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Designing mechanisms for 
maximizing revenue for single 

parameter environments
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Social Welfare vs Revenue
• Many reasons for focusing on social welfare:

• In government auctions, revenue may not be the first priority
• Also in competitive markets, greedily maximizing revenue may 

cause customers leave towards other sellers

• Strong positive results for social welfare maximization.
• If we do not care about computational efficiency, we can always

have a truthful mechanism that maximizes welfare (VCG) 
• We often have good approximations in polynomial time.

• Question: Similar results for revenue maximization?
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Social Welfare vs Revenue
An illuminating example:
• Consider 1 item and only 1 bidder with private value v
• Only truthful mechanisms: set a price r independent of the

declared bid
• Any other pricing rule that depends on the bid is not truthful
• These are called posted price mechanisms.

• If v ≥ r, the bidder will buy the item, sw = v and revenue = r
• If not, sw = revenue = 0
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Social Welfare vs Revenue
• How do we maximize social welfare in this setting? 

• Easy, just set r = 0
• All we care about for social welfare is that the bidder 

gets the item
• We do not need to know the exact value of v
• With more bidders, we also do not need to know the 

exact values to maximize welfare, only who is the 
highest bidder

• Social welfare is quite special and relatively simple. 
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Social Welfare vs Revenue
• How do we maximize revenue?

• Optimal revenue we can extract: equal to v
• If we knew v, we would just set r:= v
• But v is private information!
• Optimal revenue really depends on the exact form of the 

valuation function
• E.g., if we just set r = 100, then the mechanism does well 

only for bidders with v ≥ 100 (and not too large!).
• For v < 100, it performs terribly
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A Model for Revenue Maximization

Conclusions and modeling approach:

• Not easy to compare mechanisms 

• We need to consider a different model

• Usual approach: Average case or Bayesian analysis
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A Bayesian Model for Revenue 
Maximization

For single-parameter environments:
• Each bidder i has a value vi which is private information
• For each bidder i, the value vi is drawn from a probability 

distribution Fi on some interval [0, vmax], with vmax≠ +∞
• Fi(z) = Pr[vi ≤ z]

• The distributions F1, F2, ..., Fn are all independent
• Mechanism knows the distributions (but not the values)

• Typically derived from historical data
• Objective: design an auction to maximize expected revenue
Goal: Characterize truthful mechanisms that 
maximize expected revenue.
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A Bayesian Model for Revenue 
Maximization

Back to single item and single bidder
• Value v of the bidder drawn from distribution F
• Suppose we post a price r
• Expected revenue = r  Pr[v ≥ r] = r  (1 – F(r))
• It reduces to optimizing posted price r

• Optimal price r is called monopoly price of F. 
• E.g., if F is uniform in [0, 1], then F(z) = z
• Optimal mechanism: post r = 1/2 with expected revenue 1/4
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A Bayesian Model for Revenue 
Maximization

Single-item auction with two bidders?
• This already gets more complex
• Can we start with something simple first? 

2nd price auction with a reserve price
• Fix a reserve price r
• Allocation rule: If no bidder exceeds r, nobody gets the 

item. Otherwise, winner is the highest bidder
• Payment rule: max {reserve price, 2nd highest bid}
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A Bayesian Model for Revenue 
Maximization

Single-item auction with two bidders:
• Reserve prices are used in practice to boost revenue
• Main advantage: much better revenue for the cases 

where 2nd highest bid is low
• Main disadvantage: in some cases nobody wins (no 

revenue) 
• Hopefully latter happens with small probability

• Is the optimal mechanism very far from such a format?
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Expected Revenue for 
Single-Parameter Bidders

• We focus on single-parameter bidders, monotone 
allocations and Myerson’s truthful payments. 
– Due to truthfulness, bids = true values.

• Maximize 

– Due to independence, we focus on single bidder i.

• We recall (dfn of expectation and Myerson’s payments): 

• Therefore:



Expected Revenue for 
Single-Parameter Bidders

• Reversing the order of integration: 

• Integration by parts and simplification: 



Virtual Valuations

We transform valuations to virtual valuations, that include 
information about valuation distribution.
Definition: For an agent i, with 

• actual value vi, 
• distribution Fi, 
• probability density function fi, 

the virtual valuation at vi is:

Optimal revenue 
extracted from i

“information rent”
for agent i

Monopoly price of F where virtual valuation is 0:



Virtual Valuations

Example: uniform distribution on [0, 1] for player i:
• distribution function: Fi(z) = z
• density function: fi(z) = 1
• virtual valuation: φi(vi) = vi – (1-vi)/1 = 2vi - 1 

Observations:
• Virtual valuations can also take negative values,

even though vi ≥ 0
• For any distribution, φi(vi) ≤ vi

Summary: 
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Expected Revenue Equals 
Expected Virtual Welfare

Main result for revenue maximization:
Consider a single-parameter domain with valuation distributions 
F1, F2, ..., Fn and let F = F1 x F2 x ...x Fn be the product distribution.
For every truthful mechanism (x, p)

EvF [Σi pi(v)] = EvF [Σiφi(vi)  xi(v)]

16

Expected revenue Expected virtual welfare

Surprisingly, finding the revenue-optimal mechanism
reduces to maximizing the expected virtual welfare



Maximizing Virtual Welfare

• Although we care about payments, we reduced the problem 
to designing an appropriate allocation rule!

• How do we maximize expected virtual welfare?
• Forget about the expectation and maximize pointwise.
• For each profile v = (v1, v2,..., vn), maximize Σiφi(vi)  xi(v)
• This is simply a welfare maximization problem

• With φi(vi) playing the role of vi

• We apply Myerson’s Lemma, but for the virtual values.
• Allocation rule must be monotone (wrt bids / valuations vi), 

as required for truthfulness. 

• Whenever we can solve welfare maximization efficiently, 
we can also do it for the virtual welfare.
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Maximizing Virtual Welfare

For the single-item auction:
• Give the item to bidder with the highest virtual value.
• Actually, not always...
• Recall: a virtual value can take negative values
• Give it to bidder with the highest positive virtual value
• Sometimes, the item is not allocated to anyone.
• Example: Let Fi be the uniform distribution on [0, 1]

• φi(vi) = 2vi – 1
• Allocation rule: give it to the highest bidder whose 

bid exceeds 1/2 (reserve price), if such bidder exists
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Monotonicity of 
Virtual Welfare Maximization

• Is the allocation rule that maximizes the virtual welfare
monotone (wrt. bids)?

• If yes, then we are done by Myerson’s lemma
• Unfortunately this depends on the distributions

Definition: A distribution is called regular if the 
corresponding virtual valuation function is non-decreasing

• Examples: the uniform distribution and many other 
common distributions satisfy this

• Non-regular distributions: multi-modal distributions or 
with heavy tails
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Monotonicity of 
Virtual Welfare Maximization

Observation: If we have regular distributions for all bidders, 
then the virtual welfare maximizing rule is monotone

Optimal mechanism for revenue maximization
Assumptions: Independent and regular distributions 

• Collect the bids and transform each bi into its 
corresponding virtual bid φi(bi)

• Choose an allocation (x1, x2,..., xn) that maximizes 
the virtual welfare Σiφi(bi)  xi

• Charge each bidder according to Myerson’s payment 
formula
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Expected Revenue Maximization
Let’s apply this to single-item auctions with i.i.d bidders

Implementing the revenue-optimal mechanism
• Collect the bids and transform each bi into its 

corresponding virtual bid φi(bi)
• Allocation: since the virtual valuation function is non-

decreasing, for i.i.d. bidders, the highest virtual value 
corresponds to the highest bidder 

• Thus: we allocate the item to the highest bidder i, 
as long as φi(bi) ≥ 0, otherwise, there is no winner

• Payment: need to find the threshold bid, where does the 
jump in the allocation occur?
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Expected Revenue Maximization
• Consider i.i.d. bidders with the uniform distribution on [0, 1]
• φi(z) = 2z – 1 for every bidder i
• Let i be the winner, and fix a profile b-i for the other bidders
• The jump in the allocation can happen either at the 2nd

highest bid or at 1/2
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z

Either 2nd highest bid 
or 1/2

0

1

xi(z) 2 cases to consider: 
Case 1: at least one other bidder 
has a positive virtual bid
Case 2: no other bidder has a 
positive virtual bid
Payment = max{2nd highest bid, ½}
This is a 2nd price auction with 
reserve price = 1/2



Expected Revenue Maximization

More generally:
• Consider a single-item auction
• Suppose we have i.i.d. bidders with a regular distribution
• Let φ be the common virtual valuation function

Optimal mechanism: 2nd price auction with reserve = φ-1(0)
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• i.e., the eBay format is optimal (with appropriate opening bid)
• Surprising that the optimal mechanism has such a simple format



Single-Item Auctions with 
Non I.I.D. Bidders 

• Things become complicated when bidders are not i.i.d.
• For example, suppose bidders’ valuations are drawn 

independently but from from different regular distributions
• The revenue-optimal auction does not resemble any format 

used in practice
• It is also not easy to interpret as a natural rule to follow and 

does not have a practical appeal
• Current research: Identify simple auction rules for which we can

prove they are near-optimal in terms of expected revenue
• Based again on virtual valuations and on using prophet 

inequalities for estimating the derived revenue
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Prophet Inequality and 
Simple Single-Item Auctions

• Let F1, …, Fn be independent distributions, let X1, …, Xn be 
realizations from F1, …, Fn, and let X* =  maxi { Xi }.
– Let t : Prob[ X* ≥ t ] = 1/2 (or simply t = E[X*]/2 )
– Then, accepting an arbitrary Xi ≥ t (if any) guarantees an 

expected reward of ≥ E[X*]/2.

• Choose t s.t (or                )
– Threshold t can be computed (or estimated), given F1, …, Fn

• Give the item to arbitrary bidder i with φi(vi) ≥ t, if any, 
at (i’s reserve) price ri defined as φi(ri) = t. 
– If many candidate winners, any monotone selection works. 

E.g., highest bidder. 
– Also applies if bidders arrive online and offers are take-it-or-leave-it. 



Prophet Inequality and 
Simple Single-Item Auctions

• Choose t s.t (or                )
– Threshold t can be computed (or estimated), given F1, …, Fn

• Give the item to arbitrary bidder i with φi(vi) ≥ t, if any, at 
(i’s reserve) price ri defined as φi(ri) = t. 
– If many candidate winners, choose the highest bidder. 

• Prophet inequality implies ≥ 50% of optimal revenue!
– Simple, virtual valuations determine reserves, not the winner. 
– However, reserves are still player-dependent. 

• Open Problem: how much of optimal revenue we can recover 
with anonymous reserve prices, if bidders are independent 
but not identically distributed. 



Prior-Independent Auctions

• Design auctions that extract significant fraction of optimal 
revenue without resorting to knowledge of valuation 
distributions F1, …, Fn
– Distributions are used in the analysis of the auction, not in its design. 

• Expected revenue of Vickrey auction with n+1 i.i.d. bidders
from any regular distribution F ≥ expected revenue of optimal 
auction (Vickrey auction with optimal reserve price derived 
with knowledge of F) with n i.i.d. bidders from F. 



Multi-Parameter Revenue Maximization

• A much harder problem!
• Recall Myerson’s lemma does not hold any more for more 

complex valuations
• Not easy to characterize truthful mechanisms when the 

valuation functions depend on multiple private parameters of 
the bidders

• Very active research field even for auctions with a small number
of items
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