

FROM CONVEX OPTIMIZATION TO LEARNING IN GAMES

THEORY AND APPLICATIONS

Panayotis Mertikopoulos

French National Center for Scientific Research (CNRS)

Criteo Al Lab (CAIL)

⟨ ALMA graduate program | AGT + CVX/ML course | June 6, 2022 ⟩

Outline

Background & Motivation

Theory: Mirror Descent

Applications: Traffic Routing

Game of roads

Background & Motivation

A beautiful morning commute in NYC

oooo

Game of roads

Manhattan at a glance

- ▶ 1,632,000 people
- ▶ 759,000 daily trips
- ▶ Up to 10⁴ requests/s
- ▶ 933 nodes
- ▶ 2950 edges
- 870,000 O/D pairs
- $ightharpoonup \approx 2 * 10^{16} \text{ paths}$

A very large game!

Background & Motivation

Online learning

A generic online decision process:

for each epoch and every player do

Choose action

Receive reward

Get **feedback** (maybe)

end for

#continuous/discrete #single-/multi

continuous / discrete

#endogenous/exogenous

#full info / oracle / payoff-based

Defining elements

- ► Time: continuous or discrete?
- **Players:** continuous or finite?
- Actions: continuous or finite?
- Reward mechanism: endogenous or exogenous (determined by other players or by "Nature")?
- Feedback: observe other actions / other rewards / only received?

P. Mertikopoulos CNRS & CAIL Background & Motivation

Online learning

A generic online decision process:

for each epoch and every player do

Choose action

Receive reward

Get **feedback** (maybe)

end for

#continuous/discrete #single-/multi

continuous / discrete

#endogenous/exogenous

full info / oracle / payoff-based

Defining elements

- Players: continuous of fluitle
- Actions: doldtildudud lor finite
- Reward mechanism: endogenous or exogenous (determined by other players or by "Nature")?
- Feedback: observe other actions / other rewards / only received?

P. Mertikopoulos CNRS & CAIL

Outline

Background & Motivation

Theory: Mirror Descent

3 Applications: Traffic Routing

Problem setup

Primitives:

- **Problem domain:** convex subset \mathcal{X} of \mathcal{V}
- ▶ **Optimization objective:** convex function $f: \mathcal{V} \to \mathbb{R} \cup \{\infty\}$ with dom $f = \mathcal{X}$

Convex Optimization

minimize f(x)

subject to $x \in \mathcal{X}$

(Opt)

Problem setup

Primitives:

- **Problem domain:** convex subset \mathcal{X} of \mathcal{V}
- ▶ **Optimization objective:** convex function $f: \mathcal{V} \to \mathbb{R} \cup \{\infty\}$ with dom $f = \mathcal{X}$

Stochastic Convex Optimization

minimize
$$f(x) = \mathbb{E}[F(x; \omega)]$$

subject to $x \in \mathcal{X}$

(Stoch)

Problem setup

Primitives:

- **Problem domain:** convex subset \mathcal{X} of \mathcal{V}
- **Optimization objective:** convex function $f: \mathcal{V} \to \mathbb{R} \cup \{\infty\}$ with dom $f = \mathcal{X}$

Online Convex Optimization

minimize
$$f(x) = (1/T) \sum_{t=1}^{T} f_t(x)$$

subject to $x \in \mathcal{X}$

(OCO)

Gradient methods in unconstrained problems

Gradient descent

$$x_{t+1} = x_t - \gamma_t \nabla f(x_t)$$

(GD)

Gradient methods in unconstrained problems

Subgradient descent

$$x_{t+1} = x_t - \gamma_t g_t$$

$$g_t \in \partial f(x_t)$$

(subGD)

Projected subgradient descent

$$x_{t+1} = \Pi_{\mathcal{X}}(x_t - \gamma_t g_t)$$

(PGD

$$x_{t+1} = x_t - Y_t = g_t = \nabla f(x_t)$$

let x be a solution of (Opt)

Let De = 7. 11 2e - 27112

Dry = 1 11 xe-yge-x+112 = 12 11 xe-x+12

Projected subgradient descent

$$x_{t+1} = \prod_{\mathcal{X}} (x_t - y_t g_t)$$

$$y_{t+1} = X_t - y_t g_t$$

$$y_{t+1} = \prod_{\mathcal{X}} (y_t g_t)$$
(PGD)

Lazy subgradient descent [Zinkevich, 2003]

$$y_{t+1} = y_t - \gamma_t g_t$$

$$x_{t+1} = \Pi_{\mathcal{X}}(y_{t+1})$$

(LGD)

Projected subgradient descent

$$x_{t+1} = \Pi_{\mathcal{X}}(x_t - \gamma_t g_t)$$

(PGD)

Lazy subgradient descent [Zinkevich, 2003]

$$y_{t+1} = y_t - \gamma_t g_t$$
$$x_{t+1} = \Pi_{\mathcal{X}}(y_{t+1})$$

(LGD)

Dual averaging [Nesterov, 2009; Xiao, 2010]

$$y_{t+1} = y_t - g_t$$

$$x_{t+1} = \Pi_{\mathcal{X}}(\eta_{t+1}y_{t+1})$$

(DA)

9/41

P. Mertikopoulos CNRS & CAIL

Lazy subgradient descent [Zinkevich, 2003]

$$y_{t+1} = y_t - \gamma_t g_t$$

$$x_{t+1} = \Pi_{\mathcal{X}}(y_{t+1})$$

(LGD)

(Lazy) Mirror descent [à la Shalev-Shwartz, 2011; Nesterov, 2009]

$$y_{t+1} = y_t - \gamma_t g_t$$

$$x_{t+1} = Q(y_{t+1})$$

(LMD)

(Lazy) Mirror descent [à la Shalev-Shwartz, 2011; Nesterov, 2009]

$$y_{t+1} = y_t - \gamma_t g_t$$

$$x_{t+1} = Q(y_{t+1})$$

(LMD)

Mirror map

Given a strictly convex *regularizer* $h: \mathcal{X} \to \mathbb{R}$, the *mirror map* $Q: \mathcal{V}^* \to \mathcal{X}$ is defined as

$$Q(y) = \operatorname{arg\,max}_{x \in \mathcal{X}} \{ \langle y, x \rangle - h(x) \}$$

10/41

P. Mertikopoulos CNRS & CAIL

Lazy formulation of mirror descent

[Shalev-Shwartz, 2011; Nesterov, 2009]

$$y_{t+1} = y_t - \gamma_t g_t$$

$$x_{t+1} = Q(y_{t+1})$$
(DA)

where $Q(y) = \arg\max_{x \in \mathcal{X}} \{ (y, x) - h(x) \}$ is the **mirror map** associated to h

Lazy formulation of mirror descent

[Shalev-Shwartz, 2011; Nesterov, 2009]

$$y_{t+1} = y_t - \gamma_t g_t$$

$$x_{t+1} = Q(y_{t+1})$$
(DA)

where $Q(y) = \arg\max_{x \in \mathcal{X}} \{(y, x) - h(x)\}$ is the **mirror map** associated to h

Lazy formulation of mirror descent

[Shalev-Shwartz, 2011; Nesterov, 2009]

$$y_{t+1} = y_t - \gamma_t g_t$$

 $x_{t+1} = Q(y_{t+1})$ (DA)

where $Q(y) = \arg\max_{x \in \mathcal{X}} \{(y, x) - h(x)\}$ is the **mirror map** associated to h

Lazy formulation of mirror descent

[Shalev-Shwartz, 2011; Nesterov, 2009]

$$y_{t+1} = y_t - \gamma_t g_t$$

$$x_{t+1} = Q(y_{t+1})$$
(DA)

where $Q(y) = \arg\max_{x \in \mathcal{X}} \{(y, x) - h(x)\}$ is the **mirror map** associated to h

P. Mertikopoulos CNRS & CAIL

Lazy formulation of mirror descent

[Shalev-Shwartz, 2011; Nesterov, 2009]

$$y_{t+1} = y_t - y_t g_t$$

 $x_{t+1} = Q(y_{t+1})$ (DA)

where $Q(y) = \arg \max_{x \in \mathcal{X}} \{ \langle y, x \rangle - h(x) \}$ is the **mirror map** associated to h

P. Mertikopoulos CNRS & CAIL

Lazy formulation of mirror descent

[Shalev-Shwartz, 2011; Nesterov, 2009]

$$y_{t+1} = y_t - y_t g_t$$

 $x_{t+1} = Q(y_{t+1})$ (DA)

where $Q(y) = \arg \max_{x \in \mathcal{X}} \{ \langle y, x \rangle - h(x) \}$ is the **mirror map** associated to h

Mirror descent [à la Nemirovski & Yudin, 1983; Beck & Teboulle, 2003]

$$x_{t+1} = P_{x_t}(-\gamma_t g_t)$$

(MD)

Mirror descent [à la Nemirovski & Yudin, 1983; Beck & Teboulle, 2003]

$$x_{t+1} = P_{x_t}(-\gamma_t g_t) \tag{MD}$$

Prox-mapping

The **prox-mapping** of h is defined as

$$P_x(y) = \arg\min_{x' \in \mathcal{X}} \{ \langle y, x - x' \rangle + D(x', x) \}$$

where the ${\it Bregman\ divergence\ } D$ of h is given by

$$D(x',x) = h(x') - h(x) - \langle \nabla h(x), x' - x \rangle$$

Mirror descent [à la Nemirovski & Yudin, 1983; Beck & Teboulle, 2003]

$$x_{t+1} = P_{x_t}(-\gamma_t g_t) \tag{MD}$$

Prox-mapping

The **prox-mapping** of h is defined as

$$P_x(y) = \operatorname{arg\,min}_{x' \in \mathcal{X}} \{ \langle y, x - x' \rangle + D(x', x) \}$$

where the **Bregman divergence** *D* of *h* is given by

$$D(x',x) = h(x') - h(x) - \langle \nabla h(x), x' - x \rangle$$

Technical assumptions

- ► *h* is strongly convex
- ah admits a continuous selection

$$[h(x) - (K_h/2)||x||^2$$
 convex for some $K_h > 0$]

[continuous $\nabla h(x) \in \partial h(x)$ for $x \in \text{dom } \partial h$]

P. Mertikopoulos CNRS & CAIL

Example 1

Euclidean setup

- Problem domain: arbitrary
- Regularizer: $h(x) = \frac{1}{2} ||x||_2^2$
- ▶ Bregman divergence: $D(x',x) = \frac{1}{2}||x-x'||_2^2$
- Mirror map: $Q(y) = \Pi_{\mathcal{X}}(y)$
- Prox-mapping: $P_x(y) = \prod_{\mathcal{X}} (x + y)$
- ► Primal-dual variant:

$$x_{t+1} = \Pi_{\mathcal{X}}(x_t - \gamma_t g_t) \tag{PGD}$$

Primal-dual variant:

$$y_{t+1} = y_t - y_t g_t$$

$$x_{t+1} = \Pi_{\mathcal{X}}(y_{t+1})$$
(LGD)

Example 2

Simplex setup

Problem domain: simplex

 $[x_i \ge 0, \sum_i x_i = 1]$

[negative entropy]

- Regularizer: $h(x) = \sum_{i=1}^{d} x_i \log x_i$
- **Bregman divergence:** $D(x', x) = \sum_{i=1}^{d} x_i' \log(x_i'/x_i)$
- $\qquad \qquad \mathbf{Mirror\ map:}\ Q(y) = \Lambda(y) = \frac{(\exp(y_1), ..., \exp(y_d))}{\sum_{i=1}^d \exp(y_i)}$

[Kullback-Leibler divergence]

......

[logit map]

- Prox-mapping: $P_x(y) = \frac{(x_1 \exp(y_1), \dots, x_d \exp(y_d))}{\sum_{i=1}^d x_i \exp(y_i)}$
- Primal-dual variant:

[Entropic gradient descent; Beck & Teboulle, 2003]

$$x_{t+1} = P_{x_t}(-\gamma_t g_t) \propto x_{i,t} \exp(-\gamma_t g_{i,t})$$
 (EGD)

► Primal-dual variant:

[Exponential weights; Auer et al., 1995]

$$y_{t+1} = y_t - \gamma_t g_t x_{t+1} = \Lambda(\gamma_{t+1}) \propto \exp(\gamma_{t+1})$$
(EW)

P. Mertikopoulos CNRS & CAIL

Example 3

Spectrahedron setup

- **Regularizer:** h(X) = tr[X log X]
- **Bregman divergence:** D(X', X) = tr[X'(log X' log X)]
- Mirror map: $Q(Y) = \frac{\exp(Y)}{\operatorname{tr}[\exp(Y)]}$
- ► Prox-mapping: $P_{\mathbf{X}}(\mathbf{Y}) = \frac{\exp(\log \mathbf{X} + \mathbf{Y})}{\operatorname{tr}[\exp(\log \mathbf{X} + \mathbf{Y})]}$

- Problem domain: spectrahedron
- $[X \ge 0, tr(X) = 1]$
 - [von Neumann entropy]
 - [quantum relative entropy]
 - [logit map]

- [Spectral gradient descent; Tsuda et al., 2005]
- $\mathbf{X}_{t+1} = \exp(\log \mathbf{X}_t \gamma_t \mathbf{G}_t)$ (specGD)

Primal-dual variant:

Primal-dual variant:

[Matrix exponential learning; M. et al., 2017]

$$\mathbf{Y}_{t+1} = \mathbf{Y}_t - \gamma_t \mathbf{G}_t$$

$$\mathbf{X}_{t+1} = \frac{\exp(\mathbf{Y}_{t+1})}{\operatorname{tr}[\exp(\mathbf{Y}_{t+1})]}$$
(MXL)

P. Mertikopoulos **CNRS & CAIL**

Equivalence of lazy and eager schemes

$$\operatorname{im} Q = \operatorname{ri} \mathcal{X} \Longrightarrow \operatorname{lazy} = \operatorname{eager}$$

P. Mertikopoulos CNRS & CAIL

Blanket guarantees

Theorem (non-smooth; Nesterov, 2009; Shalev-Shwartz, 2011)

Assume:

- f is G-Lipschitz continuous
- (MD) is run for T steps with $\gamma = (1/G)\sqrt{R_h K_h/T}$ where $R_h = \max h \min h$

Then: the "ergodic average" $\bar{x}_T = (1/T) \sum_{t=1}^T x_t$ enjoys the value convergence rate

$$f(G)\sqrt{R_hK_h/T}$$
 where $R_h=\max h-\min h$ full flow $f(\bar{x}_t)-\min f\leq 2G\sqrt{R_h/(K_hT)}$ Graph $f(\bar{x}_t)=0$ (Lyd)

Theorem (smooth; Bauschke et al., 2017)

Assume:

f is L-Lipschitz smooth relative to h

[Lh - f convex]

(MD) is run for T steps with $\gamma \leq 1/L$

Then: x_t converges to a minimizer x^* of f at a rate of

$$f(x_t) - f(x^*) \le \frac{LD(x^*, x_1)}{T}$$

ASSUMPTIONS:

- Lipschitz objective: |f(x') -f(x) | E G ||x'-z| (LC)

 Bounded gradients: ||Of(x) || EG (BG)
- Lipschitz smooth ress: f(x') & f(x) + L Df(x), x'-2> + 2 ||x'-x||^2 (LS) Ligsdit's gradient: 110fcz') - Dfcz1 11 = L/12'-21 (LG)

LOWER BOUNDS

	OPT (Det /Static)	STOCH / ONLING	Attained
LC/BG	1/17	1/17	by fast and
LS/LG	1/T2 Newistosti 1/T2 1979	1/17	Nesters 1783
p-th level	1 / 3pm Nesters 12 1205	Touson Methods L-Bross	
		L-BPOS	

Outline

Background & Motivation

Theory: Mirror Descent

3 Applications: Traffic Routing

Applications: Traffic Routing

• **Network:** multigraph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

Applications: Traffic Routing

- **Network:** multigraph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- ▶ **O/D** pairs $i \in \mathcal{N}$: origin O_i sends m_i units of traffic to destination D_i

- **Network:** multigraph G = (V, E)
- ▶ **O/D** pairs $i \in \mathcal{N}$: origin O_i sends m_i units of traffic to destination D_i
- ▶ **Paths** \mathcal{P}_i : (sub)set of paths joining $O_i \rightsquigarrow D_i$

Applications: Traffic Routing

- **Network:** multigraph G = (V, E)
- ▶ **O/D** pairs $i \in \mathcal{N}$: origin O_i sends m_i units of traffic to destination D_i
- ▶ **Paths** \mathcal{P}_i : (sub)set of paths joining $O_i \rightsquigarrow D_i$
- **Routing flow** f_p : traffic along $p \in \mathcal{P} \equiv \bigcup_i \mathcal{P}_i$ generated by O/D pair owning p

Applications: Traffic Routing 0-000000000000000000

- **Network:** multigraph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- ▶ **O/D** pairs $i \in \mathcal{N}$: origin O_i sends m_i units of traffic to destination D_i
- **Paths** \mathcal{P}_i : (sub)set of paths joining $O_i \rightsquigarrow D_i$
- **Routing flow** f_p : traffic along $p \in \mathcal{P} \equiv \bigcup_i \mathcal{P}_i$ generated by O/D pair owning p
- ▶ Load $x_e = \sum_{p \ni e} f_p$: total traffic along edge e

- **Network:** multigraph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- ▶ **O/D** pairs $i \in \mathcal{N}$: origin O_i sends m_i units of traffic to destination D_i
- **Paths** \mathcal{P}_i : (sub)set of paths joining $O_i \rightsquigarrow D_i$
- **Routing flow** f_p : traffic along $p \in \mathcal{P} \equiv \bigcup_i \mathcal{P}_i$ generated by O/D pair owning p
- ▶ **Load** $x_e = \sum_{p \ni e} f_p$: total traffic along edge e
- **Edge cost function** $c_e(x_e)$: cost along edge e when edge load is x_e

CNRS & CAIL

P. Mertikopoulos

- **Network:** multigraph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- ▶ **O/D** pairs $i \in \mathcal{N}$: origin O_i sends m_i units of traffic to destination D_i
- **Paths** \mathcal{P}_i : (sub)set of paths joining $O_i \rightsquigarrow D_i$
- **Routing flow** f_p : traffic along $p \in \mathcal{P} \equiv \bigcup_i \mathcal{P}_i$ generated by O/D pair owning p
- ▶ **Load** $x_e = \sum_{p \ni e} f_p$: total traffic along edge e
- **Edge cost function** $c_e(x_e)$: cost along edge e when edge load is x_e
- Path cost: $c_p(f) = \sum_{e \in p} c_e(x_e)$

P. Mertikopoulos CNRS & CAIL

Applications: Traffic Routing

- **Network:** multigraph G = (V, E)
- ▶ **O/D** pairs $i \in \mathcal{N}$: origin O_i sends m_i units of traffic to destination D_i
- ▶ **Paths** \mathcal{P}_i : (sub)set of paths joining $O_i \rightsquigarrow D_i$
- ▶ Routing flow f_p : traffic along $p \in \mathcal{P} \equiv \bigcup_i \mathcal{P}_i$ generated by O/D pair owning p
- ▶ **Load** $x_e = \sum_{p \ni e} f_p$: total traffic along edge e
- **Edge cost function** $c_e(x_e)$: cost along edge e when edge load is x_e
- Path cost: $c_p(f) = \sum_{e \in p} c_e(x_e)$
- ▶ Nonatomic congestion game: $\mathcal{G} = (\mathcal{G}, \mathcal{N}, \{m_i\}_{i \in \mathcal{N}}, \{\mathcal{P}_i\}_{i \in \mathcal{N}}, \{c_e\}_{e \in \mathcal{E}})$

20/41

Traffic equilibrium

Wardrop equilibrium

The flow profile $f^* \in \mathcal{F}$ is a **Wardrop equilibrium** if

$$c_{p_i}(f^*) \le c_{q_i}(f^*)$$
 for all utilized paths $p_i \in \mathcal{P}_i, i \in \mathcal{N}$ (WE)

[Equilibrium routing is envy-free: all traffic elements experience the same latency]

Theorem (Beckmann et al., 1956)

 $f^* \in \mathcal{F}$ is a Wardrop equilibrium if and only if it solves the convex problem

minimize
$$\sum_{e \in \mathcal{E}} \int_0^{x_e} c_e(w) dw$$

subject to
$$x_e = \sum_{p \ni e} f_p, f \in \mathcal{F}$$

(Eq)

CNRS & CAIL

How to reach an equilibrium state?

- ► Standard rationality postulates ~> meaningless
- ▶ Recommender apps ~ can lead to equilibrium

[complete lack of knowledge]

[≈ 10⁸ user base]

The road to equilibrium

How to reach an equilibrium state?

- ▶ Standard rationality postulates ~> meaningless
- ▶ Recommender apps ~ can lead to equilibrium

[complete lack of knowledge]

 $[\approx 10^8 \text{ user base}]$

Recommender must be able to solve in real time:

minimize
$$L(f) = \sum_{e \in \mathcal{E}} \int_0^{x_e} c_e(w) dw$$

subject to $x_e = \sum_{p \ni e} f_p, f \in \mathcal{F}$ (WE)

Applications: Traffic Routing

The road to equilibrium

How to reach an equilibrium state?

- ▶ Standard rationality postulates ~> meaningless
- ▶ Recommender apps ~ can lead to equilibrium

[complete lack of knowledge]

[≈ 10⁸ user base]

Recommender must be able to solve in real time:

minimize
$$L(f) = \sum_{e \in \mathcal{E}} \int_0^{x_e} c_e(w) dw$$

subject to $x_e = \sum_{p \ni e} f_p, f \in \mathcal{F}$ (WE)

Challenges

- Variability: traffic conditions fluctuate unpredictably
- Uncertainty: congestion metrics only partially observable
- ▶ Dimensionality: exponential number of state variables

22/41

P. Mertikopoulos CNRS & CAIL

The model

Randomness and uncertainty:

Exogenous randomness ω ∈ Ω reflected in observed costs $∼ c_e(x_e; ω)$

["State of the world": weather, accidents, added congestion...]

► Mean equilibrium flows

$$\mathbb{E}_{\omega}[c_{p_i}(f^*;\omega)] \leq \mathbb{E}_{\omega}[c_{q_i}(f^*;\omega)] \quad \text{for all utilized paths } p_i \in \mathcal{P}_i, i \in \mathcal{N}$$

Sequence of events

- 1: **for all** t = 1, 2, ... **do**
- 2: Interface recommends flow profile $x_t \in \mathcal{F}$
- 3: Nature determines state of the network $\omega_t \in \Omega$
- 4: Users on path p incur $c_p(x_t; \omega_t)$
- 5: end for

Equilibrium characterization

Stochastic convex programming characterization

 f^* is a **mean equilibrium flow** if and only if it solves

minimize
$$\tilde{L}(f) = \mathbb{E}\left[\sum_{e \in \mathcal{E}} \int_{0}^{x_e} c_e(w; \omega) dw\right]$$

subject to $x_e = \sum_{p \ni e} f_p, f \in \mathcal{F}$ (Eq.S)

NB: Observed cost vectors → stochastic gradients

$$\nabla \bar{L}(f) = (\bar{c}_p(f))_{p \in \mathcal{P}} = \mathbb{E}\Big[(c_p(f;\omega))_{p \in \mathcal{P}}\Big]$$

Two sharply different frameworks:

- **Static regime:** ω_t remains constant with time
- **Stochastic regime:** ω_t fluctuates with time

Stochastic gradient descent

Stochastic gradient descent:

$$f_{t+1} = \operatorname{pr}_{\mathcal{F}}(f_t - \gamma \hat{c}_t)$$
 (SGD)

where $\hat{c}_t = c(f_t; \omega_t)$ is the **cost profile** at time t and $\gamma > 0$ is a **step-size** parameter

Theorem (folk)

If (SGD) is run for T iterations with $\gamma \propto 1/\sqrt{T}$, the mean flow $\bar{f}_T = T^{-1} \sum_{t=1}^T f_t$ enjoys

$$\mathbb{E}[\bar{L}(\bar{f}_T) - \min \bar{L}] = \mathcal{O}(\sqrt{P/T})$$

Stochastic gradient descent:

$$f_{t+1} = \operatorname{pr}_{\mathcal{F}}(f_t - \gamma \hat{c}_t)$$
 (SGD)

where $\hat{c}_t = c(f_t; \omega_t)$ is the **cost profile** at time t and y > 0 is a **step-size** parameter

Theorem (folk)

If (SGD) is run for T iterations with $\gamma \propto 1/\sqrt{T}$, the mean flow $\bar{f}_T = T^{-1} \sum_{t=1}^T f_t$ enjoys

$$\mathbb{E}[\bar{L}(\bar{f}_T) - \min \bar{L}] = \mathcal{O}(\sqrt{P/T})$$

Properties:

✓ Optimal in T: query complexity cannot be improved in the stochastic regime

✗ Slow in P: query complexity is exponential in the network's size

X Non-adaptive: requires tuning of γ

X Offline: \bar{f}_t is never recommended

P. Mertikopoulos CNRS & CAIL

Exponential weights

An idea from the multi-armed bandits literature

[Auer et al., 1995]

Applications: Traffic Routing

- Keep a score for each path, based on its performance so far
- Allocate traffic proportionally to the exponential of this score

Algorithm Exponential weights (ExpWeight)

Require: horizon T; step-size y > 0**Initialize** score vector $y \in \mathbb{R}^{\mathcal{P}}$

- 1: **for all** t = 1, 2, ... T **do**
- 2: Route according to $f_t \sim \exp(y_t)$
- 3: Observe cost profile: $\hat{c}_t \leftarrow (c_p(f_t; \omega_t))_{p \in \mathcal{P}}$
- 4: Update path scores: $y_{t+1} \leftarrow y_t \gamma \hat{c}_t$
- 5: end for
- 6: **return** $\bar{f}_T = (1/T) \sum_{t=1}^T f_t$

#output flow

cost feedback

#update step

#routing recommendation

ExpWeight guarantees

Theorem (folk-ish)

If ExpWeight is run for T steps with $\gamma \propto 1/\sqrt{T}$, the mean flow $\bar{f}_T = T^{-1} \sum_{t=1}^T f_t$ enjoys

$$\bar{L}(\bar{f}_T) - \min \bar{L} = \mathcal{O}(\sqrt{\log P/T})$$

Applications: Traffic Routing

ExpWeight guarantees

Theorem (folk-ish)

If ExpWeight is run for T steps with $\gamma \propto 1/\sqrt{T}$, the mean flow $\bar{f}_T = T^{-1} \sum_{t=1}^T f_t$ enjoys

$$\bar{L}(\bar{f}_T) - \min \bar{L} = \mathcal{O}(\sqrt{\log P/T})$$

Properties:

- ✓ **Optimal in** *T*: query complexity cannot be improved in the stochastic regime
- ✓ Optimal in *P*: query complexity is polynomial in the network's size
- X Non-adaptive: requires tuning of γ
- **X** Offline: \bar{f}_t is never recommended

27/41 CNRS & CAIL

The static case

Is the situation the same in static the static regime?

- ✓ Nesterov's accelerated gradient (NAG) method achieves $\mathcal{O}(1/T^2)$ in static programs
- X But exponential dependence on $|\mathcal{G}|$

Can we get rates that are optimal in both T and P?

Applications: Traffic Routing

The static case

Is the situation the same in static the static regime?

- ✓ Nesterov's accelerated gradient (NAG) method achieves $\mathcal{O}(1/T^2)$ in static programs
- But exponential dependence on $|\mathcal{G}|$

Can we get rates that are optimal in both *T* and *P*?

Algorithm Accelerated exponential weights (AcceleWeight)

[Vu et al., 2021]

Require: initial score vector $y_0 \leftarrow 0$; moving weight $\alpha_0 \leftarrow 0$; step $\gamma_0 \leftarrow 1/(NM\beta)$

- 1: **for all** t = 1, 2, ... T **do**
- $\operatorname{set} z_t \propto \exp(y_{t-1})$
- $\operatorname{set} x_t \leftarrow \alpha_{t-1} x_{t-1} + (1 \alpha_{t-1}) z_t$
 - set $\gamma_t \leftarrow \frac{1}{2} \left[2\gamma_{t-1} + \gamma_0 + \sqrt{4\gamma_{t-1}\gamma_0 + \gamma_0^2} \right]$
- 5: set $\alpha_t \leftarrow \gamma_{t-1}/\gamma_t$
- set $\bar{z}_t \leftarrow \alpha_t x_t + (1 \alpha_t) z_t$ and get $c_t \leftarrow c(\bar{z}_t)$
- set $y_t \leftarrow y_{t-1} (1 \alpha_t) \gamma_t c_t$
- 8: end for
- 9: return xt

#ExpWeight step

 $[\beta \sim \text{Lipschitz modulus}]$

Nesterov momentum

#NAG step-size

moving weight update

route and measure costs

#update path scores

output flow

P. Mertikopoulos CNRS & CAIL

AcceleWeight guarantees

Theorem (Vu, Antonakopoulos & M, NeurIPS 2021)

In the static regime, AcceleWeight enjoys the rate of convergence

$$L(f_T) - \min L \le \frac{4\beta^2 N^2 M^2 \log P}{T^2} = \mathcal{O}\left(\frac{\log P}{T^2}\right)$$

AcceleWeight guarantees

Theorem (Vu, Antonakopoulos & M, NeurIPS 2021)

In the static regime, AcceleWeight enjoys the rate of convergence

$$L(f_T) - \min L \le \frac{4\beta^2 N^2 M^2 \log P}{T^2} = \mathcal{O}\left(\frac{\log P}{T^2}\right)$$

Properties:

- ✓ Optimal in *T*: query complexity cannot be improved in the static regime
- ✓ Optimal in *P*: query complexity is polynomial in the network's size
- X Non-adaptive: requires tuning of γ
- **X** Offline: f_t is never recommended

The good

The good:

- ✓ In the stochastic regime, ExpWeight is optimal in T and P
- ✓ In the static regime, AcceleWeight is optimal in T and P

The good, the bad

The good:

- ✓ In the stochastic regime, ExpWeight is optimal in T and P
- ✓ In the static regime, AcceleWeight is optimal in T and P

The bad:

- ▶ In the static regime, ExpWEIGHT is very slow in T
- ► In the stochastic regime, AcceleWeight does not converge

O CALL

The good, the bad, and the ugly

The good:

- ✓ In the stochastic regime, ExpWeight is optimal in T and P
- ✓ In the static regime, AcceleWeight is optimal in T and P

The bad:

- ▶ In the static regime, ExpWeight is very slow in T
- ► In the stochastic regime, AcceleWeight does not converge

The ugly:

- X Tuning the step-size is impractical / impossible
- X Output is never recommended

C R CALL

Adaptive algorithms

Compare observations:

- ▶ In the static regime: $||c_{t+1} c_t||_{\infty}$ should become small over time
- ▶ In the stochastic regime: $\|c_{t+1} c_t\|_{\infty}$ remains bounded away from zero

D. CAII

Adaptive algorithms

Compare observations:

- ▶ In the static regime: $\|c_{t+1} c_t\|_{\infty}$ should become small over time
- ▶ In the stochastic regime: $||c_{t+1} c_t||_{\infty}$ remains bounded away from zero

Adaptive step-size (Antonakopoulos & M, 2021; Hsieh, Antonakopoulos & M, COLT 2021)

$$\gamma_t = \frac{1}{\sqrt{1 + \sum_{s=1}^{t-1} \|c_{s+1} - c_s\|_{\infty}^2}}$$

(Adapt)

Adaptive algorithms

Compare observations:

- ▶ In the static regime: $\|c_{t+1} c_t\|_{\infty}$ should become small over time
- ▶ In the stochastic regime: $||c_{t+1} c_t||_{\infty}$ remains bounded away from zero

Adaptive step-size (Antonakopoulos & M, 2021; Hsieh, Antonakopoulos & M, COLT 2021)

$$\gamma_t = \frac{1}{\sqrt{1 + \sum_{s=1}^{t-1} \|c_{s+1} - c_s\|_{\infty}^2}}$$

(Adapt)

Algorithm ExpWeight + Adapt

[Antonakopoulos & M, 2021]

#ExpWeight update

cost feedback

Initialize score vector $y \in \mathbb{R}^{\mathcal{P}}$

- 1: **for all** t = 1, 2, ... T **do**
- 2: Route according to $f_t \sim \exp(y_t)$
- 3: Observe cost profile: $\hat{c}_t \leftarrow (c_p(f_t; \omega_t))_{p \in \mathcal{P}}$
- 3. Observe cost prome. $c_t : (c_p(j_t, w_t))_{p \in P}$
- 4: Update path scores: $y_{t+1} \leftarrow y_t \gamma_t \hat{c}_t$
- 5: end for
- 6: **return** $\bar{f}_T = (1/T) \sum_{t=1}^{T} f_t$

output flow

ADAPT step

P. Mertikopoulos CNRS & CAIL

Guarantees of ExpWeight + Adapt

Theorem (Antonakopoulos & M, NeurIPS 2021)

Suppose that ExpWeight +Adapt is run for T steps. Then \bar{f}_T enjoys the rate

$$\mathbb{E}[\bar{L}(\bar{f}_T) - \min \bar{L}] = \mathcal{O}\left(\frac{\log(PT)}{T} + \sigma\sqrt{\frac{\log(PT)}{T}}\right)$$

Applications: Traffic Routing

where σ^2 is the variance of $\|c'(x;\omega)\|_{\mathcal{L}^1}$.

Guarantees of ExpWeight + Adapt

Theorem (Antonakopoulos & M, NeurIPS 2021)

Suppose that ExpWeight +Adapt is run for T steps. Then \bar{f}_T enjoys the rate

$$\mathbb{E}[\bar{L}(\bar{f}_T) - \min \bar{L}] = \mathcal{O}\left(\frac{\log(PT)}{T} + \sigma\sqrt{\frac{\log(PT)}{T}}\right)$$

where σ^2 is the variance of $\|c'(x;\omega)\|_{\mathcal{L}^1}$.

Properties:

- ✓ Optimal in stochastic regime: query complexity cannot be improved in T if $\sigma > 0$
- ▶ Better than ExpWeight in the static regime, but worse than AcceleWeight
- √ Adaptive: no hyperparameter tuning required
- **X** Offline: \bar{f}_t is never recommended

3 2/4 1

AdaWeight

Is there a path to universal acceleration?

AdaWeight

Is there a path to universal acceleration?

Algorithm Adaptive exponential weights (ADAWEIGHT)

[Vu et al., 2021]

Initialize score vector $y_1 \leftarrow 0$; moving weight $\alpha_0 \leftarrow 0$; step $\eta_1 \leftarrow 1$

- 1: **for all** t = 1, 2, ..., T **do**
- 2: $\operatorname{set} z_t \propto \exp(\eta_t v_t)$
 - set $\bar{z} \leftarrow \left(\alpha_t z_t + \sum_{s=0}^{t-1} \alpha_s z_{s+1/2}\right) / \sum_{s=0}^t \alpha_s$ and get $\bar{c}_t \leftarrow c(\bar{z}_t; \omega_t)$
- 4: set $y_{t+1/2} \leftarrow y_t - \alpha_t \bar{c}_t$
- $\operatorname{set} z_{t+1/2} \propto \exp(\eta_t y_{t+1/2})$
- set $x_t \leftarrow \left(\sum_{s=0}^t \alpha_s z_{s+1/2}\right) / \sum_{s=0}^t \alpha_s$ and get $c_t \leftarrow c(x_t; \omega_t)$
- set $y_{t+1} \leftarrow y_t \gamma_t c_t$
- set $\eta_{t+1} \leftarrow \eta_t \sqrt{1 + \alpha_t^2 \|c_t \bar{c}_t\|_{\infty}^2}$
- 9. end for
- 10: return x_t

#ExpWeight step

#reweigh + explore

#score update

#ExpWeight step

route and measure costs #update scores

ADAPT Step

output flow

[Borrows ideas from ExpWeight + NAG + extra-gradient + dual extrapolation methods]

P. Mertikopoulos CNRS & CAIL

AdaWeight guarantees

Theorem (Vu et al., 2021)

AdaWeight enjoys the rate of convergence

$$\mathbb{E}[L(f_T) - \min L] = \mathcal{O}\left(\frac{\log P}{T^2} + \frac{\sigma \log P}{\sqrt{T}}\right)$$

AdaWeight guarantees

Theorem (Vu et al., 2021)

ADAWEIGHT enjoys the rate of convergence

$$\mathbb{E}[L(f_T) - \min L] = \mathcal{O}\left(\frac{\log P}{T^2} + \frac{\sigma \log P}{\sqrt{T}}\right)$$

Properties:

- ✓ Optimal in stochastic regime: query complexity cannot be improved in T if $\sigma > 0$
- ✓ Optimal in static regime: query complexity cannot be improved in T if $\sigma = 0$
- ✓ Fast in P: query complexity is polynomial in the network's size
- ✓ Adaptive: does not require any tuning or prior system knowledge
- ✓ Online: guarantees concern the recommended flows

AdaWeight in practice

Numerical experiments in the Anaheim metropolitan area

Applications: Traffic Routing

Figure: ExpWeight, AcceleWeight & AdaWeight in static (left) and stochastic (right) conditions

P. Mertikopoulos CNRS & CAIL

Applications: Traffic Routing

UnderGrad: The theory under the hood

Is there a path to universal acceleration for arbitrary domains?

Is there a path to universal acceleration for arbitrary domains?

Dual extrapolation (DE)

$$y_{t+1/2} = y_t - \gamma_t g_t \qquad x_{t+1/2} = Q(\eta_t y_{t+1/2})$$

$$y_{t+1} = y_t - \gamma_t g_{t+1/2} \qquad x_{t+1} = Q(\eta_{t+1} y_{t+1})$$

$$x_{t+1/2} = Q(\eta_t y_{t+1/2})$$

Applications: Traffic Routing ococococococococo

(DE)

Is there a path to universal acceleration for arbitrary domains?

Dual extrapolation (DE)

$$y_{t+1/2} = y_t - \gamma_t g_t \qquad x_{t+1/2} = Q(\eta_t y_{t+1/2})$$

$$y_{t+1} = y_t - \gamma_t g_{t+1/2} \qquad x_{t+1} = Q(\eta_{t+1} y_{t+1})$$
(DE)

Adaptive learning rate

$$\eta_{t+1} = \sqrt{\frac{K_h(R_h + K_h \| \mathcal{X} \|^2)}{K_h + \sum_{s=1}^t \gamma_s^2 \| g_{s+1/2} - g_s \|^2}}$$
(Adapt)

Is there a path to universal acceleration for arbitrary domains?

Dual extrapolation (DE)

$$y_{t+1/2} = y_t - \gamma_t g_t \qquad x_{t+1/2} = Q(\eta_t y_{t+1/2})$$

$$y_{t+1} = y_t - \gamma_t g_{t+1/2} \qquad x_{t+1} = Q(\eta_{t+1} y_{t+1})$$
(DE)

Applications: Traffic Routing ocococococococococo

Adaptive learning rate

$$\eta_{t+1} = \sqrt{\frac{K_h(R_h + K_h \| \mathcal{X} \|^2)}{K_h + \sum_{s=1}^t \gamma_s^2 \| g_{s+1/2} - g_s \|^2}}$$
(Adapt)

Iterate averaging

P. Mertikopoulos

$$\bar{x}_{t} = \frac{\gamma_{t} x_{t} + \sum_{s=1}^{t-1} \gamma_{s} x_{s+1/2}}{\sum_{s=1}^{t} \gamma_{s}}$$

$$\bar{x}_{t+1/2} = \frac{\gamma_{t} x_{t+1/2} + \sum_{s=1}^{t-1} \gamma_{s} x_{s+1/2}}{\sum_{s=1}^{t} \gamma_{s}}$$

CNRS & CAIL

Is there a path to universal acceleration for arbitrary domains?

Figure: The UNDERGRAD algorithm

37/41

P. Mertikopoulos CNRS & CAIL

Is there a path to universal acceleration for arbitrary domains?

Theorem (Antonakopoulos, Vu, Cevher, Levy & M, ICML 2022)

Suppose that UnderGrad is run for T iterations with $y_t = t$. Then the algorithm's output state $\bar{x}_T \equiv \bar{x}_{T+1/2}$ concurrently enjoys the following guarantees:

a) If f satisfies (LC)/(BG), then

$$\mathbb{E}[f(\bar{x}_T) - \min f] \le 2C_h \sqrt{\frac{K_h + 8(G^2 + \sigma^2)}{K_h T}}$$

b) If f satisfies (LS)/(LG), then

$$\mathbb{E}[f(\bar{x}_T) - \min f] \le \frac{32\sqrt{2}C_h^2L}{K_hT^2} + \frac{8\sqrt{2}C_h\sigma}{\sqrt{K_hT}}$$

where
$$C_h = \sqrt{R_h + K_h \|\mathcal{X}\|^2}$$
.

CNRS & CAII

References I

- Antonakopoulos, K. and Mertikopoulos, P. Adaptive first-order methods revisited: Convex optimization without Lipschitz requirements. In NeurIPS '21: Proceedings of the 35th International Conference on Neural Information Processing Systems, 2021.
- Antonakopoulos, K., Vu, D. Q., Cevher, V., Levy, K. Y., and Mertikopoulos, P. Scaling up universal methods for convex optimization. In ICML '22: Proceedings of the 39th International Conference on Machine Learning, 2022.
- Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E. Gambling in a rigged casino: The adversarial multi-armed bandit problem. In *Proceedings* of the 36th Annual Symposium on Foundations of Computer Science, 1995.
- Bauschke, H. H., Bolte, J., and Teboulle, M. A descent lemma beyond Lipschitz gradient continuity: First-order methods revisited and applications. *Mathematics of Operations Research*, 42(2):330-348, May 2017.
- Beck, A. and Teboulle, M. Mirror descent and nonlinear projected subgradient methods for convex optimization. *Operations Research Letters*, 31 (3):167-175, 2003.
- Beckmann, M., McGuire, C. B., and Winsten, C. Studies in the Economics of Transportation. Yale University Press, 1956.
- Hsieh, Y.-G., Antonakopoulos, K., and Mertikopoulos, P. Adaptive learning in continuous games: Optimal regret bounds and convergence to Nash equilibrium. In COLT '21: Proceedings of the 34th Annual Conference on Learning Theory, 2021.
- Mertikopoulos, P., Belmega, E. V., Negrel, R., and Sanguinetti, L. Distributed stochastic optimization via matrix exponential learning. *IEEE Trans. Signal Process.*, 65(9):2277-2290, May 2017.
- Nemirovski, A. S. and Yudin, D. B. Problem Complexity and Method Efficiency in Optimization. Wiley, New York, NY, 1983.
- Nesterov, Y. Primal-dual subgradient methods for convex problems. Mathematical Programming, 120(1):221-259, 2009.
- Shalev-Shwartz, S. Online learning and online convex optimization. Foundations and Trends in Machine Learning, 4(2):107-194, 2011.

P. Mertikopoulos CNRS & CAIL

References

ckground & Motivation Theory: Mirror Descent Applications: Traffic Routing References

References II

- Tsuda, K., Rätsch, G., and Warmuth, M. K. Matrix exponentiated gradient updates for on-line Bregman projection. *Journal of Machine Learning Research*, 6:995–1018, 2005.
- Vu, D. Q., Antonakopoulos, K., and Mertikopoulos, P. Fast routing under uncertainty: Adaptive learning in congestion games with exponential weights. In NeurlPS '21: Proceedings of the 35th International Conference on Neural Information Processing Systems, 2021.
- Xiao, L. Dual averaging methods for regularized stochastic learning and online optimization. *Journal of Machine Learning Research*, 11: 2543-2596, October 2010.
- Zinkevich, M. Online convex programming and generalized infinitesimal gradient ascent. In ICML '03: Proceedings of the 20th International Conference on Machine Learning, pp. 928-936, 2003.

CNRS & CAII

Games in Grenoble

If you like mountains and/or games, drop me an e-mail (doc / post-doc level)

P. Mertikopoulos CNRS & CAIL

$$u_{k}(x_{k}; x_{-k}) = \sum_{a_{k} \in I_{k}} \sum_{a_{+} \in I_{-k}} x_{k,a_{k}} x_{-k,a_{-k}} u_{k}(a_{k}; a_{-k})$$

Entropic Godient Descent

