/NIPS-DeepLearningWorkshop-NNforText#scribd
http://www.scribd.com/doc/285890694/NIPS-DeepLearningWorkshop-NNforText#scribd
http://www.scribd.com/doc/285890694/NIPS-DeepLearningWorkshop-NNforText#scribd
http://www.scribd.com/doc/285890694/NIPS-DeepLearningWorkshop-NNforText#scribd
https://code.google.com/p/word2vec/
https://code.google.com/p/word2vec/
https://code.google.com/p/word2vec/

1.5

0.5

-0.5

-1.5

Remarkable properties of word2vec’s word vectors

Country and Capital Vectors Projected by PCA

I Chlna< [I | I |
»Beijing
B Russiax«
Japan«
i *Moscow
Turkey< Ankara ~Tokyo
Poland«
- Germanys«
France' Warsaw
s =»Berlin
- [taly< Paris
*Athens
Greece« W
-1 | Spair Rome
e *Madrid
— Portugal Lisbon
| | | | l | |
-2 -1.5 -1 -05 0 0.5 1 1.5

Mikolov et al. (2013b)
regularities between words are encoded in the difference vectors
e.g., there is a constant country-capital difference vector

Remarkable properties of word2vec’s word vectors

0.6 k|ng
05—
0.4 pri ce
0sf queen cock
bull
0.2)
princess
hen
01
hero
oL cow
| actor landlord male
he
Y
0.2 &
) landlady
herojne
-0.3F
female
os | . actress SN . . ‘
~0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

constant female-male difference vector

picture taken from http://www.scribd.com/doc/285890694/N1PS-DeepL earningWorkshop-NNfor Text#scribd

http://www.scribd.com/doc/285890694/NIPS-DeepLearningWorkshop-NNforText#scribd
http://www.scribd.com/doc/285890694/NIPS-DeepLearningWorkshop-NNforText#scribd
http://www.scribd.com/doc/285890694/NIPS-DeepLearningWorkshop-NNforText#scribd
http://www.scribd.com/doc/285890694/NIPS-DeepLearningWorkshop-NNforText#scribd
http://www.scribd.com/doc/285890694/NIPS-DeepLearningWorkshop-NNforText#scribd
http://www.scribd.com/doc/285890694/NIPS-DeepLearningWorkshop-NNforText#scribd
http://www.scribd.com/doc/285890694/NIPS-DeepLearningWorkshop-NNforText#scribd

Remarkable properties of word2vec’s word vectors

WOMAN QUEENS
/ AUNT
MAN / INGS
UNCLE
QUEEN QUEEN
KING KING
constant male-female difference vector constant singular-plural difference vector
» \ector operations are supported and make intuitive sense:
Wking — Wman + Wwoman = Waueen Weinstein — Wscientist + Wpainter = Wpicasso
Wparis — Wrrance T Witaly = Wrome Whis — Whe T Wspe = Whey
Wwindows — Wmicrosoft T Wgoogle = Wandroid Wey — Weopper T Wgotd = Wauy

* Online demo (scroll down to end of tutorial)

picture taken from http://www.scribd.com/doc/285890694/NIPS-DeepL earningWorkshop-NNfor Text#scribd 16

http://rare-technologies.com/word2vec-tutorial/
http://www.scribd.com/doc/285890694/NIPS-DeepLearningWorkshop-NNforText#scribd
http://www.scribd.com/doc/285890694/NIPS-DeepLearningWorkshop-NNforText#scribd
http://www.scribd.com/doc/285890694/NIPS-DeepLearningWorkshop-NNforText#scribd
http://www.scribd.com/doc/285890694/NIPS-DeepLearningWorkshop-NNforText#scribd
http://www.scribd.com/doc/285890694/NIPS-DeepLearningWorkshop-NNforText#scribd
http://www.scribd.com/doc/285890694/NIPS-DeepLearningWorkshop-NNforText#scribd
http://www.scribd.com/doc/285890694/NIPS-DeepLearningWorkshop-NNforText#scribd

Application to document classification

A
document 1 ‘greets’ document 2
Obama Obama ./. The
L' .
speaks . @ . ‘speaks’ President
to President areets

the the
media ‘Chicago’ press

in o ‘media’ in
Illinois 0” o0 Chicago

‘Illinois” Press
>

word2vec embedding

_ Obamajspeaks|to the media|in Illinois.
With the BOW

representation D, and D, @1 07 —045&+ DZ‘N\ + 0.20 %7 + 0. 18&

are at equal dlstan_ce from Dy The President greets the press in Chicago.
Dy. Word embeddings

allow to capture the fact 11 63 =0.49 ﬁ+042f +04‘%+ 028%

that D, is closer. D> Theband|gave|a concert|in|Japan.

Kusner, M. J., Sun, E. Y., Kolkin, E. N. I., & EDU, W. From Word Embeddings To Document Distances. Proceedings of the 32nd
International Conference on Machine Learning, Lille, France, 2015. IMLR: W&CP volume 37. 18

http://matthewkusner.com/publications/WMD.pdf
http://matthewkusner.com/publications/WMD.pdf
http://matthewkusner.com/publications/WMD.pdf
http://matthewkusner.com/publications/WMD.pdf
http://matthewkusner.com/publications/WMD.pdf
http://matthewkusner.com/publications/WMD.pdf

