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Chapter 3

Solutions 3.1-3.4 35

we obtainA\ = —N. Eliminating A then gives our final result for the maximum
likelihood solution forh,, in the form

ng 1

hy, = &
TN A

Note that, for equal sized bins, = A we obtain a bin height;, which is propor-
tional to the fraction of points falling within that bin, as eqted.

Linear Models for Regression

3.1

NOTE: In the 1% printing of PRML, there is & missing in the denominator of the
argument to thetanh’ function in equation (3.102).

Using (3.6), we have

2
2 1+e 2
1+e2¢ 14e 20
1 —e 2@
1+e 20

—a

e’ —e
et +e @
= tanh(a)

If we now takea; = (= — 11;)/2s, we can rewrite (3.101) as
Yo w) = wo+ ijo@aj)

- w0+z (20(2a;) —1+1)
M
= uo—i-Zujtanh(aj),

Jj=1

whereu; = w;/2,forj =1,..., M, andug = wy + Zj Lwj/2.
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Solution 3.5

3.4 Let

D
A?jn = wo+ Z wz(wnz + eni)

=1
D

= yn+§ Wi€n;q
=1

wherey,, = y(z,, w) ande,; ~ N(0,0?) and we have used (3.105). From (3.106)
we then define

E = (o — tn}?

DN | —
] =

3
Il
-

I
DO | —
M) =

{V2 — 2Gntn + 12}

S
I
-

M=

D D 2
Yn + 2yn Z Wi€ni + (Z wiem>
i—1 i=1

D
~2tpyn — 2tn Y Wicni + 17,

=1

1
2
1

3
Il

If we take the expectation df under the distribution of,,;, we see that the second
and fifth terms disappear, sin&,,;] = 0, while for the third term we get

D 2 D

2 2

E E W; € = E w;o
i=1 i=1

since the:,,; are all independent with varianeé.
From this and (3.106) we see that

D
- 1
E [E} =Ep+ Z;wf(ﬂ?
=

as required.

3.5 We can rewrite (3.30) as

1 M
(et -a) <o
j=1
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where we have incorporated th¢2 scaling factor for convenience. Clearly this does
not affect the constraint.

Employing the technique described in Appendix E, we can camtiiis with (3.12)
to obtain the Lagrangian function

1 N
:§Z{tn_WT Xn }2 <Z|w1|q_n>

and by comparing this with (3.29) we see immediately that tleydentical in their
dependence ow.

Now suppose we choose a specific value\af 0 and minimize (3.29). Denoting
the resulting value ofv by w* (), and using the KKT condition (E.11), we see that

the value ofy is given by
M
n=>_ [wj\)
j=1

3.6 We first write down the log likelihood function which is given by

N
In L(W, ) f% || — % S (b — W) TS (b, — WTh(x,.)).

n=1
First of all we set the derivative with respect¥d equal to zero, giving

N

0=— Z E_l(tn - WT¢(XR))¢(XR)T'

n=1

Multiplying through by and introducing the design matri and the target data
matrix T we have

dTOW =o' T
Solving forW then gives (3.15) as required.

The maximum likelihood solution faE is easily found by appealing to the standard
result from Chapter 2 giving

- N Z Wi d(xn)) (b — Wi o (xa)) "

as required. Since we are finding a joint maximum with respect to W andX
we see that it i3V, which appears in this expression, as in the standard result for
an unconditional Gaussian distribution.

3.8 Combining the prior
p(w) = N(wlmy,Sy)
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3.10

3.15

and the likelihood

AN s
PN ilXN1, W) = (277> exp <—2(tN+1 - WT¢N+1)2> (94)

whereg | = ¢(xn1), we obtain a posterior of the form

P(W[tN+1,XN4+1, My, Sy)

X exp (—;(w —my)"'Sy (W —mpy) — %5(tN+1 - WT¢N+1)2> :

We can expand the argument of the exponential, omitting-thé factors, as fol-
lows
(w —my) TS (W — ) + Bty 1 — W hy)?
= WTS;\,lw — 2WTSR,1mN
+ BwW N 1Py W — 20w P it + const
=w ' (Sy' + Bdns1On )W — 2w (Sy'my + Bd . tni1) + const,

whereconst denotes remaining terms independentwofFrom this we can read off
the desired result directly,

p(Wltns1, Xn+1, my, Sy) = N(wlmpyy1, Syi1),
with
SN =Sy + BdN 1 PN (95)
and

myg; = SN+1(S;\zlmN + BN i1tNt1)- (96)

Using (3.3), (3.8) and (3.49), we can re-write (3.57) as

pltlx.t, a, B) = / N (tb(x)"w, 5~ )N (wimy, Sy dw.

By matching the first factor of the integrand with (2.114) andgbeond factor with
(2.113), we obtain the desired result directly from (2.115).

This is easily shown by substituting the re-estimation form(3a@2) and (3.95) into
(3.82), giving
- B 2, @
E(my) = 5 It — 2mp||” + §mNmN
_N—~v ~v N

5 T3~ 9



Solutions 3.18-3.20 39

3.18 We can rewrite (3.79)

3.20

gHt— dw|’ + %WTW

(tTt —nATPw + WT'I'T'IZ'W) + %WTW

N =@

(ﬂtTt —26tTdw + WTAW>

where, in the last line, we have used (3.81). We now use the trickdding0 =
miAmy — m5Amy and usingl = A~ A, combined with (3.84), as follows:

% (Bt"t —2pt"dw + W Aw)

(BTt —28t" @A Aw + W Aw)

(ﬁtTt —2myAwW +w AW + myAmy — mNAmN)

l\J\i—‘l\D\HMM—‘

(BTt —myAmy) + %(w —my)TA(w — my).

Here the last term equals term the last term of (3.80) and so it renmshow that
the first term equals the r.h.s. of (3.82). To do this, we use the $acks again:

DO |

as required.

("t~ m} Amy) = J ("t~ 2m§ Amy + m Amy)

(bt"t —2myAAT RT3 + myy (al + fT @) my)
(ﬁtTt —2my®"t3 + fmy @ dmy + amNmN)
(

Bt —®mpy)"(t — Pmy) + amymy)

M\QI\DM—‘[\DM—W\JM—A

It — @mNH + 2mNmN

We only need to consider the terms of (3.86) that depend,omhich are the first,
third and fourth terms.

Following the sequence of steps in Section 3.5.2, we stahntthv last of these terms,

1

From (3.81), (3.87) and the fact that that eigenvectgrare orthonormal (see also
Appendix C), we find that the eigenvectorsto bea+ \;. We can then use (C.47)
and the properties of the logarithm to take us from the left to the sigle of (3.88).
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The derivatives for the first and third term of (3.86) are more easitginbd using
standard derivatives and (3.82), yielding

1 /M 4T
— [ — 4+ mym .
2\ « NTEN

We combine these results into (3.89), from which we get (3.92) vi@0}3. The
expression fory in (3.91) is obtained from (3.90) by substituting

M

N+«
;A + «

for M and re-arranging.

3.23 From (3.10), (3.112) and the properties of the Gaussian and Ganstndowtions
(see Appendix B), we get

pt) = / / p(t}w, B)p(w|5) dwp(5) 4

— // (éi)zm exp {g(t —dw)(t - @w)}

g\ 8
(27r) |So|1/2exp{—2(w—mO)TSal(w—mU)} dw

[(ag) 1630 g%t exp(—bo3) d3

T (en Mi(:|s E //e p{ (t=&w) (tq)w)}

exp {ﬁ(w —my) TSy H(w — mo)} dw

2
Bt N2 M2 exp(—by 3) d B

) ((27rMZVO|S|1/2// { (w—my)'Sy (w—mN)} dw

exp {—g (tTt +m;S; 'mg — m%SI_\,lmN)}

BN =1 aM/2 exp(—byB) A3
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where we have completed the square for the quadratic fomn unsing

my = SN [So_ll’l’lo + @Tt]
Sy = B(Sy'+e'e)
N
an = CloJr?
1 N
by = bo+ 3 (mgsolmo —mySy'my + Zti) .
n=1

Now we are ready to do the integration, first oveland thens, and re-arrange the
terms to obtain the desired result

bao
p(t) = 0 (2m)M/2[S | /2 / B exp(~byB) dB
((2m)M+N S |) 1/
1 |SN|1/2 bgo F(CLN)
(2m)N/2 [So[1/2 b3 T(ag)

Chapter 4 Linear Models for Classification

4.2 Forthe purpose of this exercise, we make the contribution diitkeweights explicit
in (4.15), giving

Ep(W) = %Tr {(XW + 1w — T)"(XW + 1w — T)}, (97)

wherewy is the column vector of bias weights (the top rOWADT transposed) antl
is a column vector of N ones.

We can take the derivative of (97) w.niy, giving
2Nwy + 2(XW — T)"1.
Setting this to zero, and solving fer,, we obtain
wo=t— WTx (98)
where

1 1
t=—T"1 and x= —XT1.
N TN

If we subsitute (98) into (97), we get

Ep(W) = %Tr{(XWjLT—XW—T)T(XWjLT—XW—T)},
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where

T=1tT and X =1x".

Setting the derivative of this w.r.¥W to zero we get
W = (XTX)"'XTT = X7,
where we have define = X — X andT = T — T.
Now consider the prediction for a new input vecior,
y(X*) = WTX* + Wy
Wix* +t - W'k
—~ ~\T
- -TT (XT) (x* — %). (99)

If we apply (4.157) tat, we get

_ 1
alt = NaTTTl = —b.

Therefore, applying (4.157) to (99), we obtain
—~ —~ T
aTy(x*) = a"t+alTT (XT) (x* — %)
= aTt=—b,
sincea™TT = aT(T - T)T = p(1 — 1)T = 0.

4.4 NOTE: In the 1%* printing of PRML, the text of the exercise refers equation (4.23)
where it should refer to (4.22).

From (4.22) we can construct the Lagrangian function
L=w"(my; —m;)+ A (WTW - 1) )

Taking the gradient of. we obtain

VL = ms—m; +2\w (100)
and setting this gradient to zero gives
= o (my - my)
W = 2)\ 194 5) m;

form which it follows thatw o« my — m;.
4.7 From (4.59) we have

1 _l—l—e_a—l
l4e@  14e@
B e ¢ B 1

1+e—a_e“+1:

1—0(a) = 1

o(—a).
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The inverse of the logistic sigmoid is easily found as follows

1
1+e @

4.9 The likelihood function is given by

p {bn ta}{mid) = [] [T {p(@nlCr)mi}™

n=1k=1

and taking the logarithm, we obtain

N K
lnp({¢na n}|{ﬂ-kz} - ZZ nk {lnp ¢n|ck) +In Wk} (101)

n=1 k=1

In order to maximize the log likelihood with respectip we need to preserve the
constrainty ", m, = 1. This can be done by introducing a Lagrange multiphend
maximizing

K
lnp({¢mtn}|{77k}) + A (Z Tk — 1) .

Setting the derivative with respect4q equal to zero, we obtain

Re-arranging then gives
N
~TEA =) tn = N (102)

Summing both sides ovérwe find that\ = — N, and using this to eliminat® we
obtain (4.159).
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4.12 Differentiating (4.59) we obtain

do e ®

da (1+e2)?

= o { 1 i_ea*a }

— o(a) l4e e 1
- o l4+e* 14e @
= o(a)(1—o(a)).

4.13 We start by computing the derivative of (4.90) w.y.t.

OF 1—t, t,
it - 103
OYn I —yn Yn ( )
_ yn<1_tn)_tn(1_yn)
yn(l - yn)
Yn — yntn - tn + yntn
= 104
yn(l - yn) ( )
Yn — tn
== 105
yn(l - yn) ( )
From (4.88), we see that
yn _ Oo(an)
a. = n 1- n)) = Yn 1- n)- 1
o = 2280 = 0(a,) (1= 0(a.) = (1 = 1) (106)
Finally, we have
Va, = ¢, (107)

whereV denotes the gradient with respectwo Combining (105), (106) and (107)
using the chain rule, we obtain

VE = —=—Va,

as required.
4.17 From (4.104) we have

Yy, ek et \?
a5 = < ) = k(1 — ),

Oay, > e >, e

o etk efi .

o = T 2T TYkYj J# k.
Oa; (3, eai)



4.19

4.23

Solutions 4.19-4.23 45

Combining these results we obtain (4.106).
Using the cross-entropy error function (4.90), and following Exer4i48, we have

aE _ yn_tn

—_— = 108
ayn yn<1 - yn) ( )
Also
Va, = ¢,. (109)
From (4.115) and (4.116) we have
Oy 0®(an,) 1 .-
90, = da. Tﬂe . (110)
Combining (108), (109) and (110), we get
O 8y, Ny —tn 1
VE = "Va, =Y A g 111
nz:l 8yn 8an p— yn(l - yn) \/ﬂ6 (vbn ( )

In order to find the expression for the Hessian, it is is conven@&fitst determine

0 Yn — In _ yn(l - yn) . (yn - tn)(l - 2yn)
OYn yn(l - yn) yr%(l - yn)2 y%(l - yn)2
2 tn - 2 ntn
— Yalin— Sain (112)
yn(l - yn)

Then using (109)—(112) we have

N
8 Yn — tn 1 _ 2
VVE = — e, Vyn
Z {8yn |:yn(1 - yn):| vV 27’(6 d)n 4

n=1
Yn — tn 1

yn(1 = yn) V2rr

N
_ Z <y721 +tn — 2yntn 1 e_ai _ 2 ( )> —2a ¢n¢
Yn(l—yn) V21 nin V27my, (1 —yn)

+

e~ (—2a,)¢,Va, }

n=1

NOTE: In the 1 printing of PRML, the text of the exercise contains a typogreahi
error. Following the equation, it should say tli&is the matrix of second derivatives
of the negative log likelihood.

The BIC approximation can be viewed as a laig@pproximation to the log model
evidence. From (4.138), we have

A = —VVinp(D|Onap)p(Onap)
= H—VVlnp(eMAp)
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Solution 5.2

Chapter 5

and ifp(@) = N(6|m, V), this becomes
A=H+V;%

If we assume that the prior is broad, or equivalently that thebmmof data points
is large, we can neglect the tei¥fj, ' compared tdd. Using this result, (4.137) can
be rewritten in the form

1

_ 1
Inp(D) =~ Inp(D|Onap) — i(OMAp —m)V, 1(9MAP —m) — 3 In [H| + const

(113)
as required. Note that the phrasing of the question is mislgadince the assump-
tion of a broad prior, or of largéV, is required in order to derive this form, as well
as in the subsequent simplification.

We now again invoke the broad prior assumption, allowing ustglett the second
term on the right hand side of (113) relative to the first term.

Since we assume i.i.d. datH, = —VV In p(D|Oyap) consists of a sum of terms,
one term for each datum, and we can consider the following appedion:

N
H:ZHn:Nﬁ

n=1

whereH,, is the contribution from the'® data point and

~ 1 N
H= - nz_:l H,.
Combining this with the properties of the determinant, we have
hﬂﬂ:mWﬁbm%NWﬁD:MMN+mﬁ|

whereM is the dimensionality of. Note that we are assuming tHathas full rank

M. Finally, using this result together (113), we obtain (4.139lkppping thén |ﬁ|
since thisO(1) compared tdn N.

Neural Networks

5.2

The likelihood function for an i.i.d. data sef(x;,t;),..., (xn,tx)}, under the
conditional distribution (5.16) is given by

N
[TV (taly(xn, w), 37'T) .
n=1



5.5

5.6

Solutions 5.5-5.6 47

If we take the logarithm of this, using (2.43), we get

N
Zln/\f (tnly (x5, w),37'T)

n=1

y(xp, w )) (BT) (t,, — y(xn,wW)) + const

I.\D\H

v (Xn, w)H + const

i

I\D\Q

where ‘const’ comprises terms which are independent ofThe first term on the
right hand side is proportional to the negative of (5.11) and éenaximizing the
log-likelihood is equivalent to minimizing the sum-of-square®e

For the given interpretation afx(x, w), the conditional distribution of the target
vector for a multiclass neural network is

K
p(tlwy, ..., wg) = Hy,tj
k=1

Thus, for a data set a¥ points, the likelihood function will be

N K
p(T‘Wl, R ,WK) = H Hyf;lbck

n=1k=1

Taking the negative logarithm in order to derive an error functi@nobtain (5.24)
as required. Note that this is the same result as for the mukitdgsstic regression
model, given by (4.108) .

Differentiating (5.21) with respect to the activatiap corresponding to a particular
data pointz, we obtain

OF 1 9y 1 Oyn
gy = 1—t)—— . 114
aan yn 80% * ( ) 1- Yn aan ( )
From (4.88), we have
Iyn,
= yn(1 —yn).
Sa. = Un(1 =) (115)
Substituting (115) into (114), we get
OF yn(l - yn) yn(l - yn)
— = —tp—+ 1 —ty)—F—
aan YUn ( ) (1 - yn)
= Yn —tyn

as required.
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Solutions 5.9-5.10

5.9

5.10

This simply corresponds to a scaling and shifting of the binatputs, which di-
rectly gives the activation function, using the notation fromi @), in the form

y =20(a) — 1.

The corresponding error function can be constructed from (5.21) blyiagphe
inverse transform tgn andt,,, yielding

14+t, 1 n 1+, T+uyn
E(w) = + +y +<1— J; >ln<1— J;y>

—_

N
= 52 {Q+t) 1 +y,)+ (1 —t)In(l —yn)} + NIn2

where the last term can be dropped, since it is independamt of
To find the corresponding activation function we simply appblthear transforma-
tion to the logistic sigmoid given by (5.19), which gives

2
yla) = 20(a)—1= T

1—e @ ea/2 _ e—a/Q

l+e e a/2 4 e=a/2
= tanh(a/2).

From (5.33) and (5.35) we have
uiTHui = u;F)\iui = /\z

Assume thaH is positive definite, so that (5.37) holds. Then by setting u; it
follows that
A = u;FHui >0 (116)

for all values ofi. Thus, if H is positive definite, all of its eigenvalues will be
positive.

Conversely, assume that (116) holds. Then, for any veetore can make use of
(5.38) to give

vIHv = (Zciui>TH<zcjuj>

i J

— (chm) (Zchuj>
= Z)\C >0

where we have used (5.33) and (5.34) along with (116). Thus, if #lbeigenvalues
are positive, the Hessian matrix will be positive definite.
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5.11 NOTE: In PRML, Equation (5.32) contains a typographical eresrshould be~.

We start by making the change of variable given by (5.35) whitdwal the error
function to be written in the form (5.36). Setting the value of the refumction
E(w) to a constant valu€’ we obtain

+%Z)\ia§:(}

Re-arranging gives
> hie? =20 -2B(w*)=C

whereC is also a constant. This is the equation for an ellipse whoss are aligned
with the coordinates described by the variables}. The length of axig is found
by settinge; = 0 for all i # j, and solving for; giving

which is inversely proportional to the square root of the corresimgneigenvalue.

5.12 NOTE: See note in Solution 5.11.

From (5.37) we see that, H is positive definite, then the second term in (5.32) will
be positive whenevefw — w*) is non-zero. Thus the smallest value whi€lw)
can take isF(w*), and sow* is the minimum ofE'(w).

Conversely, ifw* is the minimum ofE(w), then, for any vectow # w*, E(w) >

E(w™). This will only be the case if the second term of (5.32) is pusifor all

values ofw # w* (since the first term is independentw). Sincew — w* can be
set to any vector of real numbers, it follows from the definition d.BatH must
be positive definite.

5.19 If we take the gradient of (5.21) with respectwg we obtain

N N

VE(w) = S—EVan = Z(yn —tn)Van,

n=1

where we have used the result proved earlier in the solution tecEee5.6. Taking
the second derivatives we have

N
VVE(wW) = {gzn VanVan + (yn — tn)vwn} .

n=1

Dropping the last term and using the result (4.88) for the derigaiivthe logistic
sigmoid function, proved in the solution to Exercise 4.12, walfjnget

VVE Z yn yn vanvan = Z yn yn)bnb;l;
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Solution 5.25

5.25

whereb,, = Va,,.

The gradient of (5.195) is given
VE =H(w —w")
and hence update formula (5.196) becomes

w(™ = w(™ D — pH(w™D — w*).

Pre-multiplying both sides with} we get

w” = ufwl? (117)
= u;-FW(T_l) — puJTH(W(T_l) —w")
= w;T_l) — pnjuJT(W —w")
— w;T_l) — pn; (w§-7_1) — w;), (118)

where we have used (5.198). To show that
wl = {1~ (1~ pny) "}

forT =1,2,..., we can use proof by induction. For= 1, we recall thatv(®) = 0
and insert this into (118), giving

1 0 0
wi = Wl — gy (w” — w)
= pnjwj
{1—= (1= pny)} w}.

Now we assume that the result holds foe N — 1 and then make use of (118)

N N-—-1 N-1 *
wi™ = W™ — oy (Y — )

= w1 = pny) + pnjw}
{1= @ =)™} wi (1 = pnj) + pnjuw;
= {1 =pny) = (1= pn) N} wi + pnjw;
= {1-Q-pp)"}w;
as required.

Provided thatl — pn;| < 1 then we havel — pn;)” — 0 asT — oo, and hence
{1-(1—-p)"} — 1andw™ — w*.

If 7 is finite butn; > (p7)~!, 7~ must still be large, sincg;pr > 1, even though
|1 — pn;| < 1. If 7is large, it follows from the argument above thaf’ ~ w?.
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If, on the other handy; < (pr)~!, this means thatn; must be small, sincen; 7 <
1 andr is an integer greater than or equal to one. If we expand,

(1= pny)" =1 —71pn; + O(pn3)
and insert this into (5.197), we get

g

= [{1—=(1—pn)" }wj|
{1 = =7pn + O(pn})) } wi|

Tpmlw | < wj]

12

Recall thatin Section 3.5.3 we showed that when the regutayizparameter (called
ain that section) is much larger than one of the eigenvalude(ta; in that section)
then the corresponding parameter valyewill be close to zero. Conversely, when
« is much smaller than; thenw; will be close to its maximum likelihood value.
Thusa is playing an analogous role to-.

527 If s(x,€) =x+ &, then
0sp . Os
= I, 1.e.,— =1,
o6 T og
and since the first order derivative is constant, there are no higter derivatives.
We now make use of this result to obtain the derivativeg wfr.t. &;:

Z Oy Os _
851 sy 0; 637 !

aaafj a@ aSk 0@ &sj v

Using these results, we can write the expansioR @fs follows:
B = g [[[ w60 - orpeimeane) dgaxar
[ [ - owTep@nteinpi agaxar
g [ € (i - 0B+ b7 n@pteipi ag axa.

The middle term will again disappear, sin&&] = 0 and thus we can writé& on
the form of (5.131) with

- % / / €' ({y(x) — t}B + bbT) £p(&)p(t|x)p(x) d€ dx dt.
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5.28

5.29

5.34

Again the first term within the parenthesis vanishes to leadidgran& and we are
left with

Q

12

: / / €7 (bbT) £p(€)p() d€ dx

— 5 [ Tracel(g€”) (bbT)] p€)pi) de
= % / Trace[I (bb™")] p(x) dx

= 5 [ v ax=; [ I9yGolpee dx

where we used the fact thaf¢e"] = 1.

The modifications only affect derivatives with respect to wesgh the convolutional
layer. The units within a feature map (indexed have different inputs, but all share
a common weight vectory (™. Thus, errorsi™ from all units within a feature
map will contribute to the derivatives of the corresponding Weigector. In this
situation, (5.50) becomes

()

OFn _ 3 OE, 0a; $ gz

aw(m) aa(.m) 8w(m) J et
j i

i J J

Here ag.m) denotes the activation of thg" unit in them'® feature map, whereas

wEm) denotes theé'™™ element of the corresponding feature vector and, finajﬁ},)

denotes the'" input for thej*" unit in them'" feature map; the latter may be an
actual input or the output of a preceding layer.

Note thatégm) = J0E, /6a§m) will typically be computed recursively from thés
of the units in the following layer, using (5.55). If there are layppi®ceding the
convolutional layer, the standard backward propagation emgawill apply; the
weights in the convolutional layer can be treated as if thesewsdependent param-
eters, for the purpose of computing thefor the preceding layer’s units.

This is easily verified by taking the derivative of (5.138), usfhgl6) and standard
derivatives, yielding

o _ 1
ow; > TN (wilp, o)

3w g ) 1)
J

Combining this with (5.139) and (5.140), we immediately obthmsecond term of
(5.141).

NOTE: In the 1%* printing of PRML, the L.h.s. of (5.154) should be replaced with
Yk = Yk(tn|xn). Accordingly, in (5.155) and (5.156); should be replaced by
Yk @and in (5.156)¢; should be.,,;.
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We start by using the chain rule to write

OE, <~ 0E, 0m;

) 119
daj; Om; Oaf, (119)

j=1
Note that because of the coupling between outputs causdtklsoftmax activation

function, the dependence on the activation of a single outpiitinvolves all the
output units.

For the first factor inside the sum on the r.h.s. of (119), standeridatives applied
to then'® term of (5.153) gives

0E, _ KNnj — _nj (120)
aﬂ-j Zl:l 7Tl-/\/’nl 7Tj
For the for the second factor, we have from (4.106) that
on;
aT;Zr =Lk — 7). (121)

Combining (119), (120) and (121), we get

K
oE, Tnj
D e O
J=1
K K
= - Z’an(fjk - 7Tk:) = —Vnk T Z%ﬂrk = Tk — Tnk,
Jj=1 Jj=1

where we have used the fact that, by (5.1@5,(:1 Tn; = 1 forall n.
Using (4.135), we can approximate (5.174) as
p(Dlev, B) 2 p(D|wwmap, B)p(Wuap|)
/exp {—; (W - WMAP)T A (W - WMAP)} dw,

whereA is given by (5.166), ag(D|w, 3)p(w|«) is proportional tap(w|D, v, 3).
Using (4.135), (5.162) and (5.163), we can rewrite this as

(27T)W/2

N
p(Dla, B) ~ HN(tn|y(XmWMAP)a5_1)N(WMAP|0>Q_1UW-

Taking the logarithm of both sides and then using (2.42) andBj2we obtain the
desired result.



54
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5.40

Chapter 6

For a K -class neural network, the likelihood function is given by

N K
H H Ui (X, W)tn,k:
n k

and the corresponding error function is given by (5.24).

Again we would use a Laplace approximation for the posteridritigion over the
weights, but the corresponding Hessian maiidx,n (5.166), would now be derived
from (5.24). Similarly, (5.24), would replace the binary cross entrapyréerm in
the regularized error function (5.184).

The predictive distribution for a new pattern would again havee@pproximated,
since the resulting marginalization cannot be done analjyic However, in con-
trast to the two-class problem, there is no obvious candidatdieapproximation,
although Gibbs (1997) discusses various alternatives.

Kernel Methods

6.1

We first of all note that/ (a) depends on only through the fornKa. Since typically
the numberN of data points is greater than the numBérof basis functions, the
matrix K = ®®7 will be rank deficient. There will then b2/ eigenvectors oK
having non-zero eigenvalues, aNd- M eigenvectors with eigenvalue zero. We can
then decompose = a| +a WhereaﬁaL = 0 andKa; = 0. Thus the value of

a, is not determined by (a). We can remove the ambiguity by settiag = 0, or
equivalently by adding a regularizer term

€. T
2aj_al
to J(a) wheree is a small positive constant. Then= a wherea, lies in the span

of K = ®&T and hence can be written as a linear combination of the colwhns
®, so that in component notation

NE

ui¢z‘(Xn)

Ay =

1

Il
_

or equivalently in vector notation

a= du. (122)
Substituting (122) into (6.7) we obtain
1
J(u) = B (K®u —t)" (K®u —t) + guTQTK{)u
1
= 5 (2T Pu- t)" (@@ ®u—t) + %uTq»ch@Tq»u (123)



6.23

6.25

Chapter 7

Solutions 6.23-7.1 59

We now make use of the matrix identity (C.7) to give

a 'y — o Ty ®T (B Ta)@T + 87 y) T Ba Ty
= (oI +3®7®) " =Sy,
where we have also used (3.54). Substituting this in (126), werobta
o (Xn41) = ; + d(xn11) " SNP(xN41)

as derived for the linear regression model in Section 3.3.2.

NOTE: In the 1%* printing of PRML, a typographical mistake appears in the text
of the exercise at line three, where it should say. ‘a training set of input vectors

X1,y XN .

If we assume that the target variables,. .., tp, are independent given the input
vector,x, this extension is straightforward.

Using analogous notation to the univariate case,
p(tn11|T) = N(tnpim(xn 1), o(xng1)T),
whereT is aN x D matrix with the vectors, ..., t}, as its rows,
m(xN+1)T =kTCyNT

ando(xy.1) is given by (6.67). Note thaf , which only depend on the input
vectors, is the same in the uni- and multivariate models.

Substituting the gradient and the Hessian into the Newtorh&apformula we ob-
tain

ay"’ = aN—I-(C]T]l—l-WN)_l [tN —O’N—ijlaN]
= (Cy' +Wn) 'ty —on + Wyay]
= Cy(I+WxCy) 'ty —on + Wxay]

Sparse Kernel Machines

7.1

From Bayes’ theorem we have

p(t[x) o< p(x[t)p(t)
where, from (2.249),

1L
p(x|t) = ﬁt Z Zkk(x,xn)é(t,tn).

n=
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Solution 7.4

7.4

Here N, is the number of input vectors with labef+1 or —1) andN = N, 1+ N_;.
o(t,t,) equalsl if ¢ = t,, and0 otherwise. Z;, is the normalisation constant for
the kernel. The minimum misclassification-rate is achieved if efach new input
vector,x, we chose to maximisep(t|x). With equal class priors, this is equivalent
to maximizingp(x|t) and thus

1
. +1 iff k(x,x;) > — k(x,x;)
t= +1 i:tlz_;l N_y j:t]z_:_ ’

—1 otherwise.

Here we have dropped the factiotZ;, since it only acts as a common scaling factor.
Using the encoding scheme for the label, this classificatittnaan be written in the

more compact form
Ay’
t = sign (Z N—"k(i{, xn)> :

n=1 tn

Now we takek(x, x,,) = x"x,, which results in the kernel density

Here, the sum in the middle experssion runs over all vestgror whicht,, = +1
andx™ denotes the mean of these vectors, with the correspondingtitefifor the
negative class. Note that this density is improper, sinceainot be normalized.
However, we can still compare likelihoods under this densétgulting in the classi-

fication rule
s L+t xTxt > xTx~,
) —1 otherwise.

The same argument would of course also apply in the feature ggage

From Figure 4.1 and (7.4), we see that the value of the margin

[wl| p?

From (7.16) we see that, for the maximum margin solution, thersgterm of (7.7)
vanishes and so we have

1
L(W7 bv a) = §||WH2

Using this together with (7.8), the dual (7.10) can be written as

from which the desired result follows.



7.8

7.10

Solutions 7.8-7.10 61

This follows from (7.67) and (7.68), which in turn follow from the KKT atitions,
(E.9)—(E.11), fonu,,, &,, 11, and&,, and the results obtained in (7.59) and (7.60).

For example, fog,, and¢,,, the KKT conditions are

& =2 0
pn = 0
pnkn = 0 (227)
and from (7.59) we have that

Combining (127) and (128), we get (7.67); similar reasoning?tpandfn lead to
(7.68).

We first note that this result is given immediately from (2.113)-42)1but the task
set in the exercise was to practice the technique of compl#tiagquare. In this

solution and that of Exercise 7.12, we broadly follow the prestésm in Section
3.5.1. Using (7.79) and (7.80), we can write (7.84) in a form simdg3t78)

3 N/2 1 M
p(t|X, o, B) = (27T) Wnai/exp{—E(w)} dw (129)

where
_B o 1o
E(w) = §||t—<I)WH +ow Aw

andA = diag(a).
Completing the square over, we get

B(w) = %(w —m) S (w —m) + B(t) (130)
wherem andX are given by (7.82) and (7.83), respectively, and

Eft)=-(At't—m"S"'m). (131)

DN | —

Using (130), we can evaluate the integral in (129) to obtain
/exp {—E(w)} dw = exp {—E(t)} (2m)M/?|x|/2, (132)

Considering this as a function ofwe see from (7.83), that we only need to deal
with the factorexp {—E(t)}. Using (7.82), (7.83), (C.7) and (7.86), we can re-write
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Solution 7.12

7.12

(131) as follows

E(t) = Attt —m"Y 'm)

(
(pt't—ptTeEE 'R tp)
th (81— peEP )t

th (B - BR(A + 52" ®) '@ Bt

RN RN RN RN -

I
|
—
|

(B 1+ ®A D7) 't

=N

= —tTc't.
2

This gives us the last term on the r.h.s. of (7.85); the two prege@irms are given
implicitly, as they form the normalization constant for the jpoistr Gaussian distri-
butionp(t|X, v, ).

Using the results (129)—(132) from Solution 7.10, we can write (7r88)e form of
(3.86):

N 1 1 N
Inp(t|X,a,f) = S nf+ o > na; - B(t) - 5[]~ 5 In(2r). (133)

By making use of (131) and (7.83) together with (C.22), we can tia&e&lerivatives

of this w.r.te;, yielding
0 1 1 1

In p(t|X = — =¥ — =m?2. 134
Ba. np(t|X, e, 5) 20 2 57 (134)

Setting this to zero and re-arranging, we obtain

o T—adiy v
17727 2’
m; m;

where we have used (7.89). Similarly, féwe see that
5?/5 Inp(t|X, o, §) = % (g — It = ®m||> — Tr [z&%]) . (135)
Using (7.83), we can rewrite the argument of the trace operator as
>3T® = Z@T® 3 'ZA-[IZA
= X(®'®3+A)-3'BA
= (A+p2"®) (@B +A)B I -3IZA
(I-AX)p~ . (136)

Here the first factor on the r.h.s. of the last line equals (7.88)em in matrix form.
We can use this to set (135) equal to zero and then re-arrange to 0h&8).
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7.15 Using (7.94), (7.95) and (7.97)—(7.99), we can rewrite (7.85) as follows

1
p(t|X,a,f) = 2{N1n<2w>+1n|c A1+ a7 Ty,

C~ TCZ;
Oél + P, qu, Pi
1 _
= —5{¥m@m) +m|C_i|+t"Clt)

ClipipiCo t]

1
+- |=In[1+a; 'l Cjp;| +1T
5 [ | ¢; Ci il ot pTC g

1 -
= L(a_;)+ 5 [lnai —In(a; + ;) + q’}

a; + S5
= L(a—;) + M)

7.18 As the RVM can be regarded as a regularized logistic regressionimedecan

Chapter 8

follow the sequence of steps used to derive (4.91) in Exercisetd.derive the first
term of the r.h.s. of (7.110), whereas the second term follows frondatd matrix
derivatives (see Appendix C). Note however, that in Exercis8 wé are dealing
with the negative log-likelhood.

To derive (7.111), we make use of (106) and (107) from Exercise 4.13e {irite
the first term of the r.h.s. of (7.110) in component form we get

N
0 o ayn Oay,
(9710]- nz_l(tn - y7L)¢7Li - Z 8an ¢TLL

= _Zyn —Yn ¢n]¢nza

which, written in matrix form, equals the first term inside the paresis on the r.h.s.
of (7.111). The second term again follows from standard matrix dar@st

Graphical Models

8.1

We want to show that, for (8.5),
Z~--ZP Z ZHpIklpak )=1
x TK T k=1

We assume that the nodes in the graph has been numbered such ith#te root
node and no arrows lead from a higher numbered node to a lower nuinede.
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Solutions 8.23-9.1

8.23

8.28

8.29

Chapter 9

This follows from the fact that the message that a nadgwill send to a factorf,,
consists of the product of all other messages received biyrom (8.63) and (8.69),
we have

pae) = J] @)

s€ne(x;)

= ppe(@) ] (@)

t€ne(x;)\ fs
= Hfi—ua; (xl) Ha;— f (xl)

If a graph has one or more cycles, there exists at least one sete$ amd edges
such that, starting from an arbitrary node in the set, we can vigh@hodes in the
set and return to the starting node, without traversing any edge tinan once.

Consider one particular such cycle. When one of the naedés the cycle sends a
message to one of its neighboursin the cycle, this causes a pending messages on
the edge to the next nodg in that cycle. Thus sending a pending message along an
edge in the cycle always generates a pending message on tredgexn that cycle.
Since this is true for every node in the cycle it follows that theilbalways exist at
least one pending message in the graph.

We show this by induction over the number of nodes in the tnaetstred factor
graph.

First consider a graph with two nodes, in which case only twosagss will be sent
across the single edge, one in each direction. None of thessagesswill induce
any pending messages and so the algorithm terminates.

We then assume that for a factor graph withnodes, there will be no pending
messages after a finite number of messages have been semt.sGivea graph, we
can construct a new graph wit¥i + 1 nodes by adding a new node. This new node
will have a single edge to the original graph (since the graph mamstin a tree)
and so if this new node receives a message on this edge, ingilce no pending
messages. A message sent from the new node will trigger propagdtmessages
in the original graph withV nodes, but by assumption, after a finite number of
messages have been sent, there will be no pending messagiee atgorithm will
terminate.

Mixture Models and EM

9.1

Since both the E- and the M-step minimise the distortion meg8ut} the algorithm
will never change from a particular assignment of data poinfgatotypes, unless
the new assignment has a lower value for (9.1).

Since there is a finite number of possible assignments, eathandorresponding
unique minimum of (9.1) w.r.t. the prototypegy, }, the K-means algorithm will
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converge after a finite number of steps, when no re-assignmeaataf points to
prototypes will result in a decrease of (9.1). When no-reassignta&et place,
there also will not be any change fm, }.

From (9.10) and (9.11), we have

K
=D o)) = Y [] el (xlpy, 2i)™

z k=1

Exploiting the 1-of# representation faz, we can re-write the r.h.s. as

ZH 7rkN X|uk,2k Ik] _Zﬂ-j Xl.u’]: )

wherel;,; = 1if k = j and O otherwise.

Consider first the optimization with respect to the parametggs X }. For this we
can ignore the terms in (9.36) which dependlom,. We note that, for each data
pointn, the quantities:,,;, are all zero except for a particular element which equals
one. We can therefore partition the data set itgroups, denote&X, such that all
the data pointx,, assigned to componehtare in groupX,. The complete-data log
likelihood function can then be written

K
lnp(X,Z | ”’72’7‘-) = Z{ Z lnN(Xn“l’kka)} :

k=1 \(neXy

This represents the sum & independent terms, one for each component in the
mixture. When we maximize this term with respectp and X, we will simply

be fitting thek'™ component to the data sX;,, for which we will obtain the usual
maximum likelihood results for a single Gaussian, as discliss€hapter 2.

For the mixing coefficients we need only consider the termis iy, in (9.36), but
we must introduce a Lagrange multiplier to handle the constdajpm;, = 1. Thus

we maximize
ZZznklnﬂk + A <Z’/Tk — 1)
n=1 k=1

which gives

Multiplying through by, and summing ovek we obtain\ = — N, from which we

have v
| N,
SN TN

n=1

where Ny, is the number of data points in gro{. .
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9.8

9.12

9.15

Using (2.43), we can write the r.h.s. of (9.40) as

N K
1 J—
9 Z Z’Y(an)(xn - H’j)TE 1(Xn - uj) + const.,

n=1 j=1

where ‘const.” summarizes terms independent pffor all j). Taking the derivative
of this w.r.t. ., we get

N

- Z’Y(znk) (E_IHk; - 2_1Xn) )

n=1
and setting this to zero and rearranging, we obtain (9.17).

Since the expectation of a sum is the sum of the expectatiertsawe

ZmEk Zﬂkuk

whereE, [x]| denotes the expectation ®funder the distributiop(x|k). To find the
covariance we use the general relation

cov[x] = E[xx"] — E[x]E[x]"
to give

covlx] = E[xx']-E[xE[x]"

= Zﬂ'kEk [xx'] — Ex]E[x]*

K

= Zﬂ'k {Z + e} — EXERX]".
k=1

This is easily shown by calculating the derivatives of (9.58}tisg them to zero and
solve foruyg;. Using standard derivatives, we get

0 Tng 1— oy
Ezlnp(X,Z|p, ™) = Zn _—
Opuki 2l .70 ZV * (Mkz 1- l%i)
Z ’7 an Tni — Z Y an),ukz
Mlcz(l /“w)

Setting this to zero and solving fai,;, we get

g = 2oV k) Tni

which equals (9.59) when written in vector form.
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9.20

9.23

9.25

Solutions 9.17-9.25 71

This follows directly from the equation for the incomplete logelikood, (9.51).
The largest value that the argument to the logarithm on the o (9.51) can have

is 1, sincevn, k : 0 < p(xp|py) < 1,0 < < 1 andeK 7, = 1. Therefore, the
maximum value foin p(X|u, 7) equals 0.

If we take the derivatives of (9.62) w.rd, we get

5 M1l .4
%E Inp(t,w|a, B)] = oo §E [w w] .

Setting this equal to zero and re-arranging, we obtain (9.63).

NOTE: In the 1 printing of PRML, the task set in this exercise is to show that th
two sets of re-estimation equations are formally equivalentawit any restriction.
However, it really should be restricted to stationary point$efdbjective function.

Considering the case when the optimization has convergedawstart withv;, as
defined by (7.87), and use (7.89) to re-write this as

*
Oz’-(: l—aiZii

2 m?\f )

wherea; = a}°V = «; is the value reached at convergence. We can re-write this as
al*(mf + E”) =1

which is easily re-written as (9.67).

For 3, we start from (9.68), which we re-write as

1 - emal? |, X
B* N BN

As in the a-case,* = g"*% = ( is the value reached at convergence. We can

re-write this as
1
g~ (N_ > ’Yi) = [t — @my|?,

which can easily be re-written as (7.88).

This follows from the fact that the Kullback-Leibler divergen&d.(q||p), is at its
minimum, 0, whenry andp are identical. This means that

0

—KL =0

59 L(dllp) =0,

sincep(Z|X, 8) depends o®. Therefore, if we compute the gradient of both sides
of (9.70) w.r.t.8, the contribution from the second term on the r.h.s. willthend

so the gradient of the first term must equal that of the I.h.s.
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9.26 From (9.18) we get

N}gld _ Z 'YOld(an)- (137)
We getN; " by recomputing the responsibilities(z,, ), for a specific data point,
X, Yielding
NP = 37 k) + 9" (k) (138)
n#m

Combining this with (137), we get (9.79).
Similarly, from (9.17) we have

1
Nzld = Nrold Z ’YOId (an)Xn
k n

and recomputing the responsibilitieg 2, ), we get

1
Hzew = N]?ew ( Z ’YOld (an)xn + ,ynew <ka)xm>

n#m
1
— A (Nlcc)ld/'lfild _ ,Yold (ka:)xm + ,Ynew<zmk)xm)
k
1 new new o o
= new <(Nk — 7" (2mk) + 77 (2mk)) B2
k

_701d (ka)xm + 'YHeW (ka )Xm>

new ( __ ~old 2
= (7 ( mkaznewv ( mk)) (Xm — B2),
k

where we have used (9.79).

Chapter 10 Approximate Inference

10.1 Starting from (10.3), we use the product rule together with (10.4¢to g

L(q) = /Q(Z)ln{pé)((é)z)} dz

_ X2 p(X)
= /q(Z)l { . (Z) }dZ
_ NELIEIN
- /q(z)<1 { 7 }+1 p(X)) 1z
= —KL(q|[|p)+np(X).
Rearranging this, we immediately get (10.2).




