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% Online learning

A generic online decision process:

for each epoch and every player do # continuous / discrete # single-/ multi
Choose action # continuous / discrete
Receive reward #endogenous / exogenous
Get feedback (maybe) #fullinfo/ oracle / payoff-based
end for
Defining elements

> Time: continuous or discrete?
*> Players: continuous or finite?
> Actions: continuous or finite?
> Reward mechanism: endogenous or exogenous (determined by other players or by “Nature”)?

> Feedback: observe other actions / other rewards / only received?
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Primitives:
> Problem domain: convex subset X’ of V

> Optimization objective: convex function f:V — R U {oo} with dom f = X

Convex Optimization

minimize  f(x) (Op)
p
subjectto xe X
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Primitives:
» Problem domain: convex subset X of V

> Optimization objective: convex function f:V — R U {0} with dom f = X

Stochastic Convex Optimization

minimize f(x) = E[F(x; )]
subjectto xe X

(Stoch)
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Primitives:
» Problem domain: convex subset X of V

> Optimization objective: convex function f:V — R U {0} with dom f = X

Online Convex Optimization

minimize  f(x) = (1/T) Zthlff(x)

subjectto xe X

(0CO)
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% Gradient methods in unconstrained problems

lication:

fic Routin

Gradient descent
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fic Routin

% Gradient methods in unconstrained problems

ient descent

Xt1 = Xt — Yt Gt gr € f (x¢) (subGD)
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% Projected gradient methods

Projected subgradient descent

X1 = (o0 = yig1) (PGD)
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% Projected gradient methods

Projected subgradient descent

T
R e

‘é/«\ = Xx — 6(3{

LA ""n‘ﬁc“&’c(\)

Lazy subgradient descent  [Zinkevich, 2003]

Yts1 = Yt — Yt Gt
(LGD)
x4 = Iy ()/Hl)
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Projected gradient methods

Projected subgradient descent

Xee1 = x (xt - y:g:)

Lazy subgradient descent  [Zinkevich, 2003]

Yts1 = Yt — Yt Gt

(LGD)
x41 = Il ()/t+1)

Dual averaging  [Nesterov, 2009; Xiao, 2010]

Vte1 = Yt — gt

(DA)
X1 = x (ﬂt+1}’z+1)
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% Projected gradient methods

Lazy subgradient descent  [Zinkevich, 2003]

Yts1 = Yt — Yt Gt

(LGD)
x41 = Il ()/Hl)

P. Mertikopoulos CNRS & CAIL



Theory: Mirror Descent

0000800000000

(Lazy) Mirror descent  [a la Shalev-Shwartz, 2011; Nesterov, 2009]

Yt+1 = Yt — Ytgt

(LMD)
Xt41 = Q(}’t+1)

P. Mertikopoulos CNRS & CAIL
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(Lazy) Mirror descent  [a la Shalev-Shwartz, 2011; Nesterov, 2009]

Yt+1 = Yt — Ytgt

(LMD)
Xt41 = Q(}’tH)

Given a strictly convex regularizer h: X — R, the mirror map Q: V* — X is defined as

Q(y) = argmax, o {(y,x) - h(x)}

P. Mertikopoulos CNRS & CAIL
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Lazy formulation of mirror descent [Shalev-Shwartz, 2011; Nesteroy, 2009]

Vtv1 = Ytr — Ytgt

DA
Xt41 = Q(}’m) O~

where Q(y) = argmax__,.{(y,x) — h(x)} is the mirror map associated to h
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Lazy formulation of mirror descent [Shalev-Shwartz, 2011; Nesteroy, 2009]

Vtv1 = Ytr — Ytgt

DA
Xt41 = Q(}’m) O~

where Q(y) = argmax__,.{(y,x) — h(x)} is the mirror map associated to h
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Mirror descent  [a la Nemirovski & Yudin, 1983; Beck & Teboulle, 2003]

Xt41 = le(—ytgt) (MD)

P. Mertikopoulos CNRS & CAIL
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Mirror descent  [a la Nemirovski & Yudin, 1983; Beck & Teboulle, 2003]

Xi41 = Py, (—yfgt)

Prox-mapping

The prox-mapping of h is defined as

P.(y) = argmin,,, {(,x - x') + D(x', x)}
where the Bregman divergence D of h is given by

D(x',x) = h(x") = h(x) — (Vh(x),x - x)

P. Mertikopoulos CNRS & CAIL
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Mirror descent

Mirror descent  [a la Nemirovski & Yudin, 1983; Beck & Teboulle, 2003]

Xi41 = Py, (—yfgt)

Prox-mapping

The prox-mapping of h is defined as
P(y) = argmin,,_ {{y,x = x) + D(x', x)}
where the Bregman divergence D of h is given by

D(x',x) = h(x") = h(x) — (Vh(x),x - x)

Technical assumptions

> his strongly convex [h(x) = (Ky/2)|x|* convex for some K}, > 0]

> oh admits a continuous selection [continuous VA (x) € dh(x) for x € dom dh]

P. Mertikopoulos CNRS & CAIL



Theory: Mirror Descent
000000000000

Euclidean setup

> Problem domain: arbitrary

> Regularizer: h(x) = %HxH%

> Bregman divergence: D(x',x) = %Hx -x'|3
> Mirror map: Q(y) =l x (y)

> Prox-mapping: Px(y) = Ly (x + y)

> Primal-dual variant:
Xt+1 = HX(Xt - ytgt) (PGD)

> Primal-dual variant:
Vi1 = Yt — YVt gt

LGD
Xee1 = Hx (es1) ( )

P. Mertikopoulos CNRS & CAIL
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Example 2

Simplex setup
> Problem domain: simplex Ad = é zeﬂl v T i

> Regularizer: h(x) = ¥, x; log x;

[x: ZO,ZXX,‘ =1]

[negative entropy]

> Bregman divergence: D(x’,x) = Y9, x/log(x!/x;) [Kullback-Leibler divergence]
> Mirror map: Q(y) = A(y) = 7(“1’({?‘:)1’;;:2‘;()}%)) O\ltb %1:& $ Ly J'\lx)j [logit map]

(1 exp(y1)s--0%q exp(y4))
=4 xiexp(yi)

> Prox-mapping: Px(y) =

y
» Primal-dual variant: [Entropic gradient descent; Beck & Teboulle, 2003]
Xe+1 = Py, (=pegt) o< xi,e exp(=yigit) (EGD)
» Primal-dual variant: [Exponential weights; Auer et al., 1995]
Yi+1 = Yt — VtGt (EW)

Xee1 = A1) o< exp(yie1)

P. Mertikopoulos CNRS & CAIL
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Spectrahedron setup

> Problem domain: spectrahedron [X>0,tr(X) =1]
> Regularizer: h(X) = tr[XlogX] [von Neumann entropy]
> Bregman divergence: D(X’,X) = tr[X'(log X’ — logX)] [quantum relative entropy]
> Mirror map: Q(Y) = % [logit map]
. log X+Y
> Prox-mapping: Px (Y) = %
y
» Primal-dual variant: [Spectral gradient descent; Tsuda et al., 2005]
X1 = exp(logX; — y:Gy) (specGD)
» Primal-dual variant: [Matrix exponential learning; M. et al,, 2017]
Y=Y - )/th
exp(Ye) (MXL)
X = —F————
twlexp(Yio)]

P. Mertikopoulos CNRS & CAIL
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% Lazy vs. eager

eager _
Xy =

Equivalence of lazy and eager schemes

imQ=riX = lazy = eager

P. Mertikopoulos CNRS & CAIL
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Theorem (n mooth; Nesterov, 2009; Shalev-Shwartz, 2011)

Assume:

> fis G-Lipschitz continuous

> (MD)is run for T steps with y = (1/G)\/R, K/ T where Rj, = maxh — min h q&ﬁ\dbﬁ L= @(_W)

Then: the “ergodic average” %r = (1/T) Y1, x: enjoys the value convergence rate

f(ft)—minfﬁvaRh/(KhT_) \éc—u*wc\'t'- - @U};?l)

Theorem (smooth; Bauschke et al., 201 7)

|}l

Assume:
> fis L-Lipschitz smooth relative to h [Lh — f convex]
> (MD) s run for T steps with y <1/L

Then: x; converges to a minimizer x* of f at a rate of

fla) - fa") < EREH)

P. Mertikopoulos CNRS & CAIL
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@ Nonatomic congestion games

> Network: multigraph G = (V,€)
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> Network: multigraph G = (V,€)

v
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@ Nonatomic congestion games

> Network: multigraph G = (V,€)

> O/D pairs i € N: origin O; sends m; units of traffic to destination D;

> Paths P;: (sub)set of paths joining O; ~ D;

> Routing flow f,: traffic along p € P = U; P; generated by O/D pair owning p
> Load x. = ¥, fp: total traffic along edge e

> Edge cost function c.(x.): cost along edge e when edge load is x.

> Path cost: cp(f) = Xeep ce(xe)

> Nonatomic congestion game: G = (G, N, {m; }icnr, {Pi }ienr> {ce }eee)

P. Mertikopoulos



Applications: Traffic Routing
000000000000 00000000

Wardrop equilibrium

The flow profile f* € F is a Wardrop equilibrium if
cp, (f*) < cq;(fF) forall utilized paths p; € Pi,i e N (WE)

[Equilibrium routing is envy-free: all traffic elements experience the same latency]

Theorem (Beckmann et al., 1956)

f* € Fis a Wardrop equilibrium if and only if it solves the convex problem

X,
minimize Z/ ece(w) dw
ec€ V0

subjectto x. =Y f,, feF
PQZ

(Eg)

P. Mertikopoulos CNRS & CAIL
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» Standard rationality postulates ~> meaningless [complete lack of knowledge]

> Recommender apps ~ can lead to equilibrium [~ 10° user base]
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@ The road to equilibrium

How to reach an equilibrium state?

» Standard rationality postulates ~> meaningless [complete lack of knowledge]

> Recommender apps ~ can lead to equilibrium [~ 10° user base]

Recommender must be able to solve in real time:

minimize L(f) =), /xc ce(w) dw
ec€ Y0 (WE)
subjectto x. = pr, feF
pae
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% The road to equilibrium

How to reach an equilibrium state?

» Standard rationality postulates ~> meaningless [complete lack of knowledge]

> Recommender apps ~ can lead to equilibrium [~ 10° user base]

Recommender must be able to solve in real time:

minimize L(f) =), /xc ce(w) dw
ec€ Y0 (WE)
subjectto x. = pr, feF
pae

Challenges
> Variability: traffic conditions fluctuate unpredictably
> Uncertainty: congestion metrics only partially observable

> Dimensionality: exponential number of state variables

P. Mertikopoulos CNRS & CAIL
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Randomness and uncertainty:

» Exogenous randomness w € Q) reflected in observed costs ~ c.(x.; w)
[“State of the world”: weather, accidents, added congestion...]

> Mean equilibrium flows

Eolcp, (ff50)] <Ealcq, (ff5w)] forall utilized paths p; € Py, i e N

Sequence of events

1. forallt=1,2,... do

2 Interface recommends flow profile x;, € 7

3: Nature determines state of the network w; € Q
4 Users on path p incur ¢, (x5 w¢)

5. end for

P. Mertikopoulos CNRS & CAIL
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% Equilibrium characterization

Stochastic convex programming characterization
f* is a mean equilibrium flow if and only if it solves

minimize L(f) = E[Z /:)xe ce(w; w) dw:|

eeE

subjectto x, =Y. fp, f€F
pae

(Eq.S)

NB: Observed cost vectors ~ stochastic gradients

VL) = (&) ep = E[ (e5(f50)),ep |

Two sharply different frameworks:
> Static regime: w; remains constant with time

> Stochastic regime: w; fluctuates with time

P. Mertikopoulos CNRS & CAIL
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% Stochastic gradient descent

Stochastic gradient descent:
ft+1 =P1‘]:(ft—)/5t) (SGD)

where ¢ = c(fi; w¢) is the cost profile at time t and y > 0 is a step-size parameter

Theorem (folk)

If (SGD) s run for T iterations with y o< 1/7/T, the mean flow fr = T YL f; enjoys

E[L(fr) - minL] = O(\/P/T)

P. Mertikopoulos CNRS & CAIL
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% Stochastic gradient descent

Stochastic gradient descent:
ft+1 =P1‘]:(ft—)/5t) (SGD)

where ¢ = c(fi; w¢) is the cost profile at time t and y > 0 is a step-size parameter

Theorem (folk)

If (SGD) s run for T iterations with y o< 1/7/T, the mean flow fr = T YL f; enjoys

E[L(fr) - minL] = O(\/P/T)

Properties:
v Optimal in T: query complexity cannot be improved in the stochastic regime
X Slow in P: query complexity is exponential in the network’s size
X Non-adaptive: requires tuning of y

X Offline: f; is never recommended

P. Mertikopoulos CNRS & CAIL
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An idea from the multi-armed bandits literature [Auer et al., 1995]

> Keep a score for each path, based on its performance so far

> Allocate traffic proportionally to the exponential of this score

Algorithm Exponential weights (EXPWEIGHT)

Require: horizon T; step-size y > 0
Initialize score vector y e R”
1: forallt=1,2,... T do
2: Route according to f; ~ exp(y:)
3: Observe cost profile: ¢ < (cp(fts @t)) per
4: Update path scores: ysy1 < yr — yés
5: end for

6: return fr = (1/T) XL, fi

# routing recommendation
# cost feedback
# update step

# output flow

P. Mertikopoulos CNRS & CAIL
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% ExpWeight guarantees

Theorem (folk-ish)
If EXPWEIGHT is run for T steps with y o< 1/5/T, the mean flow fr = T™" Y1, f: enjoys

L(fr) -minL = (’)(\/logP/T)

P. Mertikopoulos CNRS & CAIL
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% ExpWeight guarantees

Theorem (folk-ish)

If EXPWEIGHT is run for T steps with y o< 1/5/T, the mean flow fr = T™" Y1, f: enjoys

L(fr) -minL = (’)(\/logP/T)

Properties:
v Optimal in T: query complexity cannot be improved in the stochastic regime
v/ Optimal in P: query complexity is polynomial in the network’s size
X Non-adaptive: requires tuning of y

X Offline: f; is never recommended
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@ The static case

Is the situation the same in static the static regime?

v Nesterov’s accelerated gradient (NAG) method achieves O(1/T?) in static programs

X But exponential dependence on |G|

Can we get rates that are optimal in both T and P?

P. Mertikopoulos
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Is the situation the same in static the static regime?

v Nesterov’s accelerated gradient (NAG) method achieves O(1/T?) in static programs

X But exponential dependence on |G|

Can we get rates that are optimal in both T and P?

Algorithm Accelerated exponential weights (AcCELEWEIGHT)

[Vuetal,2021]

Require: initial score vector yo < 0; moving weight ag < 0; step yo < 1/(NMp)
1: forall t =1,2,... T do
2: set zt o< exp(yi-1)

3: set xp < ap1xe—1 + (1— ap—1)zs

4 set y < %[Zyt_l +y0 +/4yi-1y0 + ¥i]

5: setay < ye_1/ye

6:  setZy < asxe + (1—ar)zy and get ¢y < c(2¢)
7: set yr < yi—1 — (1— ar)yece

8: end for

9: return x;

[B ~ Lipschitz modulus]

# ExPWEIGHT step

# Nesterov momentum
#NAG step-size

# moving weight update

# route and measure costs

# update path scores

#output flow

P. Mertikopoulos CNRS & CAIL
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% AcceleWeight guarantees

Theorem (Vu, Antonakopoulos & M, NeurIPS 2021)

In the static regime, AcCELEWEIGHT enjoys the rate of convergence

PP iy
L(fr) - minL < 4B°N"M"log P :O(logP)

TZ

P. Mertikopoulos CNRS & CAIL
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% AcceleWeight guarantees

Theorem (Vu, Antonakopoulos & M, NeurIPS 2021)

In the static regime, AcCELEWEIGHT enjoys the rate of convergence

4B8°N*M?log P log P
L(fr)-minL < P = 05 :O( & )

Properties:
v/ Optimal in T: query complexity cannot be improved in the static regime
v/ Optimal in P: query complexity is polynomial in the network’s size
X Non-adaptive: requires tuning of y

X Offline: f; is never recommended

P. Mertikopoulos CNRS & CAIL
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% The good

The good:

v In the stochastic regime, EXPWEIGHT is optimal in T and P

v In the static regime, AccELEWEIGHT is optimal in T and P
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% The good, the bad

The good:

v In the stochastic regime, EXPWEIGHT is optimal in T and P

v In the static regime, AccELEWEIGHT is optimal in T and P

The bad:
> In the static regime, ExPWEIGHT is very slow in T

*> In the stochastic regime, AccELEWEIGHT does not converge

P. Mertikopoulos
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@ The good, the bad, and the ugly

The good:

v In the stochastic regime, EXPWEIGHT is optimal in T and P

v In the static regime, AccELEWEIGHT is optimal in T and P

The bad:
> In the static regime, ExPWEIGHT is very slow in T

*> In the stochastic regime, AccELEWEIGHT does not converge

The ugly:
X Tuning the step-size is impractical / impossible

X Output is never recommended

P. Mertikopoulos CNRS & CAIL
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@ Adaptive algorithms

Compare observations:

> In the static regime: |c¢+1 — ¢¢] oo should become small over time

> In the stochastic regime: ||ct+1 — ¢t[ oo remains bounded away from zero
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Compare observations:
> In the static regime: |c¢+1 — ¢¢] oo should become small over time

> In the stochastic regime: ||ct+1 — ¢t[ oo remains bounded away from zero

Adaptive step-size (Antonakopoulos & M, 2021; Hsieh, Antonakopoulos & M, COLT 2021)

1

(Adapt)

‘=
V1+ E o e = el

P. Mertikopoulos CNRS & CAIL



Applications: Traffic Routing

0000000000008 0000000

Compare observations:
> In the static regime: |c¢+1 — ¢¢] oo should become small over time

> In the stochastic regime: ||ct+1 — ¢t[ oo remains bounded away from zero

Adaptive step-size (Antonakopoulos & M, 2021; Hsieh, Antonakopoulos & M, COLT 2021)

1

(Adapt)

Yt = = >
V1+ E o e = el

Algorithm ExPWEIGHT + ApapT [Antonakopoulos & M, 2021]

Initialize score vector y € RP
1: forallt=1,2,... T do

2. Route according to f; ~ exp(y:) #ExpWEIGHT update

3: Observe cost profile: ¢ < (cp(fts @t)) pep # cost feedback
4: Update path scores: yi41 < yi — yils # ADAPT step
5: end for

6: return JZT =(1/T) Z?:l fi # output flow

P. Mertikopoulos CNRS & CAIL
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% Guarantees of ExpWeight + Adapt

Theorem (Antonakopoulos & M, NeurlPS 2021)

Suppose that EXPWEIGHT +ADAPT is run for T steps. Then fr enjoys the rate

E[L(r) - mini] - o(logg{m Y ) )

where ¢ is the variance of || ¢’ (x; @) | z1.

P. Mertikopoulos CNRS & CAIL
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Guarantees of ExpWeight + Adapt

Theorem (Antonakopoulos & M, NeurlPS 2021)

Suppose that EXPWEIGHT +ADAPT is run for T steps. Then fr enjoys the rate

E[L(r) - mini] - o(logg{m Y ) )

where ¢ is the variance of || ¢’ (x; @) | z1.

Properties:

v/ Optimal in stochastic regime: query complexity cannot be improved in T'if 0 > 0
> Better than ExpPWEIGHT in the static regime, but worse than AcceLeE WEIGHT
v Adaptive: no hyperparameter tuning required

X Offline: f; is never recommended

P. Mertikopoulos CNRS & CAIL
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@ AdaWeight

Is there a path to universal acceleration?




% AdaWeight

Is there a path to universal acceleration?

Algorithm Adaptive exponential weights (ADAWEIGHT) [Vuetal, 2021]

Initialize score vector y; < 0; moving weight ag < 0;step 171 < 1
1: forallt=1,2,... T do

2: set zt o< exp(7tyr) # ExPWEIGHT step
3: setz « (lXtZt + Zﬁ;(l) “SZHI/Z)/ 22:0 a5 and get ¢ < c(zs; wt) #reweigh + explore
4: set Yir1/2 < Yt = o Cr # score update
5: set zyiy/p o< exp(my,Hﬂ) # ExPWEIGHT step
6: set x; « (Zézo aszﬁ,l/z)/ Zizo as and get ¢; < c(xs; wr) # route and measure costs
7: set yi41 < Yt — yict # update scores
8 setpr « fqiy/1+a?|cr — &% # ApapT step
9: end for

10: return x; # output flow

[Borrows ideas from ExpWEiGHT + NAG + extra-gradient + dual extrapolation methods]

P. Mertikopoulos CNRS & CAIL
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% AdaWeight guarantees

Theorem (Vu et al., 2021)

AbAWEIGHT enjoys the rate of convergence

E[L(fr) -minL] = O(—

P. Mertikopoulos CNRS & CAIL
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Theorem (Vu et al., 2021)

AbAWEIGHT enjoys the rate of convergence

E[L(fr) -minL] = O(—

Properties:

v/ Optimal in stochastic regime: query complexity cannot be improved in T' if ¢ > 0
v/ Optimal in static regime: query complexity cannot be improved in T' if ¢ = 0

v Fast in P: query complexity is polynomial in the network’s size

v Adaptive: does not require any tuning or prior system knowledge

v/ Online: guarantees concern the recommended flows

P. Mertikopoulos CNRS & CAIL
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@ AdaWeight in practice

Numerical experiments in the Anaheim metropolitan area

103 <4
102 4
102 <4
101 ] 101 4
100 5 100 4
1011 AcceleWeight,y® = 2E-02
—¥- AcceleWeight,y° = 2E-05 10-1]
1072 § -¥-- AcceleWeight,y® = 2E-08 —¥— AcceleWeight
—e— ExpWeight 72 —e— ExpWeight
107§ s AdaWeight 10771 _a— AdaWeight
10° 10t 102 103 104 10° 10t 102 103 104

Figure: ExPWEIGHT, AccELEWEIGHT & ADAWEIGHT in static (left) and stochastic (right) conditions
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@ UnderGrad: The theory under the hood

Is there a path to universal acceleration for arbitrary domains?

P. Mertikopoulos @
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@ UnderGrad: The theory under the hood

Is there a path to universal acceleration for arbitrary domains?
Dual extrapolation (DE)

Yir1/2 = Yt — Yt Gt Xi1/2 = Q(ﬂz}’m/z)
Y1 = Yt — VtGr+1/2 Xt+1 = Q(ﬂm}/m)

LA\ / ‘8{ %
%t%‘/’ P2y

‘e

(DE)

P. Mertikopoulos CNRS & CAIL



% UnderGrad: The theory under the hood

Is there a path to universal acceleration for arbitrary domains?

Dual extrapolation (DE)

Yir1/2 = Yt — Yt Gt Xi1/2 = Q(ﬂz}’m/z) (DE)
Y1 = Yt — VtGr+1/2 Xt+1 = Q(ﬂm}/m)

Adaptive learning rate

Ki (R, + Ky | X2
oo = h([ 3t w1 X12) : (Adapt)
Ky + X ys ”gsH/Z A

P. Mertikopoulos CNRS & CAIL



% UnderGrad: The theory under the hood

Is there a path to universal acceleration for arbitrary domains?

Dual extrapolation (DE)

Yir1/2 = Yt — Yt Gt Xi1/2 = Q(ﬂz}’m/z)

(DE)
Y1 = Yt — VtGr+1/2 Xt+1 = Q(ﬂm}/m)
Adaptive learning rate
Ky (Ry + Ki | X2
Mt = "([ L A1) - (Adapt)
Ky + X vilgsny2 = g5l

Iterate averaging

_ YeXe + Zgzi YsXs+1/2
Xt = =
Zs:l ys
~ ViXts1/2 + Zi:; VsXs+1/2
Xev1/2 = 7
Zszl ys

P. Mertikopoulos CNRS & CAIL



% UnderGrad: The theory under the hood

Is there a path to universal acceleration for arbitrary domains?

(initialized) Y

Yit1

Q(nY?)

Figure: The UNDERGRAD algorithm

CNRS & CAIL

P. Mertikopoulos
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% UnderGrad: The theory under the hood

Is there a path to universal acceleration for arbitrary domains?

Theorem (Antonakopoulos, Vu, Cevher, Levy & M, ICML 2022)

Suppose that UNDERGRAD is run for T iterations with y; = t. Then the algorithm’s output state X1 = X141,
concurrently enjoys the following guarantees:

a) If f satisfies (LC)/(BG), then
E[f(%r) - min f] < 2Ci /%

32¢/2CL . 8v/2Cho
KhT2 \/KhT

b) If f satisfies (LS)/(LG), then

E[f(*r) - min f] <

where C, = /Ry, + Kj, | X ||

P. Mertikopoulos CNRS & CAIL
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@ Games in Grenoble

# If you like mountains and/or games, drop me an e-mail (doc / post-doc level)
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