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F, design/compute f that is close to f*.
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>>> Problem Formulation: Distribution Learning

Density estimation or distribution learning is the
following task: given data generated from an unknown

target probability distribution f* from a known class
F, design/compute f that is close to f*.

Example: F = Gaussian in d dimemnsions, f*=N(0,1)
* Evaluation: Sample Complexity and Computational
Complexity
* Data generated i.i.d. from f*

* Qur measure of closeness is the Total Variation distance



>>> TV Distance
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>>> TV Distance

1l = 3 1f@)] or / If@)ldz

zeX e

Total Variation distance:
1
dry(P,Q) = §||P— Qll1
Why 1/27

drv(P,Q) = max|P(S) - Q(S)

[1. Distribution Learning]
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>>> Learning Distributions

If f is a density estimate from m samples, we define the
risk of the estimator with respect to the class F as

Rn(f, F) = sup E[dry (f, f)]
feF
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>>> Learning Distributions

If f is a density estimate from m samples, we define the
risk of the estimator with respect to the class F as

Rn(f, F) = sup E[dry (f, f)]
feF

The analogue of the optimal sample complexity is the minimax
risk of the class F

Ron(F) = inf sup Eldry () )]
f feF
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>>> Learning Discrete Distributions over X = [n]

F=4p=(p,p2,pn) :pi>0,> pi=1
i€[n]
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>>> Learning Discrete Distributions over X = [n]

F=4p=(p,p2,pn) :pi>0,> pi=1
i€[n]

Problem: Given access to i.i.d. samples from the unknown
p € F, output a hypothesis ¢ s.t. dry(p,q) <€ w.p. 1—9.
Fact: @(%2(1/5)) (or Ry (F)=+/n/m). The upper bound:

* Compute the empirical distribution p given m samples

Ty eeey T ~ P
* dry(p,p) > e <= IS Cn] s.t. p(S) —p(S) > e
* Step 1: Fix S C [n]

AS) =) =

JeS

[1. Distribution Learning]

[e]



>>> Learning Discrete Distributions over X = [n]

F=4p=(p,p2,pn) :pi>0,> pi=1
i€[n]

Problem: Given access to i.i.d. samples from the unknown
p € F, output a hypothesis ¢ s.t. dry(p,q) <€ w.p. 1—9.
Fact: @(%2(1/5)) (or Ry (F)=+/n/m). The upper bound:

* Compute the empirical distribution p given m samples

Ty eeey T ~ P
* dry(p,p) > e <= IS Cn] s.t. p(S) —p(S) > e
* Step 1: Fix S C [n]

#(8) =3 5) = 3 (W{L S 1 = j}) _

j€S j€S i=1

[1. Distribution Learning]

[e]



>>> Learning Discrete Distributions over X = [n]

F=4p=(p,p2,pn) :pi>0,> pi=1
i€[n]

Problem: Given access to i.i.d. samples from the unknown
p € F, output a hypothesis ¢ s.t. dry(p,q) <€ w.p. 1—9.
Fact: @(%2(1/5)) (or Ry (F)=+/n/m). The upper bound:

* Compute the empirical distribution p given m samples

Tlyeeey Ty ~ D
* dry(p,p) > e <= IS Cn] s.t. p(S) —p(S) > e
* Step 1: Fix S C [n]
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>>> Learning Discrete Distributions over X = [n]

F=4p=(p,p2,pn) :pi>0,> pi=1
i€[n]
Problem: Given access to i.i.d. samples from the unknown
p € F, output a hypothesis ¢ s.t. dry(p,q) <€ w.p. 1—9.
Fact: @(%2(1/5)) (or Ry (F)=+/n/m). The upper bound:
* Compute the empirical distribution p given m samples
Ty ey Ty ~ D
* dry(p,p) > e <= IS Cn] s.t. p(S) —p(S) > e
* Step 1: Fix S C [n]
1 1 &
#8) =20 = X (7 Lt =}) = - 3 X,
jES jes i=1 =i
where X; ~Be(p(S)) (i.i.d.)
* Step 2: Hoeffding: Pr[p(S) — p(S) > €] < exp(—2€2m)
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>>> Learning Discrete Distributions over X = [n]

F=4p=(p,p2,pn) :pi>0,> pi=1
i€[n]
Problem: Given access to i.i.d. samples from the unknown
p € F, output a hypothesis ¢ s.t. dry(p,q) <€ w.p. 1—9.
Fact: @(%2(1/5)) (or Ry (F)=+/n/m). The upper bound:
* Compute the empirical distribution p given m samples

LYy ooy Ty ~ P

* dry(p,p) > e <= IS Cn] s.t. p(S) —p(S) > e
* Step 1: Fix S C [n]
" l ¢ : 1 ¢
= ZP(J) = Z <m21{9€z ZJ}) = %ZXi
jes j€S i=1 i=1
where X; ~Be(p(S)) (i.i.d.)

* Step 2: Hoeffding: Pr[p(S) — p(S) > €] < exp(—2€2m)
* Step 3: U.B.: Pr[3S C [n]:p(S)—p(S) > ]<2”exp( 2¢2m) < 6.
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For continuous distributions the learning problem is not
solvable with no assumptions.
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>>> Continuous Case

For continuous distributions the learning problem is not
solvable with no assumptions.

Intuition : n — o0

Focus on structured distribution families, e.g., parametric
families.
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>>> Univariate Gaussian: MLE

x ~ N(u,0?)
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>>> Univariate Case

How many parameters? Can we accurately estimate them?
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>>> Univariate Case

How many parameters? Can we accurately estimate them? N
samples from N'(u,o?)

Empirical mean

Empirical variance
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>>> Maximum Log-Likelihood

Llyeees TN N(,IL, 02)®N

[1. Distribution Learning] [10]



>>> Maximum Log-Likelihood

o1,y ~ N (i, a?)®N

L(x1,....xN|p,0%) = Hie[N] N (ilp, 0?) =
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>>> Maximum Log-Likelihood

o1,y ~ N (i, a?)®N
Ti— %
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>>> Maximum Log-Likelihood

Ty, TN N(:U’v 02)®N

Ti— %
ﬁ(.’L'l,...,.’L'N’/,L,O'2) = HZG[N] N("L'Z‘,U/, 0'2) = HzE[N] \/ﬁexp(_( 2054) )

In(L(xq, -~-,xN’M702)) =
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>>> Maximum Log-Likelihood

o1,y ~ N (i, a?)®N

Ti— %
E(.’L'l,...,.’L'N’/,L,O'2) = HZG[N] N("L'Z‘,U/, 0'2) = HlE[N] \/ﬁexp(_( 2054) )

(L1, o 2|, 02) = — % In(2m) — % In(o?) — — (@i — 02
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>>> Maximum Log-Likelihood

o1,y ~ N (i, a?)®N

Ti— %
E(.’L'l,...,.’L'N’/,L,O'2) = HZG[N] ./\/’(IL'Z‘,U/, 0'2) = HzE[N] \/ﬁexp(_( 205) )

(L1, o 2|, 02) = — % In(2m) — % In(o?) — — > (@i = 02

Optimize the negative log-likelihood over the space of
parameters (u,o).
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>>> KL divergence and MLE

0* true parameters, 0 guess.

(020 = B, e ()
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>>> KL divergence and MLE

0* true parameters, 0 guess.

(000 .o, [ (22

KL(Dy+, Dy) = O(1) — Ep«[log(Dy)]
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>>> KL divergence and MLE

0* true parameters, 0 guess.

KL(Dy+, Dy) = Eqop,. [log (De* (:1:))]

KL(Dg+, Dy) = O(1) — Eg«[log(Dy)]
Estimate E,.p,.[h(z)] with % i) hl(@i)
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>>> KL divergence and MLE

0* true parameters, 0 guess.

KL(Do+, Do) = Ex, [bg <z>9* (:1:))]

KL(Dg+, Dy) = O(1) — Eg«[log(Dy)]
Estimate E,.p,.[h(z)] with % > iepn) M(@i)

0cO
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N N
B . 1
minKL(Dy+, Dy) = min — - ; log(Dy(x;)) = I;leaé(il;[ll)g(xz)
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>>> Multivariate Case

How many parameters?
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>>> Gaussian density estimation

* d-dimensional Gaussian N (1, X), Hdx1, Xdxd:

1

R o P
(%)ddet(z)exp( 5@ =) Tz —p).

N(p, X)(x) =

* Ellipsoid: {z:(x —v)'A(z —v) =1} where A >0

Ny using O(d?/€?),Q(d?/€*) samples.
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>>> Gaussian Upper Bound via Yatracos Class

For a class F of functions from X to R, the Yatracos
class of F is

V(F)={{z €X: fi(z) > fa(x)} : f1, f2 € F}.
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>>> Gaussian Upper Bound via Yatracos Class

For a class F of functions from X to R, the Yatracos
class of F is

V(F)={{z €X: fi(z) > fa(x)} : f1, f2 € F}.

Exercise: dry(fi, f2) = ||f1 — f2||y(}‘)

(1) For any class F, the sample complexity of learning
. VCdim (Y (F)+log(1/5))
F is O(YCdmW(F)+log(1/9)y

€

(2) Let G be a vector space of real-valued functions.

Then VCdim({{z : f(z) >0} : f € G}) < dim(G).

Proof: Y(Ng) = {{z : N (1, 21)(z) > N (2, X2)(2)} : ps, 2i} and so
is contained in the space {{z"Az +b'z+c>0}: A,b,c} whose
dimension is O(d?).
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>>> Permutations

We assume that there is a hidden central ranking my € S, and
we define a notion of distance between permutations:
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>>> Permutations

We assume that there is a hidden central ranking my € S, and
we define a notion of distance between permutations:

dgr(m,0) = Z 1{j >+ i} = Bubblesort(w,o)
]

dgr(123,213) = 1

drr(123,312) = 2
dgr(m,m) = (3)
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>>> Permutations

We assume that there is a hidden central ranking my € S, and

we define a notion of distance between permutations:

dgr(m,0) = Z 1{j >+ i} = Bubblesort(w,o)
]

drr(123,213) = 1
dr7(123,312) = 2

dgr(m,7t) = (3)
Mallows Model M(m, f3)

Pr(r|mo, 5] o exp(=p - dxr(m, m0))
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>>> Permutations

We assume that there is a hidden central ranking my € S, and
we define a notion of distance between permutations:

dgr(m,0) = Z 1{j >+ i} = Bubblesort(w,o)
]

drr(123,213) = 1
dr7(123,312) = 2

dgr(m,7t) = (3)
Mallows Model M(m, f3)

Pr(r|mo, 5] o exp(=p - dxr(m, m0))

Sampling from a Mallows model, can we learn the true target
ranking mp?

[1. Distribution Learning] [156]



Learning with probability at least 1 — € using
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Learning with probability at least 1 — e using O(log(n/e))
samples.
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Learning with probability at least 1 — e using O(log(n/e))
samples.

In each sample, either ¢>j or j > i

Count for each ordered pair i,j, the votes n;; and nj

If i >, J, we expect n;; —nj; >0 due to the Mallows model
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Learning with probability at least 1 — e using O(log(n/e))
samples.

In each sample, either ¢>j or j > i

Count for each ordered pair i,j, the votes n;; and nj

If i >, J, we expect n;; —nj; >0 due to the Mallows model
Hoeffding and U.B. over (g) pairs.

[1. Distribution Learning] [16]



>>> Learning Coarse Gaussians

Consider a mixture of partitions 7 over R? and an unknown
target mean u*.

1. Draw a partition S ~ 7
2. Draw x ~ N (u*,I)

3. Output the unique set S € § that contains x (with
distribution A)

Can we learn the true mean from i.i.d. samples from N;?

[1. Distribution Learning] [171



>>> Efficient algorithm for Coarse Gaussians

Draw S from N (u*)
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>>> Efficient algorithm for Coarse Gaussians

Draw S from N (u*)

L(p) = log(N (1; 5)) = log </S exp(—|lz — u\|§/2>>

1
(2m)4
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>>> Efficient algorithm for Coarse Gaussians

Draw S from N (u*)

1

Ve

L(p) = log(N (1; 5)) = log </S exp(—|lz — u\|3/2>>

Js(@ — p) - exp(=|lz — pll3/2)dz _

VA = p (e e sl e
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>>> Efficient algorithm for Coarse Gaussians

Draw S from N (u*)

1

Ve

L(p) = log(N (1; 5)) = log </S exp(—|lz — u\|3/2>>

Js(@ — p) - exp(=|lz — pll3/2)dz _

VA = p (e e sl e

V%C(/J) = COV./\/’s(/L) [x] -1
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>>> Efficient algorithm for Coarse Gaussians

Draw S from N (u*)

1

Ve

L(p) = log(N (1; 5)) = log </S exp(—|lz — u\|3/2>>

fs(l' —n) - exp(—|lx — ,u,H%/Q)dx _ o] —
[sexp(—|lz — ul3/2)dx N (1)

VL(p) =
Vzﬁ(u) = COVNs(u) [x] -1
If S is convex then the Brascamp-Lieb Inequality implies that

the negative log-likelihood is convex!
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>>> Efficient algorithm for Coarse Gaussians

Draw S from N (u*)

£(1) = og(N (15 5)) = log ( /S J(;T)dexpe\x - m|%/2>>

Js(@ — p) - exp(=|lz — pll3/2)dz _
Jsexp(=llz — pl3/2)dx

VL(u) = No(w[®] — 1

Vzﬁ(u) = COVNs(u) [x] -1

If S is convex then the Brascamp-Lieb Inequality implies that
the negative log-likelihood is convex!
Beyond convexity?

[1. Distribution Learning] [18]



>>> Ising Model and RBMs

J symmetric matrix, h external field
1 1
Pr[X = x] = - eXp(§ Z JijziTj + Z 5385
1,7 7

Ising models with hidden variables Y

1
Pr[X =a,Y =y|_exp(z' Jy+ Y hizi+ Y hiy;)

Z : ;
i€[n] j€[m]

Ferromagnetic: J;; Z(Lfﬁ,h?EiO
How many samples from RBM to learn the structure of the
bipartite graph?

[1. Distribution Learning]
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>>> Influence in Ising models

The observed variables that exert the most influence on

some variable X; ought to be X; s two-hop neighbors.
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some variable X; ought to be X; s two-hop neighbors.

Li(S) = Exrp(am [Xi| Xs = {+1}19]

If J,h are ferromagnetic, then [;(S) is a monotone
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>>> Influence in Ising models

The observed variables that exert the most influence on

some variable X; ought to be X; s two-hop neighbors.

Li(S) = Exrp(am [Xi| Xs = {+1}19]

If J,h are ferromagnetic, then [;(S) is a monotone

submodular function for any <.

Submodular: For S CT

Li(SU{j}) - Li(S) = L(T' U{j}) - Ii(T)

[1. Distribution Learning] [20]



>>> The Algorithm

Greedy Neighborhood for ¢
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>>> The Algorithm

Greedy Neighborhood for ¢
1. Set Sp=10
2. For t=1,...,dsy:
2.1 Let ji11 = argmaxl;(S: U {j})
2.2 St =S U {jis1}
3. Find two-hop neighborhood j € Sk
Number of samples: poly(ds) - log(n)

[1. Distribution Learning]
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