Algorithmic Game Theory

Mechanisms for Revenue Maximization

Vangelis Markakis
markakis@gmail.com




Desighing mechanisms for
maximizing revenue for single
parameter environments




Social Welfare vs Revenue

e Many reasons for focusing on social welfare:

* In government auctions, revenue may not be the first priority

* Also in competitive markets, greedily maximizing revenue may
cause customers leave towards other sellers

e Strong positive results for social welfare maximization.

* |f we do not care about computational efficiency, we can always
have a truthful mechanism that maximizes welfare (VCG)

 We often have good approximations in polynomial time.

e Question: Similar results for revenue maximization?




Social Welfare vs Revenue

An illuminating example:
e Consider 1 item and only 1 bidder with private value v

e Only truthful mechanisms: set a price r independent of the
declared bid

* Any other pricing rule that depends on the bid is not truthful
 These are called posted price mechanisms.

e Ifv2r, the bidder will buy the item, sw =v and revenue =r
e |f not, sw=revenue=0




Social Welfare vs Revenue

e How do we maximize social welfare in this setting?
* Easy, justsetr=0

 All we care about for social welfare is that the bidder
gets the item

e We do not need to know the exact value of v

 With more bidders, we also do not need to know the

exact values to maximize welfare, only who is the
highest bidder

* Social welfare is quite special and relatively simple.




Social Welfare vs Revenue

e How do we maximize revenue?
* Optimal revenue we can extract: equal to v
* |f we knew v, we would just setr:=v
* Butvis private information!

* Optimal revenue really depends on the exact form of the
valuation function

 E.g.,, if wejustsetr=100, then the mechanism does well
only for bidders with v 2 100 (and not too large!).

e Forv< 100, it performs terribly




A Model for Revenue Maximization

Conclusions and modeling approach:

e Not easy to compare mechanisms
e \We need to consider a different model

e Usual approach: Average case or Bayesian analysis




A Bayesian Model for Revenue
Maximization

For single-parameter environments:
e Each bidder i has a value v, which is private information

e For each bidder i, the value v, is drawn from a probability
distribution F, on some interval [0, v, ], withv __ # +00

* Fi(z) =Pr[v,27]
e The distributions F,, F,, ..., F, are all independent

max

e Mechanism knows the distributions (but not the values)
e Typically derived from historical data
e Objective: design an auction to maximize expected revenue

Goal: Characterize truthful mechanisms that
maximize expected revenue.




A Bayesian Model for Revenue
Maximization

Back to single item and single bidder
e Value v of the bidder drawn from distribution F
e Suppose we post a pricer
e Expected revenue=r-Prlv2r]=r-(1-F(r))
e |t reduces to optimizing posted price r
e Optimal pricer is called monopoly price of F.
e E.g.,if Fisuniformin [0, 1], then F(z) =z
e Optimal mechanism: post r = 1/2 with expected revenue 1/4




A Bayesian Model for Revenue
Maximization

Single-item auction with two bidders?
e This already gets more complex
e Can we start with something simple first?

2"d price auction with a reserve price
* Fix areserve pricer

* Allocation rule: If no bidder exceeds r, nobody gets the
item. Otherwise, winner is the highest bidder

* Payment rule: max {reserve price, 2" highest bid}
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A Bayesian Model for Revenue
Maximization

Single-item auction with two bidders:
* Reserve prices are used in practice to boost revenue

* Main advantage: much better revenue for the cases
where 2" highest bid is low

* Main disadvantage: in some cases nobody wins (no
revenue)

e Hopefully latter happens with small probability
* |sthe optimal mechanism very far from such a format?
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Expected Revenue for
Single-Parameter Bidders

e We focus on single-parameter bidders, monotone
allocations and Myerson’s truthful payments.
— Due to truthfulness, bids = true values.

e Maximize E, ~r .. v,~F, [Zpi(v)] = Z:]Eﬂ_,a []Eui [Pi(*u.nﬂ_i)]]
i=1

1=1
— Due to independence, we focus on single bidder i.

e We recall (dfn of expectation and Myerson’s payments):

EL-?; [p-i(?.}«i, ’U_i)] = / p'i(uia ’U_i)f('i,’.g)di.?i pi(vi: 'U_.i) — / AR ZI:;(E, "U_i)dff
0

0
e Therefore:

E,, [pi(vi, v_;)] =f pi(vi, v_;) f(vi)dv; =f [/ < 11’;(31‘1?—;&)‘33} f(vi)dv;
0 0

0




Expected Revenue for
Single-Parameter Bidders

e Reversing the order of integration:
/ | [/qz-:;f:;(z:?v I-)d.z:] fi(vi)dv; :/ | !/ | fi('e..-',,;)dtrt-] z-xi(z,v_;)dz
0 0 0 2
= f f (1 — Fy(2))-2z-zi(2,v_;)dz.
0

e |ntegration by parts and simplification:

/ (1= Fi(2)) -z -zi(2,v-;) dz
o N ~ e ?

/ M
= (1= FE) 2 o vl — [ aavo) - (- B - 24
o i X 1_ Fi(z) S :
_'/(; (_;, —_ fi(z) ) TL(E,V__i}ft'(z..}dE — ]EL |:“rr)( 1) ;I':I(‘U)j|




Virtual Valuations

We transform valuations to virtual valuations, that include
information about valuation distribution.

Definition: For an agent i, with

* actual valuev,,
* distribution F,
* probability density function f;,

the virtual valuation at v, is:

| ('Uz’) “information rent”

. . fz (’1-’-3') for agent i
%Aonopoly price of F where virtual valuation is O:

Optimal revenue / 1 — F(r
extracted fromii (T(l — F(’))) =0&r— f(r)( ) =)< f;;(rr) =




Virtual Valuations

Example: uniform distribution on [0, 1] for player i:
* distribution function: F,(z) = z
* density function: f,(z) =1
e virtual valuation: @ (v))=v,—(1-v)/1=2v, -1
Observations:

e Virtual valuations can also take negative values,
even though v, 20

* For any distribution, @ (v,) <v.

Summary: Eu.r [Pz-(v)] = Eyr {w(w) '93-5('”)}
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Expected Revenue Equals
Expected Virtual Welfare

Main result for revenue maximization:

Consider a single-parameter domain with valuation distributions
F,F,, ..., F,andletF=F xF, x..x F be the product distribution.

For every truthful mechanism (x, p)

E, [2 i pi(V)] =E ¢ [2 i 0 i(Vi) ‘ Xi(V)]

_ T

Expected revenue Expected virtual welfare

Surprisingly, finding the revenue-optimal mechanism
reduces to maximizing the expected virtual welfare
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Maximizing Virtual Welfare

e Although we care about payments, we reduced the problem
to designing an appropriate allocation rule!

e How do we maximize expected virtual welfare?
* Forget about the expectation and maximize pointwise.
* For each profile v = (v, v,,..., v.), maximize 2. @ (v.) - x,(v)
e This is simply a welfare maximization problem
e With ¢ (v;) playing the role of v.
e We apply Myerson’s Lemma, but for the virtual values.

e Allocation rule must be monotone (wrt bids / valuations v.),
as required for truthfulness.

e Whenever we can solve welfare maximization efficiently,
we can also do it for the virtual welfare.
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Maximizing Virtual Welfare

For the single-item auction:
* Give the item to bidder with the highest virtual value.

* Actually, not always...
* Recall: a virtual value can take negative values
* Give it to bidder with the highest positive virtual value
 Sometimes, the item is not allocated to anyone.
* Example: Let F, be the uniform distribution on [0, 1]
¢ ¢ (v)=2v,—1
e Allocation rule: give it to the highest bidder whose
bid exceeds 1/2 (reserve price), if such bidder exists
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Monotonicity of

Virtual Welfare Maximization

e |sthe allocation rule that maximizes the virtual welfare
monotone (wrt. bids)?

e |fyes, then we are done by Myerson’s lemma
e Unfortunately this depends on the distributions

Definition: A distribution is called regular if the
corresponding virtual valuation function is non-decreasing

e Examples: the uniform distribution and many other
common distributions satisfy this

e Non-regular distributions: multi-modal distributions or
with heavy tails
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Monotonicity of
Virtual Welfare Maximization

Observation: If we have regular distributions for all bidders,
then the virtual welfare maximizing rule is monotone

Optimal mechanism for revenue maximization

Assumptions: Independent and regular distributions
* Collect the bids and transform each b, into its
corresponding virtual bid @ (b,)
* Choose an allocation (x4, x,,..., X,) that maximizes
the virtual welfare 2. @ (b)) - x

* Charge each bidder according to Myerson’s payment
formula
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Expected Revenue Maximization

Let’s apply this to single-item auctions with i.i.d bidders

Implementing the revenue-optimal mechanism

* Collect the bids and transform each b, into its
corresponding virtual bid @ (b;)
* Allocation: since the virtual valuation function is non-

decreasing, for i.i.d. bidders, the highest virtual value
corresponds to the highest bidder

e Thus: we allocate the item to the highest bidder |,
as long as ¢ (b;) 2 0, otherwise, there is no winner

* Payment: need to find the threshold bid, where does the

jump in the allocation occur?
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Expected Revenue Maximization

Consider i.i.d. bidders with the uniform distribution on [0, 1]
® (z) = 2z — 1 for every bidder i
Let i be the winner, and fix a profile b, for the other bidders

* The jump in the allocation can happen either at the 2"°
highest bid or at 1/2

A

(2) 2 cases to consider:

Case 1: at least one other bidder
has a positive virtual bid
Case 2: no other bidder has a
positive virtual bid
Payment = max{2"® highest bid, %}
This is a 2" price auction with
— > reserve price =1/2
0 \ z
Either 2" highest bid
or1/2
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Expected Revenue Maximization

More generally:
* Consider a single-item auction

e Suppose we have i.i.d. bidders with a regular distribution
* Let @ be the common virtual valuation function

Optimal mechanism: 2" price auction with reserve = ¢ "1(0)

e j.e. the eBay format is optimal (with appropriate opening bid)
e Surprising that the optimal mechanism has such a simple format
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Single-Item Auctions with
Non I.1.D. Bidders

Things become complicated when bidders are not i.i.d.

For example, suppose bidders’ valuations are drawn
independently but from from different regular distributions

The revenue-optimal auction does not resemble any format
used in practice

It is also not easy to interpret as a natural rule to follow and
does not have a practical appeal

Current research: Identify simple auction rules for which we can
prove they are near-optimal in terms of expected revenue

e Based again on virtual valuations and on using prophet
inequalities for estimating the derived revenue
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Prophet Inequality and

Simple Single-ltem Auctions

Let F,, ..., F, be independent distributions, let X, ..., X_ be
realizations from F,, ..., F_, and let X" = max. { X, }.
— Lett: Prob[ X" 2t]=1/2 (or simply t=E[X"]/2)

— Then, accepting an arbitrary X, 2 t (if any) guarantees an
expected reward of 2 E[X"]/2.

Choose ts.t P, [maxc,a(-a_zi)+ > t] =1/2 (or t = IE.U[m_ax :p(a_r;i-)ﬂ /2)
— Threshold t can be computed (or estimated), given F,, ..., F_
Give the item to arbitrary bidder i with @ (v)) 2 t, if any,

at (i’s reserve) price r, defined as @ (r) = t.

— If many candidate winners, any monotone selection works.
E.g., highest bidder.

— Also applies if bidders arrive online and offers are take-it-or-leave-it.




Prophet Inequality and

Simple Single-ltem Auctions
Choose ts.t P, {1‘1‘1_51}{59(-1.Ji)+ > t] =1/2 (or t = Eﬂ[mfi.}{ Lp(’f}i)-{_} /2)
— Threshold t can be computed (or estimated), given F,, ..., F_
Give the item to arbitrary bidder i with ¢ .(v,) 2 t, if any, at
(i’s reserve) price r, defined as @ (r) =t.
— If many candidate winners, choose the highest bidder.

Prophet inequality implies 2 50% of optimal revenue!

— Simple, virtual valuations determine reserves, not the winner.
— However, reserves are still player-dependent.

Open Problem: how much of optimal revenue we can recover
with anonymous reserve prices, if bidders are independent
but not identically distributed.




Prior-Independent Auctions

e Design auctions that extract significant fraction of optimal
revenue without resorting to knowledge of valuation
distributions F,, ..., F,

— Distributions are used in the analysis of the auction, not in its design.

e Expected revenue of Vickrey auction with n+1 i.i.d. bidders
from any regular distribution F 2 expected revenue of optimal
auction (Vickrey auction with optimal reserve price derived
with knowledge of F) with ni.i.d. bidders from F.

Theorem 4.1 (Bulow-Klemperer Theorem [1]) Let F' be a regular distribution and n
a positive integer. Then:

E,, . v..a~rF[Rev(VA) (n+ 1 bidders)] > E,, . . ~r[Rev(OPTg) (n bidders)],  (6)

where VA and OPTy denote the Vickrey auction and the optimal auction for F, respectively.’




Multi-Parameter Revenue Maximization

A much harder problem!

Recall Myerson’s lemma does not hold any more for more
complex valuations

Not easy to characterize truthful mechanisms when the

valuation functions depend on multiple private parameters of
the bidders

Very active research field even for auctions with a small number
of items
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