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we obtainλ = −N . Eliminatingλ then gives our final result for the maximum
likelihood solution forhk in the form

hk =
nk

N

1

∆k
.

Note that, for equal sized bins∆k = ∆ we obtain a bin heighthk which is propor-
tional to the fraction of points falling within that bin, as expected.

Chapter 3 Linear Models for Regression

3.1 NOTE: In the1st printing of PRML, there is a2 missing in the denominator of the
argument to the ‘tanh’ function in equation (3.102).

Using (3.6), we have

2σ(2a) − 1 =
2

1 + e−2a
− 1

=
2

1 + e−2a
− 1 + e−2a

1 + e−2a

=
1 − e−2a

1 + e−2a

=
ea − e−a

ea + e−a

= tanh(a)

If we now takeaj = (x− µj)/2s, we can rewrite (3.101) as

y(x,w) = w0 +

M∑

j=1

wjσ(2aj)

= w0 +

M∑

j=1

wj

2
(2σ(2aj) − 1 + 1)

= u0 +

M∑

j=1

uj tanh(aj),

whereuj = wj/2, for j = 1, . . . ,M , andu0 = w0 +
∑M

j=1wj/2.
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3.4 Let

ỹn = w0 +

D∑

i=1

wi(xni + εni)

= yn +

D∑

i=1

wiεni

whereyn = y(xn,w) andεni ∼ N (0, σ2) and we have used (3.105). From (3.106)
we then define

Ẽ =
1

2

N∑

n=1

{ỹn − tn}2

=
1

2

N∑

n=1

{
ỹ2

n − 2ỹntn + t2n
}

=
1

2

N∑

n=1



y

2
n + 2yn

D∑

i=1

wiεni +

(
D∑

i=1

wiεni

)2

−2tnyn − 2tn

D∑

i=1

wiεni + t2n



 .

If we take the expectation of̃E under the distribution ofεni, we see that the second
and fifth terms disappear, sinceE[εni] = 0, while for the third term we get

E



(

D∑

i=1

wiεni

)2

 =

D∑

i=1

w2
i σ

2

since theεni are all independent with varianceσ2.

From this and (3.106) we see that

E

[
Ẽ
]

= ED +
1

2

D∑

i=1

w2
i σ

2,

as required.

3.5 We can rewrite (3.30) as

1

2

(
M∑

j=1

|wj |q − η

)
6 0
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where we have incorporated the1/2 scaling factor for convenience. Clearly this does
not affect the constraint.

Employing the technique described in Appendix E, we can combine this with (3.12)
to obtain the Lagrangian function

L(w, λ) =
1

2

N∑

n=1

{tn − wTφ(xn)}2 +
λ

2

(
M∑

j=1

|wj |q − η

)

and by comparing this with (3.29) we see immediately that they are identical in their
dependence onw.

Now suppose we choose a specific value ofλ > 0 and minimize (3.29). Denoting
the resulting value ofw by w?(λ), and using the KKT condition (E.11), we see that
the value ofη is given by

η =

M∑

j=1

|w?
j (λ)|q.

3.6 We first write down the log likelihood function which is given by

lnL(W,Σ) = −N
2

ln |Σ| − 1

2

N∑

n=1

(tn − WTφ(xn))TΣ−1(tn − WTφ(xn)).

First of all we set the derivative with respect toW equal to zero, giving

0 = −
N∑

n=1

Σ−1(tn − WTφ(xn))φ(xn)T.

Multiplying through byΣ and introducing the design matrixΦ and the target data
matrixT we have

ΦTΦW = ΦTT

Solving forW then gives (3.15) as required.

The maximum likelihood solution forΣ is easily found by appealing to the standard
result from Chapter 2 giving

Σ =
1

N

N∑

n=1

(tn − WT
MLφ(xn))(tn − WT

MLφ(xn))T.

as required. Since we are finding a joint maximum with respect to both W andΣ

we see that it isWML which appears in this expression, as in the standard result for
an unconditional Gaussian distribution.

3.8 Combining the prior
p(w) = N (w|mN ,SN )
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and the likelihood

p(tN+1|xN+1,w) =

(
β

2π

)1/2

exp

(
−β

2
(tN+1 − wTφN+1)

2

)
(94)

whereφN+1 = φ(xN+1), we obtain a posterior of the form

p(w|tN+1,xN+1,mN ,SN )

∝ exp

(
−1

2
(w − mN )TS−1

N (w − mN ) − 1

2
β(tN+1 − wTφN+1)

2

)
.

We can expand the argument of the exponential, omitting the−1/2 factors, as fol-
lows

(w − mN )TS−1
N (w − mN ) + β(tN+1 − wTφN+1)

2

= wTS−1
N w − 2wTS−1

N mN

+ βwTφT
N+1φN+1w − 2βwTφN+1tN+1 + const

= wT(S−1
N + βφN+1φ

T
N+1)w − 2wT(S−1

N mN + βφN+1tN+1) + const,

whereconst denotes remaining terms independent ofw. From this we can read off
the desired result directly,

p(w|tN+1,xN+1,mN ,SN ) = N (w|mN+1,SN+1),

with
S−1

N+1 = S−1
N + βφN+1φ

T
N+1. (95)

and
mN+1 = SN+1(S

−1
N mN + βφN+1tN+1). (96)

3.10 Using (3.3), (3.8) and (3.49), we can re-write (3.57) as

p(t|x, t, α, β) =

∫
N (t|φ(x)Tw, β−1)N (w|mN ,SN ) dw.

By matching the first factor of the integrand with (2.114) and thesecond factor with
(2.113), we obtain the desired result directly from (2.115).

3.15 This is easily shown by substituting the re-estimation formulae(3.92) and (3.95) into
(3.82), giving

E(mN ) =
β

2
‖t − ΦmN‖2

+
α

2
mT

NmN

=
N − γ

2
+
γ

2
=
N

2
.
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3.18 We can rewrite (3.79)

β

2
‖t − Φw‖2

+
α

2
wTw

=
β

2

(
tTt − 2tTΦw + wTΦTΦw

)
+
α

2
wTw

=
1

2

(
βtTt − 2βtTΦw + wTAw

)

where, in the last line, we have used (3.81). We now use the tricks of adding0 =
mT

NAmN − mT
NAmN and usingI = A−1A, combined with (3.84), as follows:

1

2

(
βtTt − 2βtTΦw + wTAw

)

=
1

2

(
βtTt − 2βtTΦA−1Aw + wTAw

)

=
1

2

(
βtTt − 2mT

NAw + wTAw + mT
NAmN − mT

NAmN

)

=
1

2

(
βtTt − mT

NAmN

)
+

1

2
(w − mN )TA(w − mN ).

Here the last term equals term the last term of (3.80) and so it remains to show that
the first term equals the r.h.s. of (3.82). To do this, we use the same tricks again:

1

2

(
βtTt − mT

NAmN

)
=

1

2

(
βtTt − 2mT

NAmN + mT
NAmN

)

=
1

2

(
βtTt − 2mT

NAA−1ΦTtβ + mT
N

(
αI + βΦTΦ

)
mN

)

=
1

2

(
βtTt − 2mT

NΦTtβ + βmT
NΦTΦmN + αmT

NmN

)

=
1

2

(
β(t − ΦmN )T(t − ΦmN ) + αmT

NmN

)

=
β

2
‖t − ΦmN‖2

+
α

2
mT

NmN

as required.

3.20 We only need to consider the terms of (3.86) that depend onα, which are the first,
third and fourth terms.

Following the sequence of steps in Section 3.5.2, we start with the last of these terms,

−1

2
ln |A|.

From (3.81), (3.87) and the fact that that eigenvectorsui are orthonormal (see also
Appendix C), we find that the eigenvectors ofA to beα+λi. We can then use (C.47)
and the properties of the logarithm to take us from the left to the right side of (3.88).



40 Solution 3.23

The derivatives for the first and third term of (3.86) are more easily obtained using
standard derivatives and (3.82), yielding

1

2

(
M

α
+ mT

NmN

)
.

We combine these results into (3.89), from which we get (3.92) via (3.90). The
expression forγ in (3.91) is obtained from (3.90) by substituting

M∑

i

λi + α

λi + α

for M and re-arranging.

3.23 From (3.10), (3.112) and the properties of the Gaussian and Gamma distributions
(see Appendix B), we get

p(t) =

∫∫
p(t|w, β)p(w|β) dwp(β) dβ

=

∫∫ (
β

2π

)N/2

exp

{
−β

2
(t − Φw)T(t − Φw)

}

(
β

2π

)M/2

|S0|−1/2 exp

{
−β

2
(w − m0)

TS−1
0 (w − m0)

}
dw

Γ(a0)
−1ba0

0 β
a0−1 exp(−b0β) dβ

=
ba0

0

((2π)M+N |S0|)1/2

∫∫
exp

{
−β

2
(t − Φw)T(t − Φw)

}

exp

{
−β

2
(w − m0)

TS−1
0 (w − m0)

}
dw

βa0−1βN/2βM/2 exp(−b0β) dβ

=
ba0

0

((2π)M+N |S0|)1/2

∫∫
exp

{
−β

2
(w − mN )TS−1

N (w − mN )

}
dw

exp

{
−β

2

(
tTt + mT

0 S−1
0 m0 − mT

NS−1
N mN

)}

βaN−1βM/2 exp(−b0β) dβ
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where we have completed the square for the quadratic form inw, using

mN = SN

[
S−1

0 m0 + ΦTt
]

S−1
N = β

(
S−1

0 + ΦTΦ
)

aN = a0 +
N

2

bN = b0 +
1

2

(
mT

0 S−1
0 m0 − mT

NS−1
N mN +

N∑

n=1

t2n

)
.

Now we are ready to do the integration, first overw and thenβ, and re-arrange the
terms to obtain the desired result

p(t) =
ba0

0

((2π)M+N |S0|)1/2
(2π)M/2|SN |1/2

∫
βaN−1 exp(−bNβ) dβ

=
1

(2π)N/2

|SN |1/2

|S0|1/2

ba0

0

baN

N

Γ(aN )

Γ(a0)
.

Chapter 4 Linear Models for Classification

4.2 For the purpose of this exercise, we make the contribution of thebias weights explicit
in (4.15), giving

ED(W̃) =
1

2
Tr
{
(XW + 1wT

0 − T)T(XW + 1wT
0 − T)

}
, (97)

wherew0 is the column vector of bias weights (the top row of̃W transposed) and1
is a column vector of N ones.

We can take the derivative of (97) w.r.t.w0, giving

2Nw0 + 2(XW − T)T1.

Setting this to zero, and solving forw0, we obtain

w0 = t̄ − WTx̄ (98)

where

t̄ =
1

N
TT1 and x̄ =

1

N
XT1.

If we subsitute (98) into (97), we get

ED(W) =
1

2
Tr
{
(XW + T − XW − T)T(XW + T − XW − T)

}
,
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where
T = 1t̄T and X = 1x̄T.

Setting the derivative of this w.r.t.W to zero we get

W = (X̂TX̂)−1X̂TT̂ = X̂†T̂,

where we have defined̂X = X − X andT̂ = T − T.

Now consider the prediction for a new input vectorx?,

y(x?) = WTx? + w0

= WTx? + t̄ − WTx̄

= t̄ − T̂T
(
X̂†
)T

(x? − x̄). (99)

If we apply (4.157) tōt, we get

aTt̄ =
1

N
aTTT1 = −b.

Therefore, applying (4.157) to (99), we obtain

aTy(x?) = aTt̄ + aTT̂T
(
X̂†
)T

(x? − x̄)

= aTt̄ = −b,

sinceaTT̂T = aT(T − T)T = b(1 − 1)T = 0T.

4.4 NOTE: In the1st printing of PRML, the text of the exercise refers equation (4.23)
where it should refer to (4.22).

From (4.22) we can construct the Lagrangian function

L = wT(m2 − m1) + λ
(
wTw − 1

)
.

Taking the gradient ofL we obtain

∇L = m2 − m1 + 2λw (100)

and setting this gradient to zero gives

w = − 1

2λ
(m2 − m1)

form which it follows thatw ∝ m2 − m1.

4.7 From (4.59) we have

1 − σ(a) = 1 − 1

1 + e−a
=

1 + e−a − 1

1 + e−a

=
e−a

1 + e−a
=

1

ea + 1
= σ(−a).
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The inverse of the logistic sigmoid is easily found as follows

y = σ(a) =
1

1 + e−a

⇒ 1

y
− 1 = e−a

⇒ ln

{
1 − y

y

}
= −a

⇒ ln

{
y

1 − y

}
= a = σ−1(y).

4.9 The likelihood function is given by

p ({φn, tn}|{πk}) =

N∏

n=1

K∏

k=1

{p(φn|Ck)πk}tnk

and taking the logarithm, we obtain

ln p ({φn, tn}|{πk}) =

N∑

n=1

K∑

k=1

tnk {ln p(φn|Ck) + lnπk} . (101)

In order to maximize the log likelihood with respect toπk we need to preserve the
constraint

∑
k πk = 1. This can be done by introducing a Lagrange multiplierλ and

maximizing

ln p ({φn, tn}|{πk}) + λ

(
K∑

k=1

πk − 1

)
.

Setting the derivative with respect toπk equal to zero, we obtain

N∑

n=1

tnk

πk
+ λ = 0.

Re-arranging then gives

−πkλ =

N∑

n=1

tnk = Nk. (102)

Summing both sides overk we find thatλ = −N , and using this to eliminateλ we
obtain (4.159).
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4.12 Differentiating (4.59) we obtain

dσ

da
=

e−a

(1 + e−a)
2

= σ(a)

{
e−a

1 + e−a

}

= σ(a)

{
1 + e−a

1 + e−a
− 1

1 + e−a

}

= σ(a)(1 − σ(a)).

4.13 We start by computing the derivative of (4.90) w.r.t.yn

∂E

∂yn
=

1 − tn
1 − yn

− tn
yn

(103)

=
yn(1 − tn) − tn(1 − yn)

yn(1 − yn)

=
yn − yntn − tn + yntn

yn(1 − yn)
(104)

=
yn − tn

yn(1 − yn)
. (105)

From (4.88), we see that

∂yn

∂an
=
∂σ(an)

∂an
= σ(an) (1 − σ(an)) = yn(1 − yn). (106)

Finally, we have
∇an = φn (107)

where∇ denotes the gradient with respect tow. Combining (105), (106) and (107)
using the chain rule, we obtain

∇E =

N∑

n=1

∂E

∂yn

∂yn

∂an
∇an

=

N∑

n=1

(yn − tn)φn

as required.

4.17 From (4.104) we have

∂yk

∂ak
=

eak

∑
i e

ai
−
(

eak

∑
i e

ai

)2

= yk(1 − yk),

∂yk

∂aj
= − eakeaj

(∑
i e

ai

)2 = −ykyj , j 6= k.
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Combining these results we obtain (4.106).

4.19 Using the cross-entropy error function (4.90), and following Exercise4.13, we have

∂E

∂yn
=

yn − tn
yn(1 − yn)

. (108)

Also
∇an = φn. (109)

From (4.115) and (4.116) we have

∂yn

∂an
=
∂Φ(an)

∂an
=

1√
2π
e−a2

n . (110)

Combining (108), (109) and (110), we get

∇E =

N∑

n=1

∂E

∂yn

∂yn

∂an
∇an =

N∑

n=1

yn − tn
yn(1 − yn)

1√
2π
e−a2

nφn. (111)

In order to find the expression for the Hessian, it is is convenientto first determine

∂

∂yn

yn − tn
yn(1 − yn)

=
yn(1 − yn)

y2
n(1 − yn)2

− (yn − tn)(1 − 2yn)

y2
n(1 − yn)2

=
y2

n + tn − 2yntn
y2

n(1 − yn)2
. (112)

Then using (109)–(112) we have

∇∇E =

N∑

n=1

{
∂

∂yn

[
yn − tn

yn(1 − yn)

]
1√
2π
e−a2

nφn∇yn

+
yn − tn

yn(1 − yn)

1√
2π
e−a2

n(−2an)φn∇an

}

=

N∑

n=1

(
y2

n + tn − 2yntn
yn(1 − yn)

1√
2π
e−a2

n − 2an(yn − tn)

)
e−2a2

nφnφ
T
n√

2πyn(1 − yn)
.

4.23 NOTE: In the1st printing of PRML, the text of the exercise contains a typographical
error. Following the equation, it should say thatH is the matrix of second derivatives
of thenegative log likelihood.

The BIC approximation can be viewed as a largeN approximation to the log model
evidence. From (4.138), we have

A = −∇∇ ln p(D|θMAP)p(θMAP)

= H −∇∇ ln p(θMAP)
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and ifp(θ) = N (θ|m,V0), this becomes

A = H + V−1
0 .

If we assume that the prior is broad, or equivalently that the number of data points
is large, we can neglect the termV−1

0 compared toH. Using this result, (4.137) can
be rewritten in the form

ln p(D) ' ln p(D|θMAP) − 1

2
(θMAP − m)V−1

0 (θMAP − m) − 1

2
ln |H| + const

(113)
as required. Note that the phrasing of the question is misleading, since the assump-
tion of a broad prior, or of largeN , is required in order to derive this form, as well
as in the subsequent simplification.

We now again invoke the broad prior assumption, allowing us to neglect the second
term on the right hand side of (113) relative to the first term.

Since we assume i.i.d. data,H = −∇∇ ln p(D|θMAP) consists of a sum of terms,
one term for each datum, and we can consider the following approximation:

H =

N∑

n=1

Hn = NĤ

whereHn is the contribution from thenth data point and

Ĥ =
1

N

N∑

n=1

Hn.

Combining this with the properties of the determinant, we have

ln |H| = ln |NĤ| = ln
(
NM |Ĥ|

)
= M lnN + ln |Ĥ|

whereM is the dimensionality ofθ. Note that we are assuming thatĤ has full rank
M . Finally, using this result together (113), we obtain (4.139) bydropping theln |Ĥ|
since thisO(1) compared tolnN .

Chapter 5 Neural Networks

5.2 The likelihood function for an i.i.d. data set,{(x1, t1), . . . , (xN , tN )}, under the
conditional distribution (5.16) is given by

N∏

n=1

N
(
tn|y(xn,w), β−1I

)
.
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If we take the logarithm of this, using (2.43), we get

N∑

n=1

lnN
(
tn|y(xn,w), β−1I

)

= −1

2

N∑

n=1

(tn − y(xn,w))
T

(βI) (tn − y(xn,w)) + const

= −β
2

N∑

n=1

‖tn − y(xn,w)‖2 + const,

where ‘const’ comprises terms which are independent ofw. The first term on the
right hand side is proportional to the negative of (5.11) and hence maximizing the
log-likelihood is equivalent to minimizing the sum-of-squares error.

5.5 For the given interpretation ofyk(x,w), the conditional distribution of the target
vector for a multiclass neural network is

p(t|w1, . . . ,wK) =

K∏

k=1

ytk

k .

Thus, for a data set ofN points, the likelihood function will be

p(T|w1, . . . ,wK) =

N∏

n=1

K∏

k=1

ytnk

nk .

Taking the negative logarithm in order to derive an error function we obtain (5.24)
as required. Note that this is the same result as for the multiclass logistic regression
model, given by (4.108) .

5.6 Differentiating (5.21) with respect to the activationan corresponding to a particular
data pointn, we obtain

∂E

∂an
= −tn

1

yn

∂yn

∂an
+ (1 − tn)

1

1 − yn

∂yn

∂an
. (114)

From (4.88), we have
∂yn

∂an
= yn(1 − yn). (115)

Substituting (115) into (114), we get

∂E

∂an
= −tn

yn(1 − yn)

yn
+ (1 − tn)

yn(1 − yn)

(1 − yn)
= yn − tn

as required.
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5.9 This simply corresponds to a scaling and shifting of the binary outputs, which di-
rectly gives the activation function, using the notation from (5.19), in the form

y = 2σ(a) − 1.

The corresponding error function can be constructed from (5.21) by applying the
inverse transform toyn andtn, yielding

E(w) = −
N∑

n=1

1 + tn
2

ln
1 + yn

2
+

(
1 − 1 + tn

2

)
ln

(
1 − 1 + yn

2

)

= −1

2

N∑

n=1

{(1 + tn) ln(1 + yn) + (1 − tn) ln(1 − yn)} +N ln 2

where the last term can be dropped, since it is independent ofw.

To find the corresponding activation function we simply apply the linear transforma-
tion to the logistic sigmoid given by (5.19), which gives

y(a) = 2σ(a) − 1 =
2

1 + e−a
− 1

=
1 − e−a

1 + e−a
=
ea/2 − e−a/2

ea/2 + e−a/2

= tanh(a/2).

5.10 From (5.33) and (5.35) we have

uT
i Hui = uT

i λiui = λi.

Assume thatH is positive definite, so that (5.37) holds. Then by settingv = ui it
follows that

λi = uT
i Hui > 0 (116)

for all values ofi. Thus, if H is positive definite, all of its eigenvalues will be
positive.

Conversely, assume that (116) holds. Then, for any vector,v, we can make use of
(5.38) to give

vTHv =

(
∑

i

ciui

)T

H

(
∑

j

cjuj

)

=

(
∑

i

ciui

)T(∑

j

λjcjuj

)

=
∑

i

λic
2
i > 0

where we have used (5.33) and (5.34) along with (116). Thus, if all of the eigenvalues
are positive, the Hessian matrix will be positive definite.
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5.11 NOTE: In PRML, Equation (5.32) contains a typographical error:= should be'.

We start by making the change of variable given by (5.35) which allows the error
function to be written in the form (5.36). Setting the value of the error function
E(w) to a constant valueC we obtain

E(w?) +
1

2

∑

i

λiα
2
i = C.

Re-arranging gives ∑

i

λiα
2
i = 2C − 2E(w?) = C̃

whereC̃ is also a constant. This is the equation for an ellipse whose axes are aligned
with the coordinates described by the variables{αi}. The length of axisj is found
by settingαi = 0 for all i 6= j, and solving forαj giving

αj =

(
C̃

λj

)1/2

which is inversely proportional to the square root of the corresponding eigenvalue.

5.12 NOTE: See note in Solution 5.11.

From (5.37) we see that, ifH is positive definite, then the second term in (5.32) will
be positive whenever(w − w?) is non-zero. Thus the smallest value whichE(w)
can take isE(w?), and sow? is the minimum ofE(w).

Conversely, ifw? is the minimum ofE(w), then, for any vectorw 6= w?, E(w) >
E(w?). This will only be the case if the second term of (5.32) is positive for all
values ofw 6= w? (since the first term is independent ofw). Sincew − w? can be
set to any vector of real numbers, it follows from the definition (5.37) thatH must
be positive definite.

5.19 If we take the gradient of (5.21) with respect tow, we obtain

∇E(w) =

N∑

n=1

∂E

∂an
∇an =

N∑

n=1

(yn − tn)∇an,

where we have used the result proved earlier in the solution to Exercise 5.6. Taking
the second derivatives we have

∇∇E(w) =

N∑

n=1

{
∂yn

∂an
∇an∇an + (yn − tn)∇∇an

}
.

Dropping the last term and using the result (4.88) for the derivative of the logistic
sigmoid function, proved in the solution to Exercise 4.12, we finally get

∇∇E(w) '
N∑

n=1

yn(1 − yn)∇an∇an =

N∑

n=1

yn(1 − yn)bnbT
n
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wherebn ≡ ∇an.

5.25 The gradient of (5.195) is given

∇E = H(w − w?)

and hence update formula (5.196) becomes

w(τ) = w(τ−1) − ρH(w(τ−1) − w?).

Pre-multiplying both sides withuT
j we get

w
(τ)
j = uT

j w(τ) (117)

= uT
j w(τ−1) − ρuT

j H(w(τ−1) − w?)

= w
(τ−1)
j − ρηju

T
j (w − w?)

= w
(τ−1)
j − ρηj(w

(τ−1)
j − w?

j ), (118)

where we have used (5.198). To show that

w
(τ)
j = {1 − (1 − ρηj)

τ}w?
j

for τ = 1, 2, . . ., we can use proof by induction. Forτ = 1, we recall thatw(0) = 0

and insert this into (118), giving

w
(1)
j = w

(0)
j − ρηj(w

(0)
j − w?

j )

= ρηjw
?
j

= {1 − (1 − ρηj)}w?
j .

Now we assume that the result holds forτ = N − 1 and then make use of (118)

w
(N)
j = w

(N−1)
j − ρηj(w

(N−1)
j − w?

j )

= w
(N−1)
j (1 − ρηj) + ρηjw

?
j

=
{
1 − (1 − ρηj)

N−1
}
w?

j (1 − ρηj) + ρηjw
?
j

=
{
(1 − ρηj) − (1 − ρηj)

N
}
w?

j + ρηjw
?
j

=
{
1 − (1 − ρηj)

N
}
w?

j

as required.

Provided that|1 − ρηj | < 1 then we have(1 − ρηj)
τ → 0 asτ → ∞, and hence{

1 − (1 − ρηj)
N
}
→ 1 andw(τ) → w?.

If τ is finite butηj � (ρτ)−1, τ must still be large, sinceηjρτ � 1, even though
|1 − ρηj | < 1. If τ is large, it follows from the argument above thatw

(τ)
j ' w?

j .
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If, on the other hand,ηj � (ρτ)−1, this means thatρηj must be small, sinceρηjτ �
1 andτ is an integer greater than or equal to one. If we expand,

(1 − ρηj)
τ = 1 − τρηj +O(ρη2

j )

and insert this into (5.197), we get

|w(τ)
j | = | {1 − (1 − ρηj)

τ}w?
j |

= |
{
1 − (1 − τρηj +O(ρη2

j ))
}
w?

j |
' τρηj |w?

j | � |w?
j |

Recall that in Section 3.5.3 we showed that when the regularization parameter (called
α in that section) is much larger than one of the eigenvalues (calledλj in that section)
then the corresponding parameter valuewi will be close to zero. Conversely, when
α is much smaller thanλi thenwi will be close to its maximum likelihood value.
Thusα is playing an analogous role toρτ .

5.27 If s(x, ξ) = x + ξ, then
∂sk

∂ξi
= Iki, i.e.,

∂s

∂ξ
= I,

and since the first order derivative is constant, there are no higher order derivatives.
We now make use of this result to obtain the derivatives ofy w.r.t. ξi:

∂y

∂ξi
=
∑

k

∂y

∂sk

∂sk

∂ξi
=

∂y

∂si
= bi

∂y

∂ξi∂ξj
=
∂bi
∂ξj

=
∑

k

∂bi
∂sk

∂sk

∂ξj
=
∂bi
∂sj

= Bij

Using these results, we can write the expansion ofẼ as follows:

Ẽ =
1

2

∫∫∫
{y(x) − t}2p(t|x)p(x)p(ξ) dξ dxdt

+

∫∫∫
{y(x) − t}bTξp(ξ)p(t|x)p(x) dξ dxdt

+
1

2

∫∫∫
ξT
(
{y(x) − t}B + bbT

)
ξp(ξ)p(t|x)p(x) dξ dxdt.

The middle term will again disappear, sinceE[ξ] = 0 and thus we can writẽE on
the form of (5.131) with

Ω =
1

2

∫∫∫
ξT
(
{y(x) − t}B + bbT

)
ξp(ξ)p(t|x)p(x) dξ dxdt.
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Again the first term within the parenthesis vanishes to leading order inξ and we are
left with

Ω ' 1

2

∫∫
ξT
(
bbT

)
ξp(ξ)p(x) dξ dx

=
1

2

∫∫
Trace

[(
ξξT

) (
bbT

)]
p(ξ)p(x) dξ dx

=
1

2

∫
Trace

[
I
(
bbT

)]
p(x) dx

=
1

2

∫
bTbp(x) dx =

1

2

∫
‖∇y(x)‖2p(x) dx,

where we used the fact thatE[ξξT] = I.

5.28 The modifications only affect derivatives with respect to weights in the convolutional
layer. The units within a feature map (indexedm) have different inputs, but all share
a common weight vector,w(m). Thus, errorsδ(m) from all units within a feature
map will contribute to the derivatives of the corresponding weight vector. In this
situation, (5.50) becomes

∂En

∂w
(m)
i

=
∑

j

∂En

∂a
(m)
j

∂a
(m)
j

∂w
(m)
i

=
∑

j

δ
(m)
j z

(m)
ji .

Herea(m)
j denotes the activation of thejth unit in themth feature map, whereas

w
(m)
i denotes theith element of the corresponding feature vector and, finally,z

(m)
ji

denotes theith input for thejth unit in themth feature map; the latter may be an
actual input or the output of a preceding layer.

Note thatδ(m)
j = ∂En/∂a

(m)
j will typically be computed recursively from theδs

of the units in the following layer, using (5.55). If there are layer(s) preceding the
convolutional layer, the standard backward propagation equations will apply; the
weights in the convolutional layer can be treated as if they were independent param-
eters, for the purpose of computing theδs for the preceding layer’s units.

5.29 This is easily verified by taking the derivative of (5.138), using(1.46) and standard
derivatives, yielding

∂Ω

∂wi
=

1∑
k πkN (wi|µk, σ2

k)

∑

j

πjN (wi|µj , σ
2
j )

(wi − µj)

σ2
.

Combining this with (5.139) and (5.140), we immediately obtainthe second term of
(5.141).

5.34 NOTE: In the 1st printing of PRML, the l.h.s. of (5.154) should be replaced with
γnk = γk(tn|xn). Accordingly, in (5.155) and (5.156),γk should be replaced by
γnk and in (5.156),tl should betnl.
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We start by using the chain rule to write

∂En

∂aπ
k

=

K∑

j=1

∂En

∂πj

∂πj

∂aπ
k

. (119)

Note that because of the coupling between outputs caused by the softmax activation
function, the dependence on the activation of a single outputunit involves all the
output units.

For the first factor inside the sum on the r.h.s. of (119), standardderivatives applied
to thenth term of (5.153) gives

∂En

∂πj
= − Nnj∑K

l=1 πlNnl

= −γnj

πj
. (120)

For the for the second factor, we have from (4.106) that

∂πj

∂aπ
k

= πj(Ijk − πk). (121)

Combining (119), (120) and (121), we get

∂En

∂aπ
k

= −
K∑

j=1

γnj

πj
πj(Ijk − πk)

= −
K∑

j=1

γnj(Ijk − πk) = −γnk +

K∑

j=1

γnjπk = πk − γnk,

where we have used the fact that, by (5.154),
∑K

j=1 γnj = 1 for all n.

5.39 Using (4.135), we can approximate (5.174) as

p(D|α, β) ' p(D|wMAP, β)p(wMAP|α)∫
exp

{
−1

2
(w − wMAP)

T
A (w − wMAP)

}
dw,

whereA is given by (5.166), asp(D|w, β)p(w|α) is proportional top(w|D, α, β).

Using (4.135), (5.162) and (5.163), we can rewrite this as

p(D|α, β) '
N∏

n

N (tn|y(xn,wMAP), β−1)N (wMAP|0, α−1I)
(2π)W/2

|A|1/2
.

Taking the logarithm of both sides and then using (2.42) and (2.43), we obtain the
desired result.
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5.40 For aK-class neural network, the likelihood function is given by

N∏

n

K∏

k

yk(xn,w)tnk

and the corresponding error function is given by (5.24).

Again we would use a Laplace approximation for the posterior distribution over the
weights, but the corresponding Hessian matrix,H, in (5.166), would now be derived
from (5.24). Similarly, (5.24), would replace the binary cross entropy error term in
the regularized error function (5.184).

The predictive distribution for a new pattern would again have tobe approximated,
since the resulting marginalization cannot be done analytically. However, in con-
trast to the two-class problem, there is no obvious candidate for this approximation,
although Gibbs (1997) discusses various alternatives.

Chapter 6 Kernel Methods

6.1 We first of all note thatJ(a) depends ona only through the formKa. Since typically
the numberN of data points is greater than the numberM of basis functions, the
matrix K = ΦΦT will be rank deficient. There will then beM eigenvectors ofK
having non-zero eigenvalues, andN−M eigenvectors with eigenvalue zero. We can
then decomposea = a‖ + a⊥ whereaT

‖ a⊥ = 0 andKa⊥ = 0. Thus the value of
a⊥ is not determined byJ(a). We can remove the ambiguity by settinga⊥ = 0, or
equivalently by adding a regularizer term

ε

2
aT
⊥a⊥

to J(a) whereε is a small positive constant. Thena = a‖ wherea‖ lies in the span
of K = ΦΦT and hence can be written as a linear combination of the columnsof
Φ, so that in component notation

an =

M∑

i=1

uiφi(xn)

or equivalently in vector notation

a = Φu. (122)

Substituting (122) into (6.7) we obtain

J(u) =
1

2
(KΦu − t)

T
(KΦu − t) +

λ

2
uTΦTKΦu

=
1

2

(
ΦΦTΦu − t

)T (
ΦΦTΦu − t

)
+
λ

2
uTΦTΦΦTΦu (123)
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We now make use of the matrix identity (C.7) to give

α−1IM − α−1IMΦT
(
Φ(α−1IM )ΦT + β−1IN

)−1
Φα−1IM

=
(
αI + βΦTΦ

)−1
= SN ,

where we have also used (3.54). Substituting this in (126), we obtain

σ2
N (xN+1) =

1

β
+ φ(xN+1)

TSNφ(xN+1)

as derived for the linear regression model in Section 3.3.2.

6.23 NOTE: In the 1st printing of PRML, a typographical mistake appears in the text
of the exercise at line three, where it should say “. . . a training set of input vectors
x1, . . . ,xN ”.

If we assume that the target variables,t1, . . . , tD, are independent given the input
vector,x, this extension is straightforward.

Using analogous notation to the univariate case,

p(tN+1|T) = N (tN+1|m(xN+1), σ(xN+1)I),

whereT is aN ×D matrix with the vectorstT
1 , . . . , t

T
N as its rows,

m(xN+1)
T = kTCNT

andσ(xN+1) is given by (6.67). Note thatCN , which only depend on the input
vectors, is the same in the uni- and multivariate models.

6.25 Substituting the gradient and the Hessian into the Newton-Raphson formula we ob-
tain

anew
N = aN + (C−1

N + WN )−1
[
tN − σN − C−1

N aN

]

= (C−1
N + WN )−1 [tN − σN + WNaN ]

= CN (I + WNCN )−1 [tN − σN + WNaN ]

Chapter 7 Sparse Kernel Machines

7.1 From Bayes’ theorem we have

p(t|x) ∝ p(x|t)p(t)
where, from (2.249),

p(x|t) =
1

Nt

N∑

n=1

1

Zk
k(x,xn)δ(t, tn).
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HereNt is the number of input vectors with labelt (+1 or−1) andN = N+1+N−1.
δ(t, tn) equals1 if t = tn and0 otherwise.Zk is the normalisation constant for
the kernel. The minimum misclassification-rate is achieved if, for each new input
vector,x̃, we chosẽt to maximisep(̃t|x̃). With equal class priors, this is equivalent
to maximizingp(x̃|̃t) and thus

t̃ =





+1 iff
1

N+1

∑

i:ti=+1

k(x̃,xi) >
1

N−1

∑

j:tj=−1

k(x̃,xj)

−1 otherwise.

Here we have dropped the factor1/Zk since it only acts as a common scaling factor.
Using the encoding scheme for the label, this classification rule can be written in the
more compact form

t̃ = sign

(
N∑

n=1

tn
Ntn

k(x̃,xn)

)
.

Now we takek(x,xn) = xTxn, which results in the kernel density

p(x|t = +1) =
1

N+1

∑

n:tn=+1

xTxn = xTx̄+.

Here, the sum in the middle experssion runs over all vectorsxn for which tn = +1
andx̄+ denotes the mean of these vectors, with the corresponding definition for the
negative class. Note that this density is improper, since it cannot be normalized.
However, we can still compare likelihoods under this density, resulting in the classi-
fication rule

t̃ =

{
+1 if x̃Tx̄+ > x̃Tx̄−,
−1 otherwise.

The same argument would of course also apply in the feature spaceφ(x).

7.4 From Figure 4.1 and (7.4), we see that the value of the margin

ρ =
1

‖w‖ and so
1

ρ2
= ‖w‖2.

From (7.16) we see that, for the maximum margin solution, the second term of (7.7)
vanishes and so we have

L(w, b,a) =
1

2
‖w‖2.

Using this together with (7.8), the dual (7.10) can be written as

1

2
‖w‖2 =

N∑

n

an − 1

2
‖w‖2,

from which the desired result follows.
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7.8 This follows from (7.67) and (7.68), which in turn follow from the KKT conditions,
(E.9)–(E.11), forµn, ξn, µ̂n andξ̂n, and the results obtained in (7.59) and (7.60).

For example, forµn andξn, the KKT conditions are

ξn > 0

µn > 0

µnξn = 0 (127)

and from (7.59) we have that

µn = C − an. (128)

Combining (127) and (128), we get (7.67); similar reasoning forµ̂n and ξ̂n lead to
(7.68).

7.10 We first note that this result is given immediately from (2.113)–(2.115), but the task
set in the exercise was to practice the technique of completingthe square. In this
solution and that of Exercise 7.12, we broadly follow the presentation in Section
3.5.1. Using (7.79) and (7.80), we can write (7.84) in a form similar to (3.78)

p(t|X,α, β) =

(
β

2π

)N/2
1

(2π)N/2

M∏

i=1

αi

∫
exp {−E(w)} dw (129)

where

E(w) =
β

2
‖t − Φw‖2 +

1

2
wTAw

andA = diag(α).

Completing the square overw, we get

E(w) =
1

2
(w − m)TΣ−1(w − m) + E(t) (130)

wherem andΣ are given by (7.82) and (7.83), respectively, and

E(t) =
1

2

(
βtTt − mTΣ−1m

)
. (131)

Using (130), we can evaluate the integral in (129) to obtain

∫
exp {−E(w)} dw = exp {−E(t)} (2π)M/2|Σ|1/2. (132)

Considering this as a function oft we see from (7.83), that we only need to deal
with the factorexp {−E(t)}. Using (7.82), (7.83), (C.7) and (7.86), we can re-write
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(131) as follows

E(t) =
1

2

(
βtTt − mTΣ−1m

)

=
1

2

(
βtTt − βtTΦΣΣ−1ΣΦTtβ

)

=
1

2
tT
(
βI − βΦΣΦTβ

)
t

=
1

2
tT
(
βI − βΦ(A + βΦTΦ)−1ΦTβ

)
t

=
1

2
tT
(
β−1I + ΦA−1ΦT

)−1
t

=
1

2
tTC−1t.

This gives us the last term on the r.h.s. of (7.85); the two preceding terms are given
implicitly, as they form the normalization constant for the posterior Gaussian distri-
butionp(t|X,α, β).

7.12 Using the results (129)–(132) from Solution 7.10, we can write (7.85)in the form of
(3.86):

ln p(t|X,α, β) =
N

2
lnβ +

1

2

N∑

i

lnαi − E(t) − 1

2
ln |Σ| − N

2
ln(2π). (133)

By making use of (131) and (7.83) together with (C.22), we can takethe derivatives
of this w.r.tαi, yielding

∂

∂αi
ln p(t|X,α, β) =

1

2αi
− 1

2
Σii −

1

2
m2

i . (134)

Setting this to zero and re-arranging, we obtain

αi =
1 − αiΣii

m2
i

=
γi

m2
i

,

where we have used (7.89). Similarly, forβ we see that

∂

∂β
ln p(t|X,α, β) =

1

2

(
N

β
− ‖t − Φm‖2 − Tr

[
ΣΦTΦ

])
. (135)

Using (7.83), we can rewrite the argument of the trace operator as

ΣΦTΦ = ΣΦTΦ + β−1ΣA − β−1ΣA

= Σ(ΦTΦβ + A)β−1 − β−1ΣA

= (A + βΦTΦ)−1(ΦTΦβ + A)β−1 − β−1ΣA

= (I − AΣ)β−1. (136)

Here the first factor on the r.h.s. of the last line equals (7.89) written in matrix form.
We can use this to set (135) equal to zero and then re-arrange to obtain (7.88).
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7.15 Using (7.94), (7.95) and (7.97)–(7.99), we can rewrite (7.85) as follows

ln p(t|X,α, β) = −1

2

{
N ln(2π) + ln |C−i||1 + α−1

i ϕT
i C−1

−iϕi|

+tT
(

C−1
−i −

C−1
−iϕiϕ

T
i C−1

−i

αi +ϕT
i C−1

−iϕi

)
t
}

= −1

2

{
N ln(2π) + ln |C−i| + tTC−1

−i t
}

+
1

2

[
− ln |1 + α−1

i ϕT
i C−1

−iϕi| + tT
C−1

−iϕiϕ
T
i C−1

−i

αi +ϕT
i C−1

−iϕi

t
]

= L(α−i) +
1

2

[
lnαi − ln(αi + si) +

q2i
αi + si

]

= L(α−i) + λ(αi)

7.18 As the RVM can be regarded as a regularized logistic regression model, we can
follow the sequence of steps used to derive (4.91) in Exercise 4.13 to derive the first
term of the r.h.s. of (7.110), whereas the second term follows from standard matrix
derivatives (see Appendix C). Note however, that in Exercise 4.13 we are dealing
with thenegative log-likelhood.

To derive (7.111), we make use of (106) and (107) from Exercise 4.13. If we write
the first term of the r.h.s. of (7.110) in component form we get

∂

∂wj

N∑

n=1

(tn − yn)φni = −
N∑

n=1

∂yn

∂an

∂an

∂wj
φni

= −
N∑

n=1

yn(1 − yn)φnjφni,

which, written in matrix form, equals the first term inside the parenthesis on the r.h.s.
of (7.111). The second term again follows from standard matrix derivatives.

Chapter 8 Graphical Models

8.1 We want to show that, for (8.5),

∑

x1

. . .
∑

xK

p(x) =
∑

x1

. . .
∑

xK

K∏

k=1

p(xk|pak) = 1.

We assume that the nodes in the graph has been numbered such thatx1 is the root
node and no arrows lead from a higher numbered node to a lower numbered node.
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8.23 This follows from the fact that the message that a node,xi, will send to a factorfs,
consists of the product of all other messages received byxi. From (8.63) and (8.69),
we have

p(xi) =
∏

s∈ne(xi)

µfs→xi
(xi)

= µfs→xi
(xi)

∏

t∈ne(xi)\fs

µft→xi
(xi)

= µfs→xi
(xi)µxi→fs

(xi).

8.28 If a graph has one or more cycles, there exists at least one set of nodes and edges
such that, starting from an arbitrary node in the set, we can visit all the nodes in the
set and return to the starting node, without traversing any edge more than once.

Consider one particular such cycle. When one of the nodesn1 in the cycle sends a
message to one of its neighboursn2 in the cycle, this causes a pending messages on
the edge to the next noden3 in that cycle. Thus sending a pending message along an
edge in the cycle always generates a pending message on the next edge in that cycle.
Since this is true for every node in the cycle it follows that there will always exist at
least one pending message in the graph.

8.29 We show this by induction over the number of nodes in the tree-structured factor
graph.

First consider a graph with two nodes, in which case only two messages will be sent
across the single edge, one in each direction. None of these messages will induce
any pending messages and so the algorithm terminates.

We then assume that for a factor graph withN nodes, there will be no pending
messages after a finite number of messages have been sent. Given such a graph, we
can construct a new graph withN + 1 nodes by adding a new node. This new node
will have a single edge to the original graph (since the graph mustremain a tree)
and so if this new node receives a message on this edge, it will induce no pending
messages. A message sent from the new node will trigger propagation of messages
in the original graph withN nodes, but by assumption, after a finite number of
messages have been sent, there will be no pending messages andthe algorithm will
terminate.

Chapter 9 Mixture Models and EM

9.1 Since both the E- and the M-step minimise the distortion measure(9.1), the algorithm
will never change from a particular assignment of data points toprototypes, unless
the new assignment has a lower value for (9.1).

Since there is a finite number of possible assignments, each with a corresponding
unique minimum of (9.1) w.r.t. the prototypes,{µk}, the K-means algorithm will
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converge after a finite number of steps, when no re-assignment ofdata points to
prototypes will result in a decrease of (9.1). When no-reassignmenttakes place,
there also will not be any change in{µk}.

9.3 From (9.10) and (9.11), we have

p (x) =
∑

z

p(x|z)p(z) =
∑

z

K∏

k=1

(πkN (x|µk,Σk))
zk .

Exploiting the 1-of-K representation forz, we can re-write the r.h.s. as

K∑

j=1

K∏

k=1

(πkN (x|µk,Σk))
Ikj =

K∑

j=1

πjN (x|µj ,Σj)

whereIkj = 1 if k = j and 0 otherwise.

9.7 Consider first the optimization with respect to the parameters{µk,Σk}. For this we
can ignore the terms in (9.36) which depend onlnπk. We note that, for each data
pointn, the quantitiesznk are all zero except for a particular element which equals
one. We can therefore partition the data set intoK groups, denotedXk, such that all
the data pointsxn assigned to componentk are in groupXk. The complete-data log
likelihood function can then be written

ln p (X,Z | µ,Σ,π) =

K∑

k=1

{
∑

n∈Xk

lnN (xn|µk,Σk)

}
.

This represents the sum ofK independent terms, one for each component in the
mixture. When we maximize this term with respect toµk andΣk we will simply
be fitting thekth component to the data setXk, for which we will obtain the usual
maximum likelihood results for a single Gaussian, as discussed in Chapter 2.

For the mixing coefficients we need only consider the terms inlnπk in (9.36), but
we must introduce a Lagrange multiplier to handle the constraint

∑
k πk = 1. Thus

we maximize
N∑

n=1

K∑

k=1

znk lnπk + λ

(
K∑

k=1

πk − 1

)

which gives

0 =

N∑

n=1

znk

πk
+ λ.

Multiplying through byπk and summing overk we obtainλ = −N , from which we
have

πk =
1

N

N∑

n=1

znk =
Nk

N

whereNk is the number of data points in groupXk.
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9.8 Using (2.43), we can write the r.h.s. of (9.40) as

−1

2

N∑

n=1

K∑

j=1

γ(znj)(xn − µj)
TΣ−1(xn − µj) + const.,

where ‘const.’ summarizes terms independent ofµj (for all j). Taking the derivative
of this w.r.t.µk, we get

−
N∑

n=1

γ(znk)
(
Σ−1µk − Σ−1xn

)
,

and setting this to zero and rearranging, we obtain (9.17).

9.12 Since the expectation of a sum is the sum of the expectations we have

E[x] =

K∑

k=1

πkEk[x] =

K∑

k=1

πkµk

whereEk[x] denotes the expectation ofx under the distributionp(x|k). To find the
covariance we use the general relation

cov[x] = E[xxT] − E[x]E[x]T

to give

cov[x] = E[xxT] − E[x]E[x]T

=

K∑

k=1

πkEk[xxT] − E[x]E[x]T

=

K∑

k=1

πk

{
Σk + µkµ

T
k

}
− E[x]E[x]T.

9.15 This is easily shown by calculating the derivatives of (9.55), setting them to zero and
solve forµki. Using standard derivatives, we get

∂

∂µki
EZ[ln p(X,Z|µ,π)] =

N∑

n=1

γ(znk)

(
xni

µki
− 1 − xni

1 − µki

)

=

∑
n γ(znk)xni −

∑
n γ(znk)µki

µki(1 − µki)
.

Setting this to zero and solving forµki, we get

µki =

∑
n γ(znk)xni∑

n γ(znk)
,

which equals (9.59) when written in vector form.
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9.17 This follows directly from the equation for the incomplete log-likelihood, (9.51).
The largest value that the argument to the logarithm on the r.h.s. of (9.51) can have
is 1, since∀n, k : 0 6 p(xn|µk) 6 1, 0 6 πk 6 1 and

∑K
k πk = 1. Therefore, the

maximum value forln p(X|µ,π) equals 0.

9.20 If we take the derivatives of (9.62) w.r.t.α, we get

∂

∂α
E [ln p(t,w|α, β)] =

M

2

1

α
− 1

2
E
[
wTw

]
.

Setting this equal to zero and re-arranging, we obtain (9.63).

9.23 NOTE: In the1st printing of PRML, the task set in this exercise is to show that the
two sets of re-estimation equations are formally equivalent, without any restriction.
However, it really should be restricted to stationary points of the objective function.

Considering the case when the optimization has converged, wecan start withαi, as
defined by (7.87), and use (7.89) to re-write this as

α?
i =

1 − α?
i Σii

m2
N

,

whereα?
i = αnew

i = αi is the value reached at convergence. We can re-write this as

α?
i (m

2
i + Σii) = 1

which is easily re-written as (9.67).

Forβ, we start from (9.68), which we re-write as

1

β?
=

‖t − ΦmN‖2

N
+

∑
i γi

β?N
.

As in theα-case,β? = βnew = β is the value reached at convergence. We can
re-write this as

1

β?

(
N −

∑

i

γi

)
= ‖t − ΦmN‖2,

which can easily be re-written as (7.88).

9.25 This follows from the fact that the Kullback-Leibler divergence, KL(q‖p), is at its
minimum, 0, whenq andp are identical. This means that

∂

∂θ
KL(q‖p) = 0,

sincep(Z|X,θ) depends onθ. Therefore, if we compute the gradient of both sides
of (9.70) w.r.t.θ, the contribution from the second term on the r.h.s. will be0, and
so the gradient of the first term must equal that of the l.h.s.
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9.26 From (9.18) we get

Nold
k =

∑

n

γold(znk). (137)

We getNnew
k by recomputing the responsibilities,γ(zmk), for a specific data point,

xm, yielding

Nnew
k =

∑

n 6=m

γold(znk) + γnew(zmk). (138)

Combining this with (137), we get (9.79).

Similarly, from (9.17) we have

µold
k =

1

Nold
k

∑

n

γold(znk)xn

and recomputing the responsibilities,γ(zmk), we get

µnew
k =

1

Nnew
k

(
∑

n 6=m

γold(znk)xn + γnew(zmk)xm

)

=
1

Nnew
k

(
Nold

k µold
k − γold(zmk)xm + γnew(zmk)xm

)

=
1

Nnew
k

((
Nnew

k − γnew(zmk) + γold(zmk)
)
µold

k

−γold(zmk)xm + γnew(zmk)xm

)

= µold
k +

(
γnew(zmk) − γold(zmk)

Nnew
k

)
(xm − µold

k ),

where we have used (9.79).

Chapter 10 Approximate Inference

10.1 Starting from (10.3), we use the product rule together with (10.4) to get

L(q) =

∫
q (Z) ln

{
p (X,Z)

q (Z)

}
dZ

=

∫
q (Z) ln

{
p (X | Z) p (X)

q (Z)

}
dZ

=

∫
q (Z)

(
ln

{
p (X | Z)

q (Z)

}
+ ln p (X)

)
dZ

= −KL( q ‖ p ) + ln p (X) .

Rearranging this, we immediately get (10.2).


