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Hence, we go back to deal with the Gaussian terms:

Gaussian terms = (
β

2π
)N/2 |SN|1/2

|S0|1/2 exp
{− (bN −b0)β

}
If we substitute the expressions above into p(t), we will obtain (3.118)

immediately.

0.4 Linear Models Classification

Problem 4.1 Solution

If the convex hull of {xn} and {yn} intersects, we know that there will be a
point z which can be written as z = ∑

nαnxn and also z = ∑
nβnyn. Hence we

can obtain:

ŵTz+w0 = ŵT (
∑
n
αnxn) + w0

= (
∑
n
αnŵTxn) + (

∑
n
αn)w0

= ∑
n
αn(ŵTxn + w0) (∗)

Where we have used
∑

nαn = 1. And if {xn} and {yn} are linearly separa-
ble, we have ŵTxn +w0 > 0 and ŵTyn +w0 < 0, for ∀xn, yn. Together with
αn ≥ 0 and (∗), we know that ŵTz+w0 > 0. And if we calculate ŵTz+w0
from the perspective of {yn} following the same procedure, we can obtain
ŵTz+w0 < 0. Hence contradictory occurs. In other words, they are not lin-
early separable if their convex hulls intersect.

We have already proved the first statement, i.e., "convex hulls intersect"
gives "not linearly separable", and what the second part wants us to prove
is that "linearly separable" gives "convex hulls do not intersect". This can be
done simply by contrapositive.

The true converse of the first statement should be if their convex hulls do
not intersect, the data sets should be linearly separable. This is exactly what
Hyperplane Separation Theorem shows us.

Problem 4.2 Solution

Let’s make the dependency of ED(W̃) on w0 explicitly:

ED(W̃) = 1
2

Tr
{
(XW+1w0

T −T)T (XW+1w0
T −T)

}
Then we calculate the derivative of ED(W̃) with respect to w0:

∂ED(W̃)
∂w0

= 2Nw0 +2(XW−T)T1
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Where we have used the property:

∂

∂X
Tr

[
(AXB+C)(AXB+C)T] = 2AT (AXB+C)BT

We set the derivative equals to 0, which gives:

w0 = − 1
N

(XW−T)T1 = t̄−WT x̄

Where we have denoted:

t̄ = 1
N

TT1, and x̄ = 1
N

XT1

If we substitute the equations above into ED(W̃), we can obtain:

ED(W̃) = 1
2

Tr
{
(XW+ T̄− X̄W−T)T (XW+ T̄− X̄W−T)

}
Where we further denote

T̄ = 1t̄T , and X̄ = 1x̄T

Then we set the derivative of ED(W̃) with regard to W to 0, which gives:

W = X̂†T̂

Where we have defined:

X̂ = X− X̄ , and T̂ = T− T̄

Now consider the prediction for a new given x, we have:

y(x) = WTx+w0

= WTx+ t̄−WT x̄
= t̄ + WT (x− x̄)

If we know that aTtn +b = 0 holds for some a and b, we can obtain:

aT t̄ = 1
N

aTTT1 = 1
N

N∑
n=1

aTtn = −b

Therefore,

aTy(x) = aT[
t̄ + WT (x− x̄)

]
= aT t̄ + aTWT (x− x̄)

= −b + aTT̂T (X̂†)T (x− x̄)

= −b
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Where we have used:

aTT̂T = aT (T− T̄)T = aT (T− 1
N

11TT)T

= aTTT − 1
N

aTTT11T = −b1T +b1T

= 0T

Problem 4.3 Solution

Suppose there are Q constraints in total. We can write aq
Ttn+bq = 0 , q =

1,2, ...,Q for all the target vector tn , n = 1,2..., N. Or alternatively, we can
group them together:

ATtn +b = 0

Where A is a Q ×Q matrix, and the qth column of A is aq, and mean-
while b is a Q ×1 column vector, and the qth element is bq. for every pair
of {aq,bq} we can follow the same procedure in the previous problem to show
that aqy(x)+ bq = 0. In other words, the proofs will not affect each other.
Therefore, it is obvious :

ATy(x)+b = 0

Problem 4.4 Solution

We use Lagrange multiplier to enforce the constraint wTw = 1. We now
need to maximize :

L(λ,w) = wT (m2 −m1) + λ(wTw−1)

We calculate the derivatives:

∂L(λ,w)
∂λ

= wTw−1

And
∂L(λ,w)

∂w
= m2 −m1 + 2λw

We set the derivatives above equals to 0, which gives:

w = − 1
2λ

(m2 −m1)∝ (m2 −m1)

Problem 4.5 Solution

We expand (4.25) using (4.22), (4.23) and (4.24).

J(w) = (m2 −m1)2

s2
1 + s2

2

= ||wT (m2 −m1)||2∑
n∈C1(wTxn −m1)2 +∑

n∈C2(wTxn −m2)2
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The numerator can be further written as:

numerator = [
wT (m2 −m1)

][
wT (m2 −m1)

]T = wTSBw

Where we have defined:

SB = (m2 −m1)(m2 −m1)T

And ti is the same for the denominator:

denominator = ∑
n∈C1

[wT (xn −m1)]2 + ∑
n∈C2

[wT (xn −m2)]2

= wTSw1w+wTSw2w
= wTSww

Where we have defined:

Sw = ∑
n∈C1

(xn −m1)(xn −m1)T + ∑
n∈C2

(xn −m2)(xn −m2)T

Just as required.

Problem 4.6 Solution

Let’s follow the hint, beginning by expanding (4.33).

(4.33) =
N∑

n=1
wTxnxn +w0

N∑
n=1

xn −
N∑

n=1
tnxn

=
N∑

n=1
xnxn

Tw−wTm
N∑

n=1
xn − (

∑
n∈C1

tnxn + ∑
n∈C2

tnxn)

=
N∑

n=1
xnxn

Tw−wTm · (Nm)− (
∑

n∈C1

N
N1

xn + ∑
n∈C2

−N
N2

xn)

=
N∑

n=1
xnxn

Tw−NwTmm−N(
∑

n∈C1

1
N1

xn − ∑
n∈C2

1
N2

xn)

=
N∑

n=1
xnxn

Tw−NmmTw−N(m1 −m2)

= [
N∑

n=1
(xnxn

T )−NmmT ]w−N(m1 −m2)

If we let the derivative equal to 0, we will see that:

[
N∑

n=1
(xnxn

T )−NmmT ]w= N(m1 −m2)

Therefore, now we need to prove:

N∑
n=1

(xnxn
T )−NmmT = Sw + N1N2

N
SB
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Let’s expand the left side of the equation above:

left =
N∑

n=1
xnxn

T −N(
N1

N
m1 +

N2

N
m2)2

=
N∑

n=1
xnxn

T −N(
N2

1

N2 ||m1||2 +
N2

2

N2 ||m2||2 +2
N1N2

N2 m1m2
T )

=
N∑

n=1
xnxn

T − N2
1

N
||m1||2 −

N2
2

N
||m2||2 −2

N1N2

N
m1m2

T

=
N∑

n=1
xnxn

T + (N1 + N1N2

N
−2N1)||m1||2 + (N2 + N1N2

N
−2N2)||m2||2 −2

N1N2

N
m1m2

T

=
N∑

n=1
xnxn

T + (N1 −2N1)||m1||2 + (N2 −2N2)||m2||2 +
N1N2

N
||m1 −m2||2

=
N∑

n=1
xnxn

T +N1||m1||2 −2m1 · (N1m1
T )+N2||m2||2 −2m2 · (N2m2

T )+ N1N2

N
SB

=
N∑

n=1
xnxn

T +N1||m1||2 −2m1
∑

n∈C1

xT
n +N2||m2||2 −2m2

∑
n∈C2

xT
n + N1N2

N
SB

= ∑
n∈C1

xnxn
T +N1||m1||2 −2m1

∑
n∈C1

xT
n

+ ∑
n∈C2

xnxn
T +N2||m2||2 −2m2

∑
n∈C2

xT
n + N1N2

N
SB

= ∑
n∈C1

(xnxn
T +||m1||2 −2m1xT

n )+ ∑
n∈C2

(xnxn
T +||m2||2 −2m2xn

T )+ N1N2

N
SB

= ∑
n∈C1

||xn −m1||2 +
∑

n∈C2

||xn −m2||2 +
N1N2

N
SB

= Sw + N1N2

N
SB

Just as required.
Problem 4.7 Solution

This problem is quite simple. We can solve it by definition. We know that
logistic sigmoid function has the form:

σ(a) = 1
1+ exp(−a)

Therefore, we can obtain:

σ(a)+σ(−a) = 1
1+ exp(−a)

+ 1
1+ exp(a)

= 2+ exp(a)+ exp(−a)
[1+ exp(−a)][1+ exp(a)]

= 2+ exp(a)+ exp(−a)
2+ exp(a)+ exp(−a)

= 1



95

Next we exchange the dependent and independent variables to obtain its
inverse.

a = 1
1+ exp(−y)

We first rearrange the equation above, which gives:

exp(−y) = 1−a
a

Then we calculate the logarithm for both sides, which gives:

y = ln(
a

1−a
)

Just as required.

Problem 4.8 Solution

According to (4.58) and (4.64), we can write:

a = ln
p(x|C1)p(C1)
p(x|C2)p(C2)

= ln p(x|C1)− ln p(x|C2)+ ln
p(C1)
p(C2)

= −1
2

(x−µ1)TΣ−1(x−µ1)+ 1
2

(x−µ2)TΣ−1(x−µ2)+ ln
p(C1)
p(C2)

= Σ−1(µ1 −µ2)x− 1
2
µ1

TΣ−1µ1 +
1
2
µ2

TΣ−1µ2 + ln
p(C1)
p(C2)

= wTx+w0

Where in the last second step, we rearrange the term according to x, i.e.,
its quadratic, linear, constant term. We have also defined :

w = Σ−1(µ1 −µ2)

And
w0 = −1

2
µ1

TΣ−1µ1 +
1
2
µ2

TΣ−1µ2 + ln
p(C1)
p(C2)

Finally, since p(C1|x) = σ(a) as stated in (4.57), we have p(C1|x) = σ(wTx+
w0) just as required.

Problem 4.9 Solution

We begin by writing down the likelihood function.

p({ϕn, tn}|π1, π2, ...,πK ) =
N∏

n=1

K∏
k=1

[p(ϕn|Ck) p(Ck)]tnk

=
N∏

n=1

K∏
k=1

[πk p(ϕn|Ck)]tnk
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Hence we can obtain the expression for the logarithm likelihood:

ln p =
N∑

n=1

K∑
k=1

tnk
[
lnπk + ln p(ϕn|Ck)

]∝ N∑
n=1

K∑
k=1

tnk lnπk

Since there is a constraint on πk, so we need to add a Lagrange Multiplier
to the expression, which becomes:

L =
N∑

n=1

K∑
k=1

tnk lnπk + λ(
K∑

k=1
πk −1)

We calculate the derivative of the expression above with regard to πk:

∂L
∂πk

=
N∑

n=1

tnk

πk
+ λ

And if we set the derivative equal to 0, we can obtain:

πk = − (
N∑

n=1
tnk) /λ = −Nk

λ
(∗)

And if we preform summation on both sides with regard to k, we can see
that:

1 = −(
K∑

k=1
Nk) /λ = −N

λ

Which gives λ = −N, and substitute it into (∗), we can obtain πk = Nk / N.

Problem 4.10 Solution

This time, we focus on the term which dependent on µk and Σ in the
logarithm likelihood.

ln p =
N∑

n=1

K∑
k=1

tnk
[
lnπk + ln p(ϕn|Ck)

]∝ N∑
n=1

K∑
k=1

tnk ln p(ϕn|Ck)

Provided p(ϕ|Ck) = N (ϕ|µk,Σ), we can further derive:

ln p ∝
N∑

n=1

K∑
k=1

tnk
[− 1

2
ln |Σ|− 1

2
(ϕn −µk)Σ−1(ϕn −µk)T]

We first calculate the derivative of the expression above with regard to
µk:

∂ ln p
∂µk

=
N∑

n=1
tnkΣ

−1(ϕn −µk)

We set the derivative equals to 0, which gives:

N∑
n=1

tnkΣ
−1ϕn =

N∑
n=1

tnkΣ
−1µk = NkΣ

−1µk
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Therefore, if we multiply both sides by Σ / Nk, we will obtain (4.161). Now
let’s calculate the derivative of ln p with regard to Σ, which gives:

∂ ln p
∂Σ

=
N∑

n=1

K∑
k=1

tnk (−1
2
Σ−1)− 1

2
∂

∂Σ

N∑
n=1

K∑
k=1

tnk(ϕn −µk)Σ−1(ϕn −µk)T

=
N∑

n=1

K∑
k=1

− tnk

2
Σ−1 − 1

2
∂

∂Σ

K∑
k=1

N∑
n=1

tnk(ϕn −µk)Σ−1(ϕn −µk)T

=
N∑

n=1
−1

2
Σ−1 − 1

2
∂

∂Σ

K∑
k=1

NkTr(Σ−1Sk)

= −N
2
Σ−1 + 1

2

K∑
k=1

NkΣ
−1SkΣ

−1

Where we have denoted

Sk = 1
Nk

N∑
n=1

tnk(ϕn −µk)(ϕn −µk)T

Now we set the derivative equals to 0, and rearrange the equation, which
gives:

Σ =
K∑

k=1

Nk

N
Sk

Problem 4.11 Solution

Based on definition, we can write down

p(ϕ|Ck) =
M∏

m=1

L∏
l=1

µ
ϕml
kml

Note that here only one of the value among ϕm1, ϕm2, ...ϕmL is 1, and the
others are all 0 because we have used a 1−of−L binary coding scheme, and
also we have taken advantage of the assumption that the M components of
ϕ are independent conditioned on the class Ck. We substitute the expression
above into (4.63), which gives:

ak =
M∑

m=1

L∑
l=1

ϕml · lnµkml + ln p(Ck)

Hence it is obvious that ak is a linear function of the components of ϕ.

Problem 4.12 Solution

Based on definition, i.e., (4.59), we know that logistic sigmoid has the
form:

σ(a) = 1
1+ exp(−a)
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Now, we calculate its derivative with regard to a.

dσ(a)
da

= exp(a)
[ 1+ exp(−a) ]2 = exp(a)

1+ exp(−a)
· 1
1+ exp(−a)

= [ 1−σ(a) ] · σ(a)

Just as required.

Problem 4.13 Solution

Let’s follow the hint.

∇E(w) = −∇
N∑

n=1
{ tn ln yn + (1− tn) ln(1− yn) }

= −
N∑

n=1
∇{ tn ln yn + (1− tn) ln(1− yn) }

= −
N∑

n=1

d{ tn ln yn + (1− tn) ln(1− yn) }
dyn

dyn

dan

dan

dw

= −
N∑

n=1
(

tn

yn
− 1− tn

1− yn
) · yn (1− yn) ·ϕn

= −
N∑

n=1

tn − yn

yn(1− yn)
· yn (1− yn) ·ϕn

= −
N∑

n=1
(tn − yn)ϕn

=
N∑

n=1
(yn − tn)ϕn

Where we have used yn = σ(an), an = wTϕn, the chain rules and (4.88).

Problem 4.14 Solution

According to definition, we know that if a dataset is linearly separable,
we can find w, for some points xn, we have wTϕ(xn) > 0, and the others
wTϕ(xm)< 0. Then the boundary is given by wTϕ(x) = 0. Note that for any
point x0 in the dataset, the value of wTϕ(x0) should either be positive or
negative, but it can not equal to 0.

Therefore, the maximum likelihood solution for logistic regression is triv-
ial. We suppose for those points xn belonging to class C1, we have wTϕ(xn)>
0 and wTϕ(xm) < 0 for those belonging to class C2. According to (4.87), if
|w|→∞, we have

p(C1|ϕ(xn)) = σ(wTϕ(xn))→ 1

Where we have used wTϕ(xn)→+∞. And since wTϕ(xm)→−∞, we can
also obtain:

p(C2|ϕ(xm)) = 1− p(C1|ϕ(xm)) = 1−σ(wTϕ(xm))→ 1
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In other words, for the likelihood function, i.e.,(4.89), if we have |w|→∞,
and also we label all the points lying on one side of the boundary as class C1,
and those on the other side as class C2, the every term in (4.89) can achieve
its maximum value, i.e., 1, finally leading to the maximum of the likelihood.

Hence, for a linearly separable dataset, the learning process may prefer
to make |w| → ∞ and use the linear boundary to label the datasets, which
can cause severe over-fitting problem.

Problem 4.15 Solution(Waiting for update)

Since yn is the output of the logistic sigmoid function, we know that 0 <
yn < 1 and hence yn(1− yn)> 0. Then we use (4.97), for an arbitrary non-zero
real vector a ̸= 0, we have:

aTHa = aT[ N∑
n=1

yn (1− yn)ϕnϕ
T
n
]
a

=
N∑

n=1
yn (1− yn) (ϕT

n a)T (ϕT
n a)

=
N∑

n=1
yn (1− yn) b2

n

Where we have denoted bn = ϕT
n a. What’s more, there should be at least

one of {b1, b2, ...,bN } not equal to zero and then we can see that the expression
above is larger than 0 and hence H is positive definite.

Otherwise, if all the bn = 0, a = [a1, a2, ...,aM]T will locate in the null
space of matrix ΦN×M . However, with regard to the rank-nullity theorem,
we know that Rank(Φ)+Nullity(Φ) =M, and we have already assumed that
those M features are independent, i.e., Rank(Φ) = M, which means there is
only 0 in its null space. Therefore contradictory occurs.

Problem 4.16 Solution

We still denote yn = p(t = 1|ϕn), and then we can write down the log
likelihood by replacing tn with πn in (4.89) and (4.90).

ln p(t|w) =
N∑

n=1
{πn ln yn + (1−πn) ln(1− yn) }

Problem 4.17 Solution

We should discuss in two situations separately, namely j = k and j ̸= k.
When j ̸= k, we have:

∂yk

∂a j
= −exp(ak) · exp(a j)

[
∑

j exp(a j) ]2 = −yk · yj

And when j = k, we have:

∂yk

∂ak
= exp(ak)

∑
j exp(a j) − exp(ak) exp(ak)

[
∑

j exp(a j) ]2 = yk − y2
k = yk (1− yk)



100

Therefore, we can obtain:

∂yk

∂a j
= yk (Ik j − yj)

Where Ik j is the elements of the indentity matrix.

Problem 4.18 Solution

We derive every term tnk ln ynk with regard to a j.

∂tnk ln ynk

∂wj
= ∂tnk ln ynk

∂ynk

∂ynk

∂a j

∂a j

∂wj

= tnk
1

ynk
· ynk(Ik j − yn j) ·ϕn

= tnk (Ik j − yn j)ϕn

Where we have used (4.105) and (4.106). Next we perform summation
over n and k.

∇wj E = −
N∑

n=1

K∑
k=1

tnk (Ik j − yn j)ϕn

=
N∑

n=1

K∑
k=1

tnk yn j ϕn −
N∑

n=1

K∑
k=1

tnk Ik j ϕn

=
N∑

n=1

[
(

K∑
k=1

tnk)yn j ϕn
]− N∑

n=1
tn jϕn

=
N∑

n=1
yn j ϕn −

N∑
n=1

tn jϕn

=
N∑

n=1
(yn j − tn j)ϕn

Where we have used the fact that for arbitrary n, we have
∑K

k=1 tnk = 1.
Problem 4.19 Solution

We write down the log likelihood.

ln p(t|w) =
N∑

n=1

{
tn ln yn + (1− tn) ln(1− yn)

}
Therefore, we can obtain:

∇w ln p = ∂ ln p
∂yn

· ∂yn

∂an
· ∂an

∂w

=
N∑

n=1
(

tn

yn
− 1− tn

1− yn
)Φ′(an)ϕn

=
N∑

n=1

yn − tn

yn(1− yn)
Φ′(an)ϕn
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Where we have used y = p(t = 1|a) = Φ(a) and an = wTϕn. According to
(4.114), we can obtain:

Φ′(a) = N (θ|0,1)
∣∣
θ=a = 1p

2π
exp(−1

2
a2)

Hence, we can obtain:

∇w ln p =
N∑

n=1

yn − tn

yn(1− yn)
exp(− a2

n
2 )p

2π
ϕn

To calculate the Hessian Matrix, we need to first evaluate several deriva-
tives.

∂

∂w
{

yn − tn

yn(1− yn)
} = ∂

∂yn
{

yn − tn

yn(1− yn)
} · ∂yn

∂an
· ∂an

∂w

= yn(1− yn)− (yn − tn)(1−2yn)
[ yn(1− yn) ]2 Φ′(an)ϕn

= y2
n + tn −2yntn

y2
n(1− yn)2

exp(− a2
n

2 )p
2π

ϕn

And

∂

∂w
{
exp(− a2

n
2 )p

2π
} = ∂

∂an
{
exp(− a2

n
2 )p

2π
}
∂an

∂w

= − anp
2π

exp(−a2
n

2
)ϕn

Therefore, using the chain rule, we can obtain:

∂

∂w
{

yn − tn

yn(1− yn)
exp(− a2

n
2 )p

2π
} = ∂

∂w
{

yn − tn

yn(1− yn)
}
exp(− a2

n
2 )p

2π
+ yn − tn

yn(1− yn)
∂

∂w
{
exp(− a2

n
2 )p

2π
}

= [ y2
n + tn −2yntn

yn(1− yn)
exp(− a2

n
2 )p

2π
−an(yn − tn)

] exp(− a2
n

2 )p
2πyn(1− yn)

ϕn

Finally if we perform summation over n, we can obtain the Hessian Ma-
trix:

H = ∇∇w ln p

=
N∑

n=1

∂

∂w
{

yn − tn

yn(1− yn)
exp(− a2

n
2 )p

2π
} ·ϕn

=
N∑

n=1

[ y2
n + tn −2yntn

yn(1− yn)
exp(− a2

n
2 )p

2π
−an(yn − tn)

] exp(− a2
n

2 )p
2πyn(1− yn)

ϕnϕn
T
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Problem 4.20 Solution(waiting for update)

We know that the Hessian Matrix is of size MK × MK , and the ( j,k)th
block with size M × M is given by (4.110), where j,k = 1,2, ...,K . Therefore,
we can obtain:

uTHu =
K∑

j=1

K∑
k=1

uT
j Hj,kuk (∗)

Where we use uk to denote the k th block vector of u with size M×1, and
Hj,k to denote the ( j,k)th block matrix of H with size M×M. Then based on
(4.110), we further expand (4.110):

(∗) =
K∑

j=1

K∑
k=1

uT
j {−

N∑
n=1

ynk(Ik j − yn j)ϕnϕn
T }uk

=
K∑

j=1

K∑
k=1

N∑
n=1

uT
j {−ynk(Ik j − yn j)ϕnϕn

T }uk

=
K∑

j=1

K∑
k=1

N∑
n=1

uT
j {−ynkIk j ϕnϕn

T }uk +
K∑

j=1

K∑
k=1

N∑
n=1

uT
j {ynk yn j ϕnϕn

T }uk

=
K∑

k=1

N∑
n=1

uT
k{−ynkϕnϕn

T }uk +
K∑

j=1

K∑
k=1

N∑
n=1

yn juT
j {ϕnϕn

T }ynkuk

Problem 4.21 Solution

It is quite obvious.

Φ(a) =
∫ a

−∞
N (θ|0,1)dθ

= 1
2
+

∫ a

0
N (θ|0,1)dθ

= 1
2
+

∫ a

0
N (θ|0,1)dθ

= 1
2
+ 1p

2π

∫ a

0
exp(−θ2/2)dθ

= 1
2
+ 1p

2π

p
π

2

∫ a

0

2p
π

exp(−θ2/2)dθ

= 1
2

(1+ 1p
2

∫ a

0

2p
π

exp(−θ2/2)dθ )

= 1
2

{
1+ 1p

2
er f (a)

}
Where we have used ∫ 0

−∞
N (θ|0,1)dθ = 1

2
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Problem 4.22 Solution

If we denote f (θ) = p(D|θ)p(θ), we can write:

p(D) =
∫

p(D|θ)p(θ)dθ =
∫

f (θ)dθ

= f (θMAP )
(2π)M/2

|A|1/2

= p(D|θMAP ) p(θMAP )
(2π)M/2

|A|1/2

Where θMAP is the value of θ at the mode of f (θ), A is the Hessian Matrix
of − ln f (θ) and we have also used (4.135). Therefore,

ln p(D) = ln p(D|θMAP ) + ln p(θMAP ) + M
2

ln2π − 1
2

ln |A|

Just as required.

Problem 4.23 Solution

According to (4.137), we can write:

ln p(D) = ln p(D|θMAP ) + ln p(θMAP ) + M
2

ln2π − 1
2

ln |A|

= ln p(D|θMAP ) − M
2

ln2π − 1
2

ln |V0| −
1
2

(θMAP −m)TV0
−1(θMAP −m)

+ M
2

ln2π − 1
2

ln |A|

= ln p(D|θMAP ) − 1
2

ln |V0| −
1
2

(θMAP −m)TV0
−1(θMAP −m) − 1

2
ln |A|

Where we have used the definition of the multivariate Gaussian Distri-
bution. Then, from (4.138), we can write:

A = −∇∇ ln p(D|θMAP )p(θMAP )

= −∇∇ ln p(D|θMAP )−∇∇ ln p(θMAP )

= H−∇∇{− 1
2

(θMAP −m)TV0
−1(θMAP −m)

}
= H+∇{

V0
−1(θMAP −m)

}
= H+V0

−1

Where we have denoted H = −∇∇ ln p(D|θMAP ). Therefore, the equation
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above becomes:

ln p(D) = ln p(D|θMAP ) − 1
2

(θMAP −m)TV0
−1(θMAP −m) − 1

2
ln

{ |V0| · |H+V−1
0 |}

= ln p(D|θMAP ) − 1
2

(θMAP −m)TV0
−1(θMAP −m) − 1

2
ln

{ |V0H+I|}
≈ ln p(D|θMAP ) − 1

2
(θMAP −m)TV0

−1(θMAP −m) − 1
2

ln |V0| −
1
2

ln |H|

≈ ln p(D|θMAP ) − 1
2

(θMAP −m)TV0
−1(θMAP −m) − 1

2
ln |H|+const

Where we have used the property of determinant: |A| · |B| = |AB|, and the
fact that the prior is board, i.e. I can be neglected with regard to V0H. What’s
more, since the prior is pre-given, we can view V0 as constant. And if the data
is large, we can write:

H =
N∑

n=1
Hn = NĤ

Where Ĥ = 1/N
∑N

n=1 Hn, and then

ln p(D) ≈ ln p(D|θMAP ) − 1
2

(θMAP −m)TV0
−1(θMAP −m) − 1

2
ln |H|+const

≈ ln p(D|θMAP ) − 1
2

(θMAP −m)TV0
−1(θMAP −m) − 1

2
ln |NĤ|+const

≈ ln p(D|θMAP ) − 1
2

(θMAP −m)TV0
−1(θMAP −m) − M

2
ln N − 1

2
ln |Ĥ|+const

≈ ln p(D|θMAP ) − M
2

ln N

This is because when N >> 1, other terms can be neglected.

Problem 4.24 Solution(Waiting for updating)

Problem 4.25 Solution

We first need to obtain the expression for the first derivative of probit
function Φ(λa) with regard to a. According to (4.114), we can write down:

d
da

Φ(λa) = dΦ(λa)
d(λa)

· dλa
da

= λp
2π

exp
{ − 1

2
(λa)2 }

Which further gives:

d
da

Φ(λa)
∣∣∣
a=0

= λp
2π

And for logistic sigmoid function, according to (4.88), we have

dσ
da

= σ (1−σ) = 0.5×0.5 = 1
4
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Where we have used σ(0) = 0.5. Let their derivatives at origin equals, we
have:

λp
2π

= 1
4

i.e., λ = p
2π

/
4. And hence λ2 = π

/
8 is obvious.

Problem 4.26 Solution

We will prove (4.152) in a more simple and intuitive way. But firstly, we
need to prove a trivial yet useful statement: Suppose we have a random vari-
able satisfied normal distribution denoted as X ∼N (X |µ,σ2), the probability
of X ≤ x is P(X ≤ x) = Φ( x−µ

σ
), and here x is a given real number. We can see

this by writing down the integral:

P(X ≤ x) =
∫ x

−∞
1p

2πσ2
exp

[− 1
2σ2 (X −µ)2]

dX

=
∫ x−µ

σ

−∞
1p

2πσ2
exp(−1

2
γ2)σdγ

=
∫ x−µ

σ

−∞
1p
2π

exp(−1
2
γ2)dγ

= Φ(
x−µ

σ
)

Where we have changed the variable X = µ+σγ. Now consider two ran-
dom variables X ∼ N (0,λ−2) and Y ∼ N (µ,σ2). We first calculate the condi-
tional probability P(X ≤Y |Y = a):

P(X ≤Y |Y = a) = P(X ≤ a) = Φ(
a−0
λ−1 ) = Φ(λa)

Together with Bayesian Formula, we can obtain:

P(X ≤Y ) =
∫ +∞

−∞
P(X ≤Y |Y = a) pd f (Y = a)dY

=
∫ +∞

−∞
Φ(λa)N (a|µ,σ2)da

Where pd f (·) denotes the probability density function and we have also
used pd f (Y ) = N (µ,σ2). What’s more, we know that X −Y should also sat-
isfy normal distribution, with:

E[X −Y ] = E[X ]−E[Y ] = 0−µ = −µ
And

var[X −Y ] = var[X ]+var[Y ] = λ−2 +σ2

Therefore, X −Y ∼N (−µ,λ−2 +σ2) and it follows that:

P(X −Y ≤ 0) = Φ(
0− (−µ)p
λ−2 +σ2

) = Φ(
µp

λ−2 +σ2
)

Since P(X ≤Y ) = P(X −Y ≤ 0), we obtain what have been required.
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0.5 Neural Networks

Problem 5.1 Solution

Based on definition of tanh(·), we can obtain:

tanh(a) = ea − e−a

ea + e−a

= −1+ 2ea

ea + e−a

= −1+2
1

1+ e−2a

= 2σ(2a)−1

If we have parameters w(1s)
ji , w(1s)

j0 and w(2s)
k j , w(2s)

k0 for a network whose

hidden units use logistic sigmoid function as activation and w(1t)
ji , w(1t)

j0 and

w(2t)
k j , w(2t)

k0 for another one using tanh(·), for the network using tanh(·) as
activation, we can write down the following expression by using (5.4):

a(t)
k =

M∑
j=1

w(2t)
k j tanh(a(t)

j )+w(2t)
k0

=
M∑
j=1

w(2t)
k j [2σ(2a(t)

j )−1]+w(2t)
k0

=
M∑
j=1

2w(2t)
k j σ(2a(t)

j ) + [ − M∑
j=1

w(2t)
k j +w(2t)

k0

]
What’s more, we also have :

a(s)
k =

M∑
j=1

w(2s)
k j σ(a(s)

j )+w(2s)
k0

To make the two networks equivalent, i.e., a(s)
k = a(t)

k , we should make
sure: 

a(s)
j = 2a(t)

j

w(2s)
k j = 2w(2t)

k j

w(2s)
k0 = −∑M

j=1 w(2t)
k j +w(2t)

k0

Note that the first condition can be achieved by simply enforcing:

w(1s)
ji = 2w(1t)

ji , and w(1s)
j0 = 2w(1t)

j0

Therefore, these two networks are equivalent under a linear transforma-
tion.

Problem 5.2 Solution
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It is obvious. We write down the likelihood.

p(T|X,w) =
N∏

n=1
N (tn|y(xn,w),β−1I)

Taking the negative logarithm, we can obtain:

E(w,β) = − ln p(T|X,w) = β

2

N∑
n=1

[
(y(xn,w)−tn)T (y(xn,w)−tn)

]−NK
2

lnβ+const

Here we have used const to denote the term independent of both w and
β. Note that here we have used the definition of the multivariate Gaussian
Distribution. What’s more, we see that the covariance matrix β−1I and the
weight parameter w have decoupled, which is distinct from the next prob-
lem. We can first solve wML by minimizing the first term on the right of the
equation above or equivalently (5.11), i.e., imaging β is fixed. Then according
to the derivative of E(w,β) with regard to β, we can obtain (5.17) and hence
βML.

Problem 5.3 Solution

Following the process in the previous question, we first write down the
negative logarithm of the likelihood function.

E(w,Σ) = 1
2

N∑
n=1

{
[y(xn,w)− tn]T Σ−1 [y(xn,w)− tn]

} + N
2

ln |Σ| + const (∗)

Note here we have assumed Σ is unknown and const denotes the term
independent of both w and Σ. In the first situation, if Σ is fixed and known,
the equation above will reduce to:

E(w) = 1
2

N∑
n=1

{
[y(xn,w)− tn]T Σ−1 [y(xn,w)− tn]

} + const

We can simply solve wML by minimizing it. If Σ is unknown, since Σ is
in the first term on the right of (∗), solving wML will involve Σ. Note that in
the previous problem, the main reason that they can decouple is due to the
independent assumption, i.e., Σ reduces to β−1I, so that we can bring β to the
front and view it as a fixed multiplying factor when solving wML.

Problem 5.4 Solution

Based on (5.20), the current conditional distribution of targets, consider-
ing mislabel, given input x and weight w is:

p(t = 1|x,w) = (1−ϵ) · p(tr = 1|x,w) + ϵ · p(tr = 0|x,w)
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Note that here we use t to denote the observed target label, tr to denote
its real label, and that our network is aimed to predict the real label tr not t,
i.e., p(tr = 1|x,w) = y(x,w), hence we see that:

p(t = 1|x,w) = (1−ϵ) · y(x,w) + ϵ · [1− y(x,w)
]

(∗)

Also, it is the same for p(t = 0|x,w):

p(t = 0|x,w) = (1−ϵ) · [1− y(x,w)
] + ϵ · y(x,w) (∗∗)

Combing (∗) and (∗∗), we can obtain:

p(t|x,w) = (1−ϵ) · yt(1− y)1−t +ϵ · (1− y)t y1−t

Where y is short for y(x,w). Therefore, taking the negative logarithm, we
can obtain the error function:

E(w) = −
N∑

n=1
ln

{
(1−ϵ) · ytn

n (1− yn)1−tn +ϵ · (1− yn)tn y1−tn
n

}
When ϵ = 0, it is obvious that the equation above will reduce to (5.21).

Problem 5.5 Solution

It is obvious by using (5.22).

E(w) = − ln
N∏

n=1
p(t|xn,w)

= − ln
N∏

n=1

K∏
k=1

yk(xn,w)tnk
[
1− yk(xn,w)

]1−tnk

= −
N∑

n=1

K∑
k=1

ln
{
yk(xn,w)tnk

[
1− yk(xn,w)

]1−tnk
}

= −
N∑

n=1

K∑
k=1

ln
[
ytnk

nk (1− ynk )1−tnk
]

= −
N∑

n=1

K∑
k=1

{
tnk ln ynk + (1− tnk) ln(1− ynk )

}
Where we have denoted

ynk = yk(xn,w)

Problem 5.6 Solution

We know that yk = σ(ak), where σ(·) represents the logistic sigmoid func-
tion. Moreover,

dσ
da

= σ(1−σ)
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dE(w)
dak

= −tk
1
yk

[
yk(1− yk)

]+ (1− tk)
1

1− yk

[
yk(1− yk)

]
= [

yk(1− yk)
][ 1− tk

1− yk
− tk

yk

]
= (1− tk)yk − tk(1− yk)

= yk − tk

Just as required.

Problem 5.7 Solution

It is similar to the previous problem. First we denote ykn = yk(xn,w). If
we use softmax function as activation for the output unit, according to (4.106),
we have:

dykn

da j
= ykn (Ik j − yjn)

Therefore,

dE(w)
da j

= d
dak

{− N∑
n=1

K∑
k=1

tkn ln yk(xn,w)
}

= −
N∑

n=1

K∑
k=1

d
da j

{
tkn ln ykn

}
= −

N∑
n=1

K∑
k=1

tkn
1

ykn

[
ykn (Ik j − yjn)

]
= −

N∑
n=1

K∑
k=1

(tkn Ik j − tkn yjn)

= −
N∑

n=1

K∑
k=1

tkn Ik j +
N∑

n=1

K∑
k=1

tkn yjn

= −
N∑

n=1
t jn +

N∑
n=1

yjn

=
N∑

n=1
(yjn − t jn)

Where we have used the fact that only when k = j, Ik j = 1 ̸= 0 and that∑K
k=1 tkn = 1.

Problem 5.8 Solution

It is obvious based on definition of ’tanh’, i.e., (5.59).

d
da

tanh(a) = (ea + e−a)(ea + e−a)− (ea − e−a)(ea − e−a)
(ea + e−a)2

= 1− (ea − e−a)2

(ea + e−a)2

= 1− tanh(a)2
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Problem 5.9 Solution

We know that the logistic sigmoid function σ(a) ∈ [0,1], therefore if we
perform a linear transformation h(a) = 2σ(a)−1, we can find a mapping func-
tion h(a) from (−∞,+∞) to [−1,1]. In this case, the conditional distribution
of targets given inputs can be similarly written as:

p(t|x,w) = [1+ y(x,w)
2

](1+t)/2[1− y(x,w)
2

](1−t)/2

Where
[
1+y(x,w)

]
/2 represents the conditional probability p(C1|x). Since

now y(x,w) ∈ [−1,1], we also need to perform the linear transformation to
make it satisfy the constraint for probability.Then we can further obtain:

E(w) = −
N∑

n=1

{1+ tn

2
ln

1+ yn

2
+ 1− tn

2
ln

1− yn

2
}

= −1
2

N∑
n=1

{
(1+ tn) ln(1+ yn) + (1− tn) ln(1− yn)

}+N ln2

Problem 5.10 Solution

It is obvious. Suppose H is positive definite, i.e., (5.37) holds. We set v
equals to the eigenvector of H, i.e., v = ui which gives:

vTHv = vT (Hv) = ui
Tλiui = λi||ui||2

Therefore, every λi should be positive. On the other hand, If all the eigen-
values λi are positive, from (5.38) and (5.39), we see that H is positive defi-
nite.

Problem 5.11 Solution

It is obvious. We follow (5.35) and then write the error function in the
form of (5.36). To obtain the contour, we enforce E(w) to equal to a constant
C.

E(w) = E(w∗)+ 1
2

∑
i
λiα

2
i = C

We rearrange the equation above, and then obtain:∑
i
λiα

2
i = B

Where B = 2C − 2E(w∗) is a constant. Therefore, the contours of con-
stant error are ellipses whose axes are aligned with the eigenvector ui of
the Hessian Matrix H. The length for the jth axis is given by setting all
αi = 0, s.t.i ̸= j:

α j =
√

B
λ j
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In other words, the length is inversely proportional to the square root of
the corresponding eigenvalue λ j.

Problem 5.12 Solution

If H is positive definite, we know the second term on the right side of
(5.32) will be positive for arbitrary w. Therefore, E(w∗) is a local minimum.
On the other hand, if w∗ is a local minimum, we have

E(w∗)−E(w) = −1
2

(w−w∗)TH(w−w∗)< 0

In other words, for arbitrary w, (w−w∗)TH(w−w∗)> 0, according to the
previous problem, we know that this means H is positive definite.

Problem 5.13 Solution

It is obvious. Suppose that there are W adaptive parameters in the net-
work. Therefore, b has W independent parameters. Since H is symmetric,
there should be W(W +1)/2 independent parameters in it. Therefore, there
are W +W(W +1)/2 = W(W +3)/2 parameters in total.

Problem 5.14 Solution

It is obvious. Since we have

En(w ji +ϵ) = En(w ji)+ϵE′
n(w ji)+ ϵ2

2
E′′

n(w ji)+O(ϵ3)

And

En(w ji −ϵ) = En(w ji)−ϵE′
n(w ji)+ ϵ2

2
E′′

n(w ji)+O(ϵ3)

We combine those two equations, which gives,

En(w ji +ϵ)−En(w ji −ϵ) = 2ϵE′
n(w ji)+O(ϵ3)

Rearrange the equation above, we obtain what has been required.

Problem 5.15 Solution

It is obvious. The back propagation formalism starts from performing
summation near the input, as shown in (5.73). By symmetry, the forward
propagation formalism should start near the output.

Jki =
∂yk

∂xi
= ∂h(ak)

∂xi
= h′(ak)

∂ak

∂xi
(∗)

Where h(·) is the activation function at the output node ak. Considering
all the units j, which have links to unit k:

∂ak

∂xi
= ∑

j

∂ak

∂a j

∂a j

∂xi
= ∑

j
wk jh′(a j)

∂a j

∂xi
(∗∗)
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Where we have used:

ak = ∑
j

wk j z j , z j = h(a j)

It is similar for ∂a j/∂xi. In this way we have obtained a recursive formula
starting from the input node:

∂al

∂xi
=

{
wl i, if there is a link from input unit i to l
0, if there isn’t a link from input unit i to l

Using recursive formula (∗∗) and then (∗), we can obtain the Jacobian
Matrix.

Problem 5.16 Solution

It is obvious. We begin by writing down the error function.

E = 1
2

N∑
n=1

||yn − tn||2 = 1
2

N∑
n=1

M∑
m=1

(yn,m − tn,m)2

Where the subscript m denotes the mthe element of the vector. Then we
can write down the Hessian Matrix as before.

H = ∇∇E =
N∑

n=1

M∑
m=1

∇yn,m∇yn,m +
N∑

n=1

M∑
m=1

(yn,m − tn,m)∇∇yn,m

Similarly, we now know that the Hessian Matrix can be approximated as:

H ≃
N∑

n=1

M∑
m=1

bn,mbT
n,m

Where we have defined:

bn,m = ∇yn,m

Problem 5.17 Solution

It is obvious.

∂2E
∂wr∂ws

= ∂

∂wr

1
2

∫ ∫
2(y− t)

∂y
∂ws

p(x, t)dxdt

=
∫ ∫ [

(y− t)
∂y2

∂wr∂ws
+ ∂y
∂ws

∂y
∂wr

]
p(x, t)dxdt

Since we know that∫ ∫
(y− t)

∂y2

∂wr∂ws
p(x, t)dxdt =

∫ ∫
(y− t)

∂y2

∂wr∂ws
p(t|x)p(x)dxdt

=
∫

∂y2

∂wr∂ws

{∫
(y− t)p(t|x)dt

}
p(x)dx

= 0
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Note that in the last step, we have used y = ∫
tp(t|x)dt. Then we substi-

tute it into the second derivative, which gives,

∂2E
∂wr∂ws

=
∫ ∫

∂y
∂ws

∂y
∂wr

p(x, t)dxdt

=
∫

∂y
∂ws

∂y
∂wr

p(x)dx

Problem 5.18 Solution

By analogy with section 5.3.2, we denote wskip
ki as those parameters corre-

sponding to skip-layer connections, i.e., it connects the input unit i with the
output unit k. Note that the discussion in section 5.3.2 is still correct and
now we only need to obtain the derivative of the error function with respect
to the additional parameters wskip

ki .

∂En

∂wskip
ki

= ∂En

∂ak

∂ak

∂wskip
ki

= δkxi

Where we have used ak = yk due to linear activation at the output unit
and:

yk =
M∑
j=0

w(2)
k j z j +

∑
i

wskip
ki xi

Where the first term on the right side corresponds to those information
conveying from the hidden unit to the output and the second term corre-
sponds to the information conveying directly from the input to output.

Problem 5.19 Solution

The error function is given by (5.21). Therefore, we can obtain:

∇E(w) =
N∑

n=1

∂E
∂an

∇an

= −
N∑

n=1

∂

∂an

[
tn ln yn + (1− tn) ln(1− yn)

]∇an

= −
N∑

n=1

{∂(tn ln yn)
∂yn

∂yn

∂an
+ ∂(1− tn) ln(1− yn)

∂yn

∂yn

∂an

}∇an

= −
N∑

n=1

[ tn

yn
· yn(1− yn)+ (1− tn)

−1
1− yn

· yn(1− yn)
]∇an

= −
N∑

n=1

[
tn(1− yn)− (1− tn)yn

]∇an

=
N∑

n=1
(yn − tn)∇an
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Where we have used the conclusion of problem 5.6. Now we calculate the
second derivative.

∇∇E(w) =
N∑

n=1

{
yn(1− yn)∇an∇an + (yn − tn)∇∇an

}
Similarly, we can drop the last term, which gives exactly what has been

asked.

Problem 5.20 Solution(waiting for update)

We begin by writing down the error function.

E(w) = −
N∑

n=1

K∑
k=1

tnk ln ynk

Here we assume that the output of the network has K units in total and
there are W weights parameters in the network. WE first calculate the first
derivative:

∇E =
N∑

n=1

dE
dan

·∇an

= −
N∑

n=1

[ d
dan

(
K∑

k=1
tnk ln ynk)

] ·∇an

=
N∑

n=1
cn ·∇an

Note that here cn = −dE/dan is a vector with size K ×1, ∇an is a matrix
with size K ×W . Moreover, the operator · means inner product, which gives
∇E as a vector with size 1×W . According to (4.106), we can obtain the jth
element of cn:

cn, j = − ∂

∂a j
(

K∑
k=1

tnk ln ynk)

= −
K∑

k=1

∂

∂a j
(tnk ln ynk)

= −
K∑

k=1

tnk

ynk
ynk(Ik j − yn j)

= −
K∑

k=1
tnkIk j +

K∑
k=1

tnk yn j

= −tn j + yn j (
K∑

k=1
tnk)

= yn j − tn j
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Now we calculate the second derivative:

∇∇E =
N∑

n=1
(
dcn

dan
∇an) ·∇an +cn∇∇an

Here dcn/dan is a matrix with size K×K . Therefore, the second term can
be neglected as before, which gives:

H =
N∑

n=1
(
dcn

dan
∇an) ·∇an

Problem 5.21 Solution

We first write down the expression of Hessian Matrix in the case of K
outputs.

HN,K =
N∑

n=1

K∑
k=1

bn,kbT
n,k

Where bn,k = ∇wan,k. Therefore, we have:

HN+1,K = HN,K +
K∑

k=1
bN+1,kbT

N+1,k = HN,K + BN+1BT
N+1

Where BN+1 = [bN+1,1, bN+1,2, ..., bN+1,K ] is a matrix with size W ×K ,
and here W is the total number of the parameters in the network. By analogy
with (5.88)-(5.89), we can obtain:

H−1
N+1,K = H−1

N,K −
H−1

N,KBN+1BT
N+1H−1

N,K

1+BT
N+1H−1

N,KBN+1
(∗)

Furthermore, similarly, we have:

HN+1,K+1 = HN+1,K +
N+1∑
n=1

bn,K+1bT
n,K+1 = HN+1,K + BK+1BT

K+1

Where BK+1 = [b1,K+1, b2,K+1, ..., bN+1,K+1] is a matrix with size W×(N+
1). Also, we can obtain:

H−1
N+1,K+1 = H−1

N+1,K −
H−1

N+1,KBK+1BT
K+1H−1

N+1,K

1+BT
K+1H−1

N+1,KBK+1

Where H−1
N+1,K is defined by (∗). If we substitute (∗) into the expression

above, we can obtain the relationship between H−1
N+1,K+1 and H−1

N,K .

Problem 5.22 Solution
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We begin by handling the first case.

∂2En

∂w(2)
k j ∂w(2)

k′ j′
= ∂

∂w(2)
k j

(
∂En

∂w(2)
k′ j′

)

= ∂

∂w(2)
k j

(
∂En

∂ak′

∂ak′

∂w(2)
k′ j′

)

= ∂

∂w(2)
k j

(
∂En

∂ak′

∂
∑

j′ wk′ j′ z j′

∂w(2)
k′ j′

)

= ∂

∂w(2)
k j

(
∂En

∂ak′
z j′)

= ∂

∂w(2)
k j

(
∂En

∂ak′
)z j′ + ∂En

∂ak′

∂z j′

∂w(2)
k j

= ∂

∂ak
(
∂En

∂ak′
)
∂ak

∂w(2)
k j

z j′ +0

= ∂

∂ak
(
∂En

∂ak′
)z j z j′

= z j z j′ Mkk′

Then we focus on the second case, and if here j ̸= j′

∂2En

∂w(1)
ji ∂w(1)

j′ i′
= ∂

∂w(1)
ji

(
∂En

∂w(1)
j′ i′

)

= ∂

∂w(1)
ji

(
∑
k′

∂En

∂ak′

∂ak′

∂w(1)
j′ i′

)

= ∑
k′

∂

∂w(1)
ji

(
∂En

∂ak′
w(2)

k′ j′h
′(a j′)xi′)

= ∑
k′

h′(a j′)xi′
∂

∂w(1)
ji

(
∂En

∂ak′
w(2)

k′ j′)

= ∑
k′

h′(a j′)xi′
∑
k

∂

∂ak
(
∂En

∂ak′
w(2)

k′ j′)
∂ak

∂w(1)
ji

= ∑
k′

h′(a j′)xi′
∑
k

∂

∂ak
(
∂En

∂ak′
w(2)

k′ j′) · (w(2)
k j h′(a j)xi)

= ∑
k′

h′(a j′)xi′
∑
k

Mkk′w(2)
k′ j′ ·w(2)

k j h′(a j)xi

= xi′ xih′(a j′)h′(a j)
∑
k′

∑
k

w(2)
k′ j′ ·w(2)

k j Mkk′
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When j = j′, similarly we have:

∂2En

∂w(1)
ji ∂w(1)

ji′
= ∑

k′

∂

∂w(1)
ji

(
∂En

∂ak′
w(2)

k′ jh
′(a j)xi′)

= xi′
∑
k′

∂

∂w(1)
ji

(
∂En

∂ak′
w(2)

k′ j)h
′(a j)+ xi′

∑
k′

(
∂En

∂ak′
w(2)

k′ j)
∂h′(a j)

∂w(1)
ji

= xi′ xih′(a j)h′(a j)
∑
k′

∑
k

w(2)
k′ j ·w(2)

k j Mkk′ + xi′
∑
k′

(
∂En

∂ak′
w(2)

k′ j)
∂h′(a j)

∂w(1)
ji

= xi′ xih′(a j)h′(a j)
∑
k′

∑
k

w(2)
k′ j ·w(2)

k j Mkk′ + xi′
∑
k′

(
∂En

∂ak′
w(2)

k′ j)h
′′(a j)xi

= xi′ xih′(a j)h′(a j)
∑
k′

∑
k

w(2)
k′ j ·w(2)

k j Mkk′ +h′′(a j)xixi′
∑
k′
δk′w(2)

k′ j

It seems that what we have obtained is slightly different from (5.94) when
j = j′. However this is not the case, since the summation over k′ in the second
term of our formulation and the summation over k in the first term of (5.94) is
actually the same (i.e., they both represent the summation over all the output
units). Combining the situation when j = j′ and j ̸= j′, we can obtain (5.94)
just as required. Finally, we deal with the third case. Similarly we first focus
on j ̸= j′:

∂2En

∂w(1)
ji ∂w(2)

k j′
= ∂

∂w(1)
ji

(
∂En

∂w(2)
k j′

)

= ∂

∂w(1)
ji

(
∂En

∂ak

∂ak

∂w(2)
k j′

)

= ∂

∂w(1)
ji

(
∂En

∂ak

∂
∑

j′ wk j′ z j′

∂w(2)
k j′

)

= ∂

∂w(1)
ji

(
∂En

∂ak
z j′)

= z j′
∑
k′

∂

∂ak′
(
∂En

∂ak
)
∂ak′

∂w(1)
ji

= z j′
∑
k′

Mkk′w(2)
k′ jh

′(a j)xi

= xih′(a j)z j′
∑
k′

Mkk′w(2)
k′ j

Note that in (5.95), there are two typos: (i)Hkk′ should be Mkk′ . (ii) j should
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exchange position with j′ in the right side of (5.95). When j = j′, we have:

∂2En

∂w(1)
ji ∂w(2)

k j

= ∂

∂w(1)
ji

(
∂En

∂w(2)
k j

)

= ∂

∂w(1)
ji

(
∂En

∂ak

∂ak

∂w(2)
k j

)

= ∂

∂w(1)
ji

(
∂En

∂ak

∂
∑

j wk j z j

∂w(2)
k j

)

= ∂

∂w(1)
ji

(
∂En

∂ak
z j)

= ∂

∂w(1)
ji

(
∂En

∂ak
)z j + ∂En

∂ak

∂z j

w(1)
ji

= xih′(a j)z j
∑
k′

Mkk′w(2)
k′ j +

∂En

∂ak

∂z j

w(1)
ji

= xih′(a j)z j
∑
k′

Mkk′w(2)
k′ j +δkh′(a j)xi

Combing these two situations, we obtain (5.95) just as required.

Problem 5.23 Solution

It is similar to the previous problem.

∂2En

∂wk′ i′∂wk j
= ∂

∂wk′ i′
(
∂En

∂wk j
)

= ∂

∂wk′ i′
(
∂En

∂ak
z j)

= z j
∂wk′ i′

∂ak′

∂

∂ak′
(
∂En

∂ak
)

= z jxi′ Mkk′
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And

∂2En

∂wk′ i′∂w ji
= ∂

∂wk′ i′
(
∑
k

∂En

∂ak

∂ak

∂w ji
)

= ∂

∂wk′ i′
(
∑
k

∂En

∂ak
wk jh′(a j)xi)

= ∑
k

h′(a j)xiwk j
∂

∂wk′ i′
(
∂En

∂ak
)

= ∑
k

h′(a j)xiwk j
∂

∂ak′
(
∂En

∂ak
)

ak′

wk′ i′

= ∑
k

h′(a j)xiwk jMkk′ xi′

= xixi′h′(a j)
∑
k

wk jMkk′

Finally, we have

∂2En

∂wk′ i′wki
= ∂

∂wk′ i′
(
∂En

∂wki
)

= ∂

∂wk′ i′
(
∂En

∂ak
xi)

= xi
∂

∂ak′
(
∂En

∂ak
)
∂ak′

wk′ i′

= xixi′ Mkk′

Problem 5.24 Solution

It is obvious. According to (5.113), we have:

ã j = ∑
i

w̃ ji x̃i + w̃ j0

= ∑
i

1
a

w ji · (axi +b)+w j0 − b
a

∑
i

w ji

= ∑
i

w jixi +w j0 = a j

Where we have used (5.115), (5.116) and (5.117). Currently, we have
proved that under the transformation the hidden unit a j is unchanged. If
the activation function at the hidden unit is also unchanged, we have z̃ j = z j.
Now we deal with the output unit ỹk:

ỹk = ∑
j

w̃k j z̃ j + w̃k0

= ∑
j

cwk j · z j + cwk0 +d

= c
∑

j

[
wk j · z j +wk0

]+d

= cyk +d
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Where we have used (5.114), (5.119) and (5.120). To be more specific,
here we have proved that the linear transformation between ỹk and yk can
be achieved by making transformation (5.119) and (5.120).

Problem 5.25 Solution

Since we know the gradient of the error function with respect to w is:

∇E = H(w−w∗)

Together with (5.196), we can obtain:

w(τ) = w(τ−1) −ρ∇E

= w(τ−1) −ρH(w(τ−1) −w∗)

Multiplying both sides by uT
j , using w j = wTu j, we can obtain:

w(τ)
j = uT

j
[
w(τ−1) −ρH(w(τ−1) −w∗)

]
= w(τ−1)

j −ρuT
j H(w(τ−1) −w∗)

= w(τ−1)
j −ρη juT

j (w(τ−1) −w∗)

= w(τ−1)
j −ρη j(w(τ−1)

j −w∗
j )

= (1−ρη j)w(τ−1)
j +ρη jw∗

j

Where we have used (5.198). Then we use mathematical deduction to
prove (5.197), beginning by calculating w(1)

j :

w(1)
j = (1−ρη j)w(0)

j +ρη jw∗
j

= ρη jw∗
j

= [
1− (1−ρη j)

]
w∗

j

Suppose (5.197) holds for τ, we now prove that it also holds for τ+1.

w(τ+1)
j = (1−ρη jw(τ)

j +ρη jw∗
j

= (1−ρη j)
[
1− (1−ρη j)τ

]
w∗

j +ρη jw∗
j

= {
(1−ρη j)

[
1− (1−ρη j)τ

]+ρη j
}
w∗

j

= [
1− (1−ρη j)τ+1 ]

w∗
j

Hence (5.197) holds for τ = 1, 2, .... Provided |1−ρη j| < 1, we have (1−
ρη j)τ → 0 as τ→∞ ans thus w(τ) = w∗. If τ is finite and η j >> (ρτ)−1, the
above argument still holds since τ is still relatively large. Conversely, when
η j << (ρτ)−1, we expand the expression above:

|w(τ)
j | = |[1− (1−ρη j)τ

]
w∗

j | ≈ |τρη jw∗
j | << |w∗

j |



121

We can see that (ρτ)−1 works as the regularization parameter α in section
3.5.3.

Problem 5.26 Solution

Based on definition or by analogy with (5.128), we have:

Ωn = 1
2

∑
k

(
∂ynk

∂ξ

∣∣
ξ=0)2

= 1
2

∑
k

(
∑

i

∂ynk

∂xi

∂xi

∂ξ

∣∣
ξ=0)2

= 1
2

∑
k

(
∑

i
τi

∂

∂xi
ynk)2

Where we have denoted
τi = ∂xi

∂ξ

∣∣
ξ=0

And this is exactly the form given in (5.201) and (5.202) if the nth obser-
vation ynk is denoted as yk in short. Firstly, we define α j and β j as (5.205)
shows, where z j and a j are given by (5.203). Then we will prove (5.204) holds:

α j = ∑
i
τi

∂z j

∂xi
= ∑

i
τi

∂h(a j)
∂xi

= ∑
i
τi

∂h(a j)
∂a j

∂a j

∂xi

= h′(a j)
∑

i
τi

∂

∂xi
a j = h′(a j)β j

Moreover,

β j = ∑
i
τi

∂a j

∂xi
= ∑

i
τi

∂
∑

i′ w ji′ zi′

∂xi

= ∑
i
τi

∑
i′

∂w ji′ zi′

∂xi
= ∑

i
τi

∑
i′

w ji′
∂zi′

∂xi

= ∑
i′

w ji′
∑

i
τi

∂zi′

∂xi
= ∑

i′
w ji′αi′

So far we have proved that (5.204) holds and now we aim to find a forward
propagation formula to calculate Ωn. We firstly begin by evaluating {β j} at
the input units, and then use the first equation in (5.204) to obtain {α j} at the
input units, and then the second equation to evaluate {β j} at the first hidden
layer, and again the first equation to evaluate {α j} at the first hidden layer.
We repeatedly evaluate {β j} and {α j} in this way until reaching the output
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layer. Then we deal with (5.206):

∂Ωn

∂wrs
= ∂

∂wrs

{1
2

∑
k

(G yk)2} = 1
2

∑
k

∂(G yk)2

∂wrs

= 1
2

∑
k

∂(G yk)2

∂(G yk)
∂(G yk)
∂wrs

= ∑
k

G yk
∂G yk

∂wrs

= ∑
k

G ykG
[ ∂yk

∂wrs

] = ∑
k
αkG

[∂yk

∂ar

∂ar

∂wrs

]
= ∑

k
αkG

[
δkr zs

] = ∑
k
αk

{
G [δkr]zs +G [zs]δkr

}
= ∑

k
αk

{
ϕkr zs +αsδkr

}
Provided with the idea in section 5.3, the backward propagation formula

is easy to derive. We can simply replace En with yk to obtain a backward
equation, so we omit it here.

Problem 5.27 Solution

Following the procedure in section 5.5.5, we can obtain:

Ω = 1
2

∫
(τT∇y(x))2 p(x)dx

Since we have τ = ∂s(x,ξ)
/
∂ξ and s = x+ξ, so we have τ = I. Therefore,

substituting τ into the equation above, we can obtain:

Ω = 1
2

∫
(∇y(x))2 p(x)dx

Just as required.

Problem 5.28 Solution

The modifications only affect derivatives with respect to the weights in
the convolutional layer. The units within a feature map (indexed m) have
different inputs, but all share a common weight vector, w(m). Therefore, we
can write:

∂En

∂w(m)
i

= ∑
j

∂En

∂a(m)
j

∂a(m)
j

∂w(m)
i

= ∑
j
δ(m)

j z(m)
ji

Here a(m)
j denotes the activation of the jth unit in th mth feature map,

whereas w(m)
i denotes the ith element of the corresponding feature vector

and finally z(m)
i j denotes the ith input for the jth unit in the mth feature map.

Note that δ(m)
j can be computed recursively from the units in the following

layer.

Problem 5.29 Solution
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It is obvious. Firstly, we know that:

∂

∂wi

{
π jN (wi|µ j,σ2

j )
} = −π j

wi −µ j

σ2
j

N (wi|µ j,σ2
j )

We now derive the error function with respect to wi:

∂Ẽ
∂wi

= ∂E
∂wi

+ ∂λΩ(w)
∂wi

= ∂E
∂wi

−λ
∂

∂wi

{∑
i

ln

(
M∑
j=1

π jN (wi|µ j,σ2
j )

)}

= ∂E
∂wi

−λ
∂

∂wi

{
ln

(
M∑
j=1

π jN (wi|µ j,σ2
j )

)}

= ∂E
∂wi

−λ
1∑M

j=1π jN (wi|µ j,σ2
j )

∂

∂wi

{
M∑
j=1

π jN (wi|µ j,σ2
j )

}

= ∂E
∂wi

+λ
1∑M

j=1π jN (wi|µ j,σ2
j )

{
M∑
j=1

π j
wi −µ j

σ2
j

N (wi|µ j,σ2
j )

}

= ∂E
∂wi

+λ

∑M
j=1π j

wi−µ j

σ2
j

N (wi|µ j,σ2
j )∑

kπkN (wi|µk,σ2
k)

= ∂E
∂wi

+λ
M∑
j=1

π jN (wi|µ j,σ2
j )∑

kπkN (wi|µk,σ2
k)

wi −µ j

σ2
j

= ∂E
∂wi

+λ
M∑
j=1

γ j(wi)
wi −µ j

σ2
j

Where we have used (5.138) and defined (5.140).

Problem 5.30 Solution

Is is similar to the previous problem. Since we know that:

∂

∂µ j

{
π jN (wi|µ j,σ2

j )
} = π j

wi −µ j

σ2
j

N (wi|µ j,σ2
j )
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We can derive:

∂Ẽ
∂µ j

= ∂λΩ(w)
∂µ j

= −λ ∂

∂µ j

{∑
i

ln

(
M∑
j=1

π jN (wi|µ j,σ2
j )

)}

= −λ∑
i

∂

∂µ j

{
ln

(
M∑
j=1

π jN (wi|µ j,σ2
j )

)}

= −λ∑
i

1∑M
j=1π jN (wi|µ j,σ2

j )
∂

∂µ j

{
M∑
j=1

π jN (wi|µ j,σ2
j )

}

= −λ∑
i

1∑M
j=1π jN (wi|µ j,σ2

j )
π j

wi −µ j

σ2
j

N (wi|µ j,σ2
j )

= λ
∑

i

π jN (wi|µ j,σ2
j )∑K

k=1πkN (wi|µk,σ2
k)

µ j −wi

σ2
j

= λ
∑

i
γ j(wi)

µ j −wi

σ2
j

Note that there is a typo in (5.142). The numerator should be µ j − wi
instead of µi−w j. This can be easily seen through the fact that the mean and
variance of the Gaussian Distribution should have the same subindex and
since σ j is in the denominator, µ j should occur in the numerator instead of
µi.

Problem 5.31 Solution

It is similar to the previous problem. Since we know that:

∂

∂σ j

{
π jN (wi|µ j,σ2

j )
} =

(
− 1
σ j

+ (wi −µ j)2

σ3
j

)
π jN (wi|µ j,σ2

j )
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We can derive:

∂Ẽ
∂σ j

= ∂λΩ(w)
∂σ j

= −λ ∂

∂σ j

{∑
i

ln

(
M∑
j=1

π jN (wi|µ j,σ2
j )

)}

= −λ∑
i

∂

∂σ j

{
ln

(
M∑
j=1

π jN (wi|µ j,σ2
j )

)}

= −λ∑
i

1∑M
j=1π jN (wi|µ j,σ2

j )
∂

∂σ j

{
M∑
j=1

π jN (wi|µ j,σ2
j )

}

= −λ∑
i

1∑M
j=1π jN (wi|µ j,σ2

j )
∂

∂σ j

{
π jN (wi|µ j,σ2

j )
}

= λ
∑

i

1∑M
j=1π jN (wi|µ j,σ2

j )

(
1
σ j

− (wi −µ j)2

σ3
j

)
π jN (wi|µ j,σ2

j )

= λ
∑

i

π jN (wi|µ j,σ2
j )∑M

k=1πkN (wi|µk,σ2
k)

(
1
σ j

− (wi −µ j)2

σ3
j

)

= λ
∑

i
γ j(wi)

(
1
σ j

− (wi −µ j)2

σ3
j

)

Just as required.

Problem 5.32 Solution

It is trivial. We begin by verifying (5.208) when j ̸= k.

∂πk

∂η j
= ∂

∂η j

{
exp(ηk)∑
k exp(ηk)

}
= −exp(ηk)exp(η j)[∑

k exp(ηk)
]2

= −π jπk

And if now we have j = k:

∂πk

∂ηk
= ∂

∂ηk

{
exp(ηk)∑
k exp(ηk)

}
= exp(ηk)

[∑
k exp(ηk)

]− exp(ηk)exp(ηk)[∑
k exp(ηk)

]2

= πk −πkπk

If we combine these two cases, we can easily see that (5.208) holds. Now
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we prove (5.147).

∂Ẽ
∂η j

= λ
∂Ω(w)
∂η j

= −λ ∂

∂η j

{∑
i

ln

{
M∑
j=1

π jN (wi|µ j,σ2
j )

}}

= −λ∑
i

∂

∂η j

{
ln

{
M∑
j=1

π jN (wi|µ j,σ2
j )

}}

= −λ∑
i

1∑M
j=1π jN (wi|µ j,σ2

j )
∂

∂η j

{
M∑

k=1
πkN (wi|µk,σ2

k)

}

= −λ∑
i

1∑M
j=1π jN (wi|µ j,σ2

j )

M∑
k=1

∂

∂η j

{
πkN (wi|µk,σ2

k)
}

= −λ∑
i

1∑M
j=1π jN (wi|µ j,σ2

j )

M∑
k=1

∂

∂πk

{
πkN (wi|µk,σ2

k)
} ∂πk

∂η j

= −λ∑
i

1∑M
j=1π jN (wi|µ j,σ2

j )

M∑
k=1

N (wi|µk,σ2
k)(δ jkπ j −π jπk)

= −λ∑
i

1∑M
j=1π jN (wi|µ j,σ2

j )

{
π jN (wi|µ j,σ2

j )−π j

M∑
k=1

πkN (wi|µk,σ2
k))

}

= −λ∑
i

{
π jN (wi|µ j,σ2

j )∑M
j=1π jN (wi|µ j,σ2

j )
− π j

∑M
k=1πkN (wi|µk,σ2

k))∑M
j=1π jN (wi|µ j,σ2

j )

}
= −λ∑

i

{
γ j(wi)−π j

} = λ
∑

i

{
π j −γ j(wi)

}
Just as required.

Problem 5.33 Solution

It is trivial. We set the attachment point of the lower arm with the ground
as the origin of the coordinate. We first aim to find the vertical distance from
the origin to the target point, and this is also the value of x2.

x2 = L1 sin(π−θ1)+L2 sin(θ2 − (π−θ1))

= L1 sinθ1 −L2 sin(θ1 +θ2)

Similarly, we calculate the horizontal distance from the origin to the tar-
get point.

x1 = −L1 cos(π−θ1)+L2 cos(θ2 − (π−θ1))

= L1 cosθ1 −L2 cos(θ1 +θ2)

From these two equations, we can clearly see the ’forward kinematics’ of
the robot arm.
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Problem 5.34 Solution

By analogy with (5.208), we can write:

∂πk(x)
∂aπ

j
= δ jkπ j(x)−π j(x)πk(x)

Using (5.153), we can see that:

En = − ln

{
K∑

k=1
πkN (tn|µk,σ2

k)

}

Therefore, we can derive:

∂En

∂aπ
j

= − ∂

∂aπ
j

ln

{
K∑

k=1
πkN (tn|µk,σ2

k)

}

= − 1∑K
k=1πkN (tn|µk,σ2

k)
∂

∂aπ
j

{
K∑

k=1
πkN (tn|µk,σ2

k)

}

= − 1∑K
k=1πkN (tn|µk,σ2

k)

K∑
k=1

∂πk

∂aπ
j
N (tn|µk,σ2

k)

= − 1∑K
k=1πkN (tn|µk,σ2

k)

K∑
k=1

[
δ jkπ j(xn)−π j(xn)πk(xn)

]
N (tn|µk,σ2

k)

= − 1∑K
k=1πkN (tn|µk,σ2

k)

{
π j(xn)N (tn|µ j,σ

2
j )−π j(xn)

K∑
k=1

πk(xn)N (tn|µk,σ2
k)

}

= 1∑K
k=1πkN (tn|µk,σ2

k)

{
−π j(xn)N (tn|µ j,σ

2
j )+π j(xn)

K∑
k=1

πk(xn)N (tn|µk,σ2
k)

}

And if we denoted (5.154), we will have:

∂En

∂aπ
j
= −γ j +π j

Note that our result is slightly different from (5.155) by the subindex. But
there are actually the same if we substitute index j by index k in the final
expression.

Problem 5.35 Solution

We deal with the derivative of error function with respect to µk instead,
which will give a vector as result. Furthermore, the lth element of this vector
will be what we have been required. Since we know that:

∂

∂µk

{
πkN (tn|µk,σ2

k)
} = tn −µk

σ2
k

πkN (tn|µk,σ2
k)
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One thing worthy noticing is that here we focus on the isotropic case as
stated in page 273 of the textbook. To be more precise, N (tn|µk,σ2

k) should
be N (tn|µk,σ2

kI). Provided with the equation above, we can further obtain:

∂En

∂µk
= ∂

∂µk

{
− ln

K∑
k=1

πkN (tn|µk,σ2
k)

}

= − 1∑K
k=1πkN (tn|µk,σ2

k)
∂

∂µk

{
K∑

k=1
πkN (tn|µk,σ2

k)

}

= − 1∑K
k=1πkN (tn|µk,σ2

k)
· tn −µk

σ2
k

πkN (tn|µk,σ2
k)

= −γk
tn −µk

σ2
k

Hence noticing (5.152), the lth element of the result above is what we are
required.

∂En

∂aµ

kl

= ∂En

∂µkl
= γk

µkl − tl

σ2
k

Problem 5.36 Solution

Similarly, we know that:

∂

∂σk

{
πkN (tn|µk,σ2

k)
} =

{
− D
σk

+ ||tn −µk||2
σ3

k

}
πkN (tn|µk,σ2

k)

Therefore, we can obtain:

∂En

∂σk
= ∂

∂σk

{
− ln

K∑
k=1

πkN (tn|µk,σ2
k)

}

= − 1∑K
k=1πkN (tn|µk,σ2

k)
∂

∂σk

{
K∑

k=1
πkN (tn|µk,σ2

k)

}

= − 1∑K
k=1πkN (tn|µk,σ2

k)
·
{
− D
σk

+ ||tn −µk||2
σ3

k

}
πkN (tn|µk,σ2

k)

= −γk

{
− D
σk

+ ||tn −µk||2
σ3

k

}

Note that there is a typo in (5.157) and the underlying reason is that:
|σ2

kID×D | = (σ2
k)D

Problem 5.37 Solution

First we know two properties for the Gaussian distribution N (t|µ,σ2I):

E[t] =
∫

tN (t|µ,σ2I)dt = µ
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And
E[||t||2] =

∫
||t||2N (t|µ,σ2I)dt = Lσ2 +||µ||2

Where we have used E[tTAt] = Tr[Aσ2I]+µTAµ by setting A = I. This
property can be found in Matrixcookbook eq(378). Here L is the dimension of
t. Noticing (5.148), we can write:

E[t|x] =
∫

tp(t|x)dt

=
∫

t
K∑

k=1
πkN (t|µk,σ2

k)dt

=
K∑

k=1
πk

∫
tN (t|µk,σ2

k)dt

=
K∑

k=1
πkµk

Then we prove (5.160).

s2(x) = E[||t−E[t|x]||2|x] = E[
(
t2 −2tE[t|x]+E[t|x]2) |x]

= E[t2|x]−E[2tE[t|x]|x]+E[t|x]2 = E[t2|x]−E[t|x]2

=
∫

||t||2
K∑

k=1
πkN (µk,σ2

k)dt−||
K∑

l=1
πlµl ||2

=
K∑

k=1
πk

∫
||t||2N (µk,σ2

k)dt−||
K∑

l=1
πlµl ||2

=
K∑

k=1
πk(Lσ2

k +||µk||2)−||
K∑

l=1
πlµl ||2

= L
K∑

k=1
πkσ

2
k +

K∑
k=1

πk||µk||2 −||
K∑

l=1
πlµl ||2

= L
K∑

k=1
πkσ

2
k +

K∑
k=1

πk||µk||2 −2×||
K∑

l=1
πlµl ||2 +1×||

K∑
l=1

πlµl ||2

= L
K∑

k=1
πkσ

2
k +

K∑
k=1

πk||µk||2 −2(
K∑

l=1
πlµl)(

K∑
k=1

πkµk)+
(

K∑
k=1

πk

)
||

K∑
l=1

πlµl ||2

= L
K∑

k=1
πkσ

2
k +

K∑
k=1

πk||µk||2 −2(
K∑

l=1
πlµl)(

K∑
k=1

πkµk)+
K∑

k=1
πk||

K∑
l=1

πlµl ||2

= L
K∑

k=1
πkσ

2
k +

K∑
k=1

πk||µk −
K∑

l=1
πlµl ||2

=
K∑

k=1
πk

(
Lσ2

k +||µk −
K∑

l=1
πlµl ||2

)
Note that there is a typo in (5.160), i.e., the coefficient L in front of σ2

k is
missing.
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Problem 5.38 Solution

From (5.167) and (5.171), we can write down the expression for the pre-
dictive distribution:

p(t|x,D,α,β) =
∫

p(w|D,α,β)p(t|x,w,β)dw

≈
∫

q(w|D)p(t|x,w,β)dw

=
∫

N (w|wMAP,A−1)N (t|gTw−gTwMAP + y(x,wMAP),β−1)dw

Note here p(t|x,w,β) is given by (5.171) and q(w|D) is the approximation
to the posterior p(w|D,α,β), which is given by (5.167). Then by analogy with
(2.115), we first deal with the mean of the predictive distribution:

mean = gTw−gTwMAP + y(x,wMAP)|w=wMAP

= y(x,wMAP)

Then we deal with the covariance matrix:

Covariance matrix = β−1 +gTA−1g

Just as required.

Problem 5.39 Solution

Using Laplace Approximation, we can obtain:

p(D|w,β)p(w|α) = p(D|wMAP,β)p(wMAP|α)exp
{
−(w−wMAP)TA(w−wMAP)

}
Then using (5.174), (5.162) and (5.163), we can obtain:

p(D|α,β) =
∫

p(D|w,β)p(w,α)dw

=
∫

p(D|wMAP,β)p(wMAP|α)exp
{
−(w−wMAP)TA(w−wMAP)

}
dw

= p(D|wMAP,β)p(wMAP|α)
(2π)W /2

|A|1/2

=
N∏

n=1
N (tn|y(xn,wMAP),β−1)N (wMAP|0,α−1I)

(2π)W /2

|A|1/2

If we take logarithm of both sides, we will obtain (5.175) just as required.

Problem 5.40 Solution

For a k-class classification problem, we need to use softmax activation
function and also the error function is now given by (5.24). Therefore, the
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Hessian matrix should be derived from (5.24) and the cross entropy in (5.184)
will also be replaced by (5.24).

Problem 5.41 Solution

By analogy to Prob.5.39, we can write:

p(D|α) = p(D|wMAP)p(wMAP|α)
(2π)W /2

|A|1/2

Since we know that the prior p(w|α) follows a Gaussian distribution, i.e.,
(5.162), as stated in the text. Therefore we can obtain:

ln p(D|α) = ln p(D|wMAP) + ln p(wMAP|α)− 1
2

ln |A| + const

= ln p(D|wMAP) − α

2
wTw + W

2
lnα− 1

2
ln |A| + const

= −E(wMAP) + W
2

lnα− 1
2

ln |A| + const

Just as required.

0.6 Kernel Methods

Problem 6.1 Solution

Recall that in section.6.1, an can be written as (6.4). We can derive:

an = −1
λ

{wTϕ(xn)− tn}

= −1
λ

{w1ϕ1(xn)+w2ϕ2(xn)+ ...+wMϕM(xn)− tn}

= −w1

λ
ϕ1(xn)− w2

λ
ϕ2(xn)− ...− wM

λ
ϕM(xn)+ tn

λ

= (cn − w1

λ
)ϕ1(xn)+ (cn − w2

λ
)ϕ2(xn)+ ...+ (cn − wM

λ
)ϕM(xn)

Here we have defined:

cn = tn/λ
ϕ1(xn)+ϕ2(xn)+ ...+ϕM(xn)

From what we have derived above, we can see that an is a linear com-
bination of ϕ(xn). What’s more, we first substitute K =ΦΦT into (6.7), and
then we will obtain (6.5). Next we substitute (6.3) into (6.5) we will obtain
(6.2) just as required.

Problem 6.2 Solution
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By analogy to Eq (2.115), i.e.,

p(y) =
∫

p(y|x)p(x)dx

We can obtain:

p(aN+1|tN ) = N(Aµ+b,L−1 +AΛ−1AT ) (∗)

Where we have defined:

A = kTC−1
N , b = 0, L−1 = c−kTC−1

N k

And
µ = a⋆

N , Λ = H

Therefore, the mean is given by:

Aµ+b = kTC−1
N a⋆

N = kTC−1
N CN (tN −σN ) = kT (tN −σN )

Where we have used Eq (6.84). The covariance matrix is given by:

L−1 +AΛ−1AT = c−kTC−1
N k+kTC−1

N H−1(kTC−1
N )T

= c−kT (C−1
N −C−1

N H−1C−1
N )k

= c−kT
(
C−1

N −C−1
N (WN +C−1

N )−1C−1
N

)
k

= c−kT
(
C−1

N − (CNWNCN +C−1
N )−1

)
k

Where we have used Eq (6.85) and the fact that CN is symmetric. Then we
use matrix identity (C.7) to further reduce the expression, which will finally
give Eq (6.88).

Problem 6.27 Solution(Wait for update) This problem is really complicated.

What’s more, I find that Eq (6.91) seems not right.

0.7 Sparse Kernel Machines

Problem 7.1 Solution

By analogy to Eq (2.249), we can obtain:

p(x|t)=


1

N+1

N+1∑
n=1

1
Zk

·k(x,xn) t = +1

1
N−1

N−1∑
n=1

1
Zk

·k(x,xn) t = −1
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where N+1 represents the number of samples with label t = +1 and it is
the same for N−1. Zk is a normalization constant representing the volume of
the hypercube. Since we have equal prior for the class, i.e.,

p(t)=
{

0.5 t = +1

0.5 t = −1

Based on Bayes’ Theorem, we have p(t|x) ∝ p(x|t) · p(t), yielding:

p(t|x)=


1
Z
· 1

N+1

N+1∑
n=1

·k(x,xn) t = +1

1
Z
· 1

N−1

N−1∑
n=1

·k(x,xn) t = −1

Where 1/Z is a normalization constant to guarantee the integration of the
posterior equal to 1. To classify a new sample x⋆, we try to find the value t⋆

that can maximize p(t|x). Therefore, we can obtain:

t⋆ =


+1 if

1
N+1

N+1∑
n=1

·k(x,xn)≥ 1
N−1

N−1∑
n=1

·k(x,xn)

−1 if
1

N+1

N+1∑
n=1

·k(x,xn)≤ 1
N−1

N−1∑
n=1

·k(x,xn)

(∗)

If we now choose the kernel function as k(x,x′) = xTx′,we have:

1
N+1

N+1∑
n=1

k(x,xn) = 1
N+1

N+1∑
n=1

xTxn = xT x̃+1

Where we have denoted:

x̃+1 = 1
N+1

N+1∑
n=1

xn

and similarly for x̃−1. Therefore, the classification criterion (∗) can be
written as:

t⋆ =
{
+1 if x̃+1 ≥ x̃−1

−1 if x̃+1 ≤ x̃−1

When we choose the kernel function as k(x,x′) = ϕ(x)Tϕ(x′), we can sim-
ilarly obtain the classification criterion:

t⋆ =
{
+1 if ϕ̃(x+1)≥ ϕ̃(x−1)

−1 if ϕ̃(x+1)≤ ϕ̃(x−1)

Where we have defined:

ϕ̃(x+1) = 1
N+1

N+1∑
n=1

ϕ(xn)
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Problem 7.2 Solution

Suppose we have find w0 and b0, which can let all points satisfy Eq (7.5)
and simultaneously minimize Eq (7.3). This hyperlane decided by w0 and
b0 is the optimal classification margin. Now if the constraint in Eq (7.5)
becomes:

tn(wTϕ(xn)+b)≥ γ

We can conclude that if we perform change of variables: w0− > γw0 and
b− > γb, the constraint will still satisfy and Eq (7.3) will be minimize. In
other words, if the right side of the constraint changes from 1 to γ, The new
hyperlane decided by γw0 and γb0 is the optimal classification margin. How-
ever, the minimum distance from the points to the classification margin is
still the same.

Problem 7.3 Solution

Suppose we have x1 belongs to class one and we denote its target value
t1 = 1, and similarly x2 belongs to class two and we denote its target value
t2 = −1. Since we only have two points, they must have ti · y(xi) = 1 as shown
in Fig. 7.1. Therefore, we have an equality constrained optimization problem:

minimize
1
2
||w||2 s.t.

{
wTϕ(x1)+b = 1

wTϕ(x2)+b = −1

This is an convex optimization problem and it has been proved that global
optimal exists.

Problem 7.4 Solution

Since we know that
ρ = 1

||w||
Therefore, we have:

1
ρ2 = ||w||2

In other words, we only need to prove that

||w||2 =
N∑

n=1
an

When we find th optimal solution, the second term on the right hand side
of Eq (7.7) vanishes. Based on Eq (7.8) and Eq (7.10), we also observe that its
dual is given by:

L̃(a) =
N∑

n=1
an − 1

2
||w||2
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Therefore, we have:

1
2
||w||2 = L(a) = L̃(a) =

N∑
n=1

an − 1
2
||w||2

Rearranging it, we will obtain what we are required.

Problem 7.5 Solution

We have already proved this problem in the previous one.

Problem 7.6 Solution

If the target variable can only choose from {−1,1}, and we know that

p(t = 1|y) = σ(y)

We can obtain:

p(t = −1|y) = 1− p(t = 1|y) = 1−σ(y) = σ(−y)

Therefore, combining these two situations, we can derive:

p(t|y) = σ(yt)

Consequently, we can obtain the negative log likelihood:

− ln p(D) = − ln
N∏

n=1
σ(yntn) = −

N∑
n=1

lnσ(yntn) =
N∑

n=1
ELR(yntn)

Here D represents the dataset, i.e.,D = {(xn, tn);n = 1,2, ..., N}, and ELR(yt)
is given by Eq (7.48). With the addition of a quadratic regularization, we ob-
tain exactly Eq (7.47).

Problem 7.7 Solution

The derivatives are easy to obtain. Our main task is to derive Eq (7.61)
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using Eq (7.57)-(7.60).

L = C
N∑

n=1
(ξn + ξ̂n)+ 1

2
||w||2 −

N∑
n=1

(µnξn + µ̂nξ̂n)

−
N∑

n=1
an(ϵ+ξn + yn − tn)−

N∑
n=1

ân(ϵ+ ξ̂n + yn − tn)

= C
N∑

n=1
(ξn + ξ̂n)+ 1

2
||w||2 −

N∑
n=1

(an +µn)ξn −
N∑

n=1
(ân + µ̂n)ξ̂n

−
N∑

n=1
an(ϵ+ yn − tn)−

N∑
n=1

ân(ϵ+ yn − tn)

= C
N∑

n=1
(ξn + ξ̂n)+ 1

2
||w||2 −

N∑
n=1

Cξn −
N∑

n=1
Cξ̂n

−
N∑

n=1
(an + ân)ϵ−

N∑
n=1

(an − ân)(yn − tn)

= 1
2
||w||2 −

N∑
n=1

(an + ân)ϵ−
N∑

n=1
(an − ân)(yn − tn)

= 1
2
||w||2 −

N∑
n=1

(an − ân)(wTϕ(xn)+b− tn)−
N∑

n=1
(an + ân)ϵ+

N∑
n=1

= 1
2
||w||2 −

N∑
n=1

(an − ân)(wTϕ(xn)+b)−
N∑

n=1
(an + ân)ϵ+

N∑
n=1

(an − ân)tn

= 1
2
||w||2 −

N∑
n=1

(an − ân)wTϕ(xn)−
N∑

n=1
(an + ân)ϵ+

N∑
n=1

(an − ân)tn

= 1
2
||w||2 −||w||2 −

N∑
n=1

(an + ân)ϵ+
N∑

n=1
(an − ân)tn

= −1
2
||w||2 −

N∑
n=1

(an + ân)ϵ+
N∑

n=1
(an − ân)tn

Just as required.

Problem 7.8 Solution

This obviously follows from the KKT condition, described in Eq (7.67) and
(7.68).

Problem 7.9 Solution

The prior is given by Eq (7.80).

p(w|α) =
M∏

i=1
N (0,α−1

i ) = N (w|0,A−1)

Where we have defined:

A = diag(αi)
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The likelihood is given by Eq (7.79).

p(t|X,w,β) =
N∏

n=1
p(tn|xn,w,β−1)

=
N∏

n=1
N (tn|wTϕ(xn),β−1)

= N (t|Φw,β−1I)

Where we have defined:

Φ = [ϕ(x1), ϕ(x2), ...,ϕ(xn)]T

Our definitions of Φ and A as consistent with the main text. Therefore,
according to Eq (2.113)-Eq (2.117), we have:

p(w|t,X,α,β) = N (m,Σ)

Where we have defined:

Σ = (A+βΦTΦ)−1

And
m = βΣΦTt

Just as required.

Problem 7.10&7.11 Solution

It is quite similar to the previous problem. We begin by writting down the
prior:

p(w|α) =
M∏

i=1
N (0,α−1

i ) = N (w|0,A−1)

Then we write down the likelihood:

p(t|X,w,β) =
N∏

n=1
p(tn|xn,w,β−1)

=
N∏

n=1
N (tn|wTϕ(xn),β−1)

= N (t|Φw,β−1I)

Since we know that:

p(t|X,α,β) =
∫

p(t|X,w,β)p(w|α)dw



150

First as required by Prob.7.10, we will solve it by completing the square.
We begin by write down the expression for p(t|X,w,β):

p(t|X,α,β) =
∫

N (w|0,A−1)N (t|Φw,β−1I)dw

= (
β

2π
)N/2 · 1

(2π)M/2 ·
M∏

m=1
α1/2

i ·
∫

exp{−E(w)}dw

Where we have defined:

E(w) = 1
2

wTAw+ β

2
||t−Φw||2

We expand E(w) with respect to w:

E(w) = 1
2

{
wT (A+βΦTΦ)w−2βtT (Φw)+βtTt

}
= 1

2

{
wTΣ−1w−2mTΣ−1w+βtTt

}
= 1

2

{
(w−m)TΣ−1(w−m)+βtTt−mTΣ−1m

}
Where we have used Eq (7.82) and Eq (7.83). Substituting E(w) into the

integral, we will obtain:

p(t|X,α,β) = (
β

2π
)N/2 · 1

(2π)M/2 ·
M∏

m=1
α1/2

i ·
∫

exp{−E(w)}dw

= (
β

2π
)N/2 · 1

(2π)M/2 ·
M∏

m=1
α1/2

i · (2π)M/2 · |Σ|1/2exp
{
− 1

2
(βtTt−mTΣ−1m)

}
= (

β

2π
)N/2 · |Σ|1/2 ·

M∏
m=1

α1/2
i · exp

{
− 1

2
(βtTt−mTΣ−1m)

}
= (

β

2π
)N/2 · |Σ|1/2 ·

M∏
m=1

α1/2
i · exp

{
−E(t)

}
We further expand E(t):

E(t) = 1
2

(βtTt−mTΣ−1m)

= 1
2

(βtTt− (βΣΦTt)TΣ−1(βΣΦTt))

= 1
2

(βtTt−β2tTΦΣΣ−1ΣΦTt)

= 1
2

(βtTt−β2tTΦΣΦTt)

= 1
2

tT (βI−β2ΦΣΦT )t

= 1
2

tT
[
βI−βΦ(A+βΦTΦ)−1ΦTβ

]
t

= 1
2

tT (β−1I+ΦA−1ΦT )−1t = 1
2

tTC−1t
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Note that in the last step we have used matrix identity Eq (C.7). There-
fore, as we know that the pdf is Gaussian and the exponential term has been
given by E(t), we can easily write down Eq (7.85) considering those normal-
ization constant.

What’s more, as required by Prob.7.11, the evaluation of the integral can
be easily performed using Eq(2.113)- Eq(2.117).

Problem 7.12 Solution

According to the previous problem, we can explicitly write down the log
marginal likelihood in an alternative form:

ln p(t|X,α,β) = N
2

lnβ− N
2

ln2π+ 1
2

ln |Σ|+ 1
2

M∑
i=1

lnαi −E(t)

We first derive:

dE(t)
dαi

= −1
2

d
dαi

(mTΣ−1m)

= −1
2

d
dαi

(β2tTΦΣΣ−1ΣΦTt)

= −1
2

d
dαi

(β2tTΦΣΦTt)

= −1
2

Tr
[ d

dΣ−1 (β2tTΦΣΦTt) · dΣ−1

dαi
]

= 1
2
β2Tr

[
Σ(ΦTt)(ΦTt)TΣ ·Ii] = 1

2
m2

ii

In the last step, we have utilized the following equation:

d
dX

Tr(AX−1B) = −X−TATBTX−T

Moreover, here Ii is a matrix with all elements equal to zero, expect the
i-th diagonal element, and the i-th diagonal element equals to 1. Then we
utilize matrix identity Eq (C.22) to derive:

d ln |Σ|
dαi

= −d ln |Σ−1|
dαi

= −Tr
[
Σ

d
dαi

(A+βΦTΦ)
]

= −Σii

Therefore, we can obtain:

d ln p
dαi

= 1
2αi

− 1
2

m2
i −

1
2
Σii
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Set it to zero and obtain:

αi = 1−αiΣii

mi
= γi

m2
i

Then we calculate the derivatives of ln p with respect to β beginning by:

d ln |Σ|
dβ

= −d ln |Σ−1|
dβ

= −Tr
[
Σ

d
dβ

(A+βΦTΦ)
]

= −Tr
[
ΣΦTΦ

]
Then we continue:

dE(t)
dβ

= 1
2

tTt− 1
2

d
dβ

(mTΣ−1m)

= 1
2

tTt− 1
2

d
dβ

(β2tTΦΣΣ−1ΣΦTt)

= 1
2

tTt− 1
2

d
dβ

(β2tTΦΣΦTt)

= 1
2

tTt−βtTΦΣΦTt− 1
2
β2 d

dβ
(tTΦΣΦTt)

= 1
2

{
tTt−2βtTΦΣΦTt−β2 d

dβ
(tTΦΣΦTt)

}
= 1

2

{
tTt−2tT (Φm)−β2 d

dβ
(tTΦΣΦTt)

}
= 1

2

{
tTt−2tT (Φm)−β2Tr

[ d
dΣ−1 (tTΦΣΦTt) · dΣ−1

dβ
]}

= 1
2

{
tTt−2tT (Φm)+β2Tr

[
Σ(ΦTt)(ΦTt)TΣ ·ΦTΦ

]}
= 1

2

{
tTt−2tT (Φm)+Tr

[
mmT ·ΦTΦ]

}
= 1

2

{
tTt−2tT (Φm)+Tr

[
ΦmmT ·ΦT ]

}
= 1

2
||t−Φm||2

Therefore, we have obtained:

d ln p
dβ

= 1
2

( N
β

−||t−Φm||2 −Tr[ΣΦTΦ]
)
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Using Eq (7.83), we can obtain:

ΣΦTΦ = ΣΦTΦ+β−1ΣA−β−1ΣA
= Σ(βΦTΦ+A)β−1 −β−1ΣA
= Iβ−1 −β−1ΣA
= (I−ΣA)β−1

Setting the derivative equal to zero, we can obtain:

β−1 = ||t−Φm||2
N −Tr(I−ΣA)

= ||t−Φm||2
N −∑

i γi

Just as required.

Problem 7.13 Solution

This problem is quite confusing. In my point of view, the posterior should
be denoted as p(w|t,X, {ai,bi},aβ,bβ), where aβ,bβ controls the Gamma dis-
tribution of β, and ai,bi controls the Gamma distribution of αi. What we
should do is to maximize the marginal likelihood p(t|X, {ai,bi},aβ,bβ) with
respect to {ai,bi},aβ,bβ. Now we do not have a point estimation for the hyper-
parameters β and αi. We have a distribution (controled by the hyper priors,
i.e., {ai,bi},aβ,bβ) instead.

Problem 7.14 Solution

We begin by writing down p(t|x,w,β∗). Using Eq (7.76) and Eq (7.77), we
can obtain:

p(t|x,w,β∗) = N (t|wTϕ(x), (β∗)−1)

Then we write down p(w|X,t,α∗,β∗). Using Eq (7.81), (7.82) and (7.83),
we can obtain:

p(w|X,t,α∗,β∗) = N (w|m,Σ)

Where m and Σ are evaluated using Eq (7.82) and (7.83) given α = α∗

and β = β∗. Then we utilize Eq (7.90) and obtain:

p(t|x,X,t,α∗,β∗) =
∫

N (t|wTϕ(x), (β∗)−1)N (w|m,Σ)d w

=
∫

N (t|ϕ(x)Tw, (β∗)−1)N (w|m,Σ)d w

Using Eq (2.113)-(2.117), we can obtain:

p(t|x,X,t,α∗,β∗) = N (µ,σ2)

Where we have defined:
µ = mTϕ(x)
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And
σ2 = (β∗)−1 +ϕ(x)TΣϕ(x)

Just as required.

Problem 7.15 Solution

We just follow the hint.

L(α) = −1
2

{N ln2π+ ln |C|+ tTC−1t}

= −1
2

{
N ln2π+ ln |C−i|+ ln |1+α−1

i φT
i C−1

−i φi|

+tT (C−1
−i −

C−1
−i φiφ

T
i C−1

−i

αi +φT
i C−1

−i φi
)t

}
= L(α−i)− 1

2
ln |1+α−1

i φT
i C−1

−i φi|+
1
2

tT C−1
−i φiφ

T
i C−1

−i

αi +φT
i C−1

−i φi
t

= L(α−i)− 1
2

ln |1+α−1
i si|+ 1

2

q2
i

αi + si

= L(α−i)− 1
2

ln
αi + si

αi
+ 1

2

q2
i

αi + si

= L(α−i)+ 1
2

[
lnαi − ln(αi + si)+

q2
i

αi + si

]
= L(α−i)+λ(αi)

Where we have defined λ(αi), si and qi as shown in Eq (7.97)-(7.99).

Problem 7.16 Solution

We first calculate the first derivative of Eq(7.97) with respect to αi:

∂λ

∂αi
= 1

2
[

1
αi

− 1
αi + si

− q2
i

(αi + si)2 ]

Then we calculate the second derivative:

∂2λ

∂α2
i
= 1

2
[− 1

α2
i
+ 1

(αi + si)2 + 2q2
i

(αi + si)3 ]

Next we aim to prove that when αi is given by Eq (7.101), i.e., setting the
first derivative equal to 0, the second derivative (i.e., the expression above) is
negative. First we can obtain:

αi + si =
s2

i

q2
i − si

+ si =
si q2

i

q2
i − si
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Therefore, substituting αi + si and αi into the second derivative, we can
obtain:

∂2λ

∂α2
i

= 1
2

[− (q2
i − si)2

s4
i

+ (q2
i − si)2

s2
i q4

i
+ 2q2

i (q2
i − si)3

s3
i q6

i
]

= 1
2

[− q4
i (q2

i − si)2

q4
i s4

i
+ s2

i (q2
i − si)2

s4
i q4

i
+ 2si(q2

i − si)3

s4
i q4

i
]

= 1
2

(q2
i − si)2

q4
i s4

i
[−q4

i + s2
i +2si(q2

i − si)]

= 1
2

(q2
i − si)2

q4
i s4

i
[−(q2

i − si)2]

= −1
2

(q2
i − si)4

q4
i s4

i
< 0

Just as required.

Problem 7.17 Solution

We just follow the hint. According to Eq (7.102), Eq (7.86) and matrix
identity (C.7), we have:

Q i = φT
i C−1t

= φT
i (β−1I+ΦA−1ΦT )−1t

= φT
i (βI−βIΦ(A+ΦTβIΦ)−1ΦTβI)t

= φT
i (β−β2Φ(A+βΦTΦ)−1ΦT )t

= φT
i (β−β2ΦΣΦT )t

= βφT
i t−β2φT

i ΦΣΦTt

Similarly, we can obtain:

Si = φT
i C−1φi

= φT
i (β−β2ΦΣΦT )φi

= βφT
i φi −β2φT

i ΦΣΦTφi

Just as required.

Problem 7.18 Solution

We begin by deriving the first term in Eq (7.109) with respect to w. This
can be easily evaluate based on Eq (4.90)-(4.91).

∂

∂w

{ N∑
n=1

tn ln yn + (1− tn) ln(1− yn)
}
=

N∑
n=1

(tn − yn)ϕn = ΦT (t−y)
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Since the derivative of the second term in Eq (7.109) with respect to w
is rather simple to obtain. Therefore, The first derivative of Eq (7.109) with
respect to w is:

∂ ln p
∂w

= ΦT (t−y)−Aw

For the Hessian matrix, we can first obtain:

∂

∂w

{
ΦT (t−y)

}
=

N∑
n=1

∂

∂w

{
(tn − yn)ϕn

}
= −

N∑
n=1

∂

∂w

{
yn ·ϕn

}
= −

N∑
n=1

∂σ(wTϕn)
∂w

·ϕT
n

= −
N∑

n=1

∂σ(a)
∂a

· ∂a
∂w

·ϕT
n

Where we have defined a = wTϕn. Then we can utilize Eq (4.88) to derive:

∂

∂w

{
ΦT (t−y)

}
= −

N∑
n=1

σ(1−σ) ·ϕn ·ϕT
n = −ΦTBΦ

Where B is a diagonal N×N matrix with elements bn = yn(1−yn). There-
fore, we can obtain the Hessian matrix:

H = ∂

∂w

{∂ ln p
∂w

}
= −(ΦTBΦ+A)

Just as required.

Problem 7.19 Solution

We begin from Eq (7.114).

p(t|α) = p(t|w∗)p(w∗|α)(2π)M/2|Σ|1/2

=
[ N∏

n=1
p(tn|xn,w)

][ M∏
i=1

N (wi|0,α−1
i )

]
(2π)M/2|Σ|1/2

∣∣∣
w=w∗

=
[ N∏

n=1
p(tn|xn,w)

]
·N (w|0,A) · (2π)M/2|Σ|1/2

∣∣∣
w=w∗

We further take logarithm for both sides.

ln p(t|α) =
[ N∑

n=1
ln p(tn|xn,w)+ lnN (w|0,A)+ M

2
ln2π+ 1

2
ln |Σ|

]∣∣∣
w=w∗

=
[ N∑

n=1

[
tn ln yn + (1− tn) ln(1− yn)

]− 1
2

wTAw− 1
2

ln |A|+ 1
2

ln |Σ|+ const
]∣∣∣

w=w∗

=
[ N∑

n=1

[
tn ln yn + (1− tn) ln(1− yn)

]− 1
2

wTAw
]
+

[1
2

ln |Σ|− 1
2

ln |A|+ const
]∣∣∣

w=w∗
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Using the Chain rule, we can obtain:

∂ ln p(t|α)
∂αi

∣∣∣
w=w∗ = ∂ ln p(t|α)

∂w
∂w
∂αi

∣∣∣
w=w∗

Observing Eq (7.109), (7.110) and that (7.110) will equal 0 at w∗, we can
conclude that the first term on the right hand side of ln p(t|α) will have zero
derivative with respect to w at w∗. Therefore, we only need to focus on the
second term:

∂ ln p(t|α)
∂αi

∣∣∣
w=w∗ = ∂

∂αi

[
1
2

ln |Σ|− 1
2

ln |A|
]∣∣∣

w=w∗

It is rather easy to obtain:

∂

∂αi
[−1

2
ln |A|] = −1

2
∂

∂αi

[∑
i

lnα−1
i

] = 1
2αi

Then we follow the same procedure as in Prob.7.12, we can obtain:

∂

∂αi
[
1
2

ln |Σ|] = −1
2
Σii

Therefore, we obtain:

∂ ln p(t|α)
∂αi

= 1
2αi

− 1
2
Σii

Note: here I draw a different conclusion as the main text. I have also
verified my result in another way. You can write the prior as the product of
N (wi|0,α−1

i ) instead of N (w|0,A). In this form, since we know that:

∂

∂αi

M∑
i=1

lnN (wi|0,α−1
i ) = ∂

∂αi
(
1
2

lnαi − αi

2
w2

i ) = 1
2αi

− 1
2

(w∗
i )2

The above expression can be used to replace the derivative of −1/2wTAw−
1/2ln |A|. Since the derivative of the likelihood with respect to αi is not zero
at w∗, (7.115) seems not right anyway.

0.8 Graphical Models

Problem 8.1 Solution

We are required to prove:∫
x

p(x)dx =
∫

x

K∏
k=1

p(xk|pak)dx = 1
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only depends on only one node (except the root), i.e., its parent. Thus we can
easily change a undirected tree to a directed one by matching the potential
function with the corresponding conditional PDF, as shown in the example.

Moreover, we can choose any node in the undirected tree to be the root and
then work outwards to obtain a directed tree. Therefore, in an undirected tree
with n nodes, there is n corresponding directed trees in total.

Problem 8.19-8.29 Solution (Waiting for update)

I am quite confused by the deduction in Eq(8.66). I do not understand the
sum-prodcut algorithm and the max-sum algorithm very well.

0.9 Mixture Models and EM

Problem 9.1 Solution

For each rnk when n is fixed and k = 1,2, ...,K , only one of them equals
1 and others are all 0. Therefore, there are K possible choices. When N
data are given, there are K N possible assignments for {rnk;n = 1,2, ..., N;k =
1,2, ...,K}. For each assignments, the optimal {µk;k = 1,2, ...,K} are well de-
termined by Eq (9.4).

As discussed in the main text, by iteratively performing E-step and M-
step, the distortion measure in Eq (9.1) is gradually minimized. The worst
case is that we find the optimal assignment and {µk} in the last iteration. In
other words, K N iterations are required. However, it is guaranteed to con-
verge because the assignments are finite and the optimal {µk} is determined
once the assignment is given.

Problem 9.2 Solution

By analogy to Eq (9.1), we can write down:

JN = JN−1 +
K∑

k=1
rNk||xN −µk||2

In the E-step, we still assign the N-th data xN to the closet center and
suppose that this cloest center is µm. Therefore, the expression above will
reduce to:

JN = JN−1 +||xn −µm||2

In the M-step, we set the derivative of JN with respect to µk to 0, where
k = 1,2, ...,K . We can observe that for those µk, k ̸= m, we have:

∂JN

∂µk
= ∂JN−1

∂µk
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In other words, we will only update µm in the M-step by setting the
derivative of JN equal to 0. Utilizing Eq (9.4), we can obtain:

µ(N)
m =

∑N−1
n=1 rnkxn +xN∑N−1

n=1 rnk +1

=

∑N−1
n=1 rnkxn∑N−1

n=1 rnk
+ xN∑N−1

n=1 rnk

1+ 1∑N−1
n=1 rnk

=
µ(N−1)

m + xN∑N−1
n=1 rnk

1+ 1∑N−1
n=1 rnk

= µ(N−1)
m +

xN∑N−1
n=1 rnk

− µ(N−1)
m∑N−1

n=1 rnk

1+ 1∑N−1
n=1 rnk

= µ(N−1)
m + xN −µ(N−1)

m

1+∑N−1
n=1 rnk

So far we have obtained a sequential on-line update formula just as re-
quired.

Problem 9.3 Solution

We simply follow the hint.

p(x) = ∑
z

p(z) p(x|z)

= ∑
z

K∏
k=1

[
(πkN (x|µk,Σk)

]zk

Note that we have used 1-of-K coding scheme for z = [z1, z2, ..., zK ]T . To
be more specific, only one of z1, z2, ..., zK will be 1 and all others will equal 0.
Therefore, the summation over z actually consists of K terms and the k-th
term corresponds to zk equal to 1 and others 0. Moreover, for the k-th term,
the product will reduce to πkN (x|µk,Σk). Therefore, we can obtain:

p(x) = ∑
z

K∏
k=1

[
(πkN (x|µk,Σk)

]zk =
K∑

k=1
πkN (x|µk,Σk)

Just as required.

Problem 9.4 Solution

According to Bayes’ Theorem, we can write:

p(θ|X)∝ p(X|θ)p(θ)
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Taking logarithm on both sides, we can write:

ln p(θ|X)∝ ln p(X|θ) + ln p(θ)

Further utilizing Eq (9.29), we can obtain:

ln p(θ|X) ∝ ln
{∑

Z
p(X,Z|θ)

}
+ ln p(θ)

= ln
{[∑

Z
p(X,Z|θ)

] · p(θ)
}

= ln
{∑

Z
p(X,Z|θ)p(θ)

}
In other words, in thise case, the only modification is that the term p(X,Z|θ)

in Eq (9.29) will be replaced by p(X,Z|θ)p(θ). Therefore, in the E-step, we still
need to calculate the posterior p(Z|X,θold) and then in the M-step, we are re-
quired to maximize Q

′
(θ,θold). In this case, by analogy to Eq (9.30), we can

write down Q
′
(θ,θold):

Q
′
(θ,θold) = ∑

Z
p(Z|X,θold) ln

[
p(X,Z|θ)p(θ)

]
= ∑

Z
p(Z|X,θold)

[
ln p(X,Z|θ)+ ln p(θ)

]
= ∑

Z
p(Z|X,θold) ln p(X,Z|θ)+∑

Z
p(Z|X,θold) ln p(θ)

= ∑
Z

p(Z|X,θold) ln p(X,Z|θ)+ ln p(θ) ·∑
Z

p(Z|X,θold)

= ∑
Z

p(Z|X,θold) ln p(X,Z|θ)+ ln p(θ)

= Q(θ,θold)+ ln p(θ)

Just as required.

Problem 9.5 Solution

Notice that the condition on µ, Σ and π can be omitted here, and we only
need to prove p(Z|X) can be written as the product of p(zn|xn). Correspond-
ingly, the small dots representing µ, Σ and π can also be omitted in Fig 9.6.
Observing Fig 9.6 and based on definition, we can write :

p(X,Z) = p(x1,z1)p(z1)...p(xN ,zN )p(zN ) = p(x1,z1)...p(xN ,zN )

Moreover, since there is no link from zm to zn, from xm to xn, and from
zm to xn (m ̸= n), we can obtain:

p(Z) = p(z1)...p(zN ), p(X) = p(x1)...p(xN )
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These can also be verified by calculating the marginal distribution from
p(X,Z), for example:

p(Z) = ∑
X

p(X,Z) = ∑
x1,...,xN

p(x1,z1)...p(xN ,zN ) = p(z1)...p(zN )

According to Bayes’ Theorem, we have

p(Z|X) = p(X|Z)p(Z)
p(X)

=
[∏N

n=1 p(xn|zn)
][∏N

n=1 p(zn)
]

∏N
n=1 p(xn)

=
N∏

n=1

p(xn|zn)p(zn)
p(xn)

=
N∏

n=1
p(zn|xn)

Just as required. The essence behind the problem is that in the directed
graph, there are only links from zn to xn. The deeper reason is that (i) the
mixture model is given by Fig 9.4, and (ii) we assume the data {xn} is i.i.d,
and thus there is no link from xm to xn.

Problem 9.6 Solution

By analogy to Eq (9.19), we calculate the derivative of Eq (9.14) with
respect to Σ:

∂ ln p
∂Σ

= ∂

∂Σ
{

N∑
n=1

lnan} =
N∑

n=1

1
an

∂an

∂Σ
(∗)

Where we have defined:

an =
K∑

k=1
πkN (xn|µk,Σ)

Recall that in Prob.2.34, we have proved:

∂ lnN (xn|µk,Σ)
∂Σ

= −1
2
Σ−1 + 1

2
Σ−1SnkΣ

−1

Where we have defined:

Snk = (xn −µk)(xn −µk)T
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Therefore, we can obtain:

∂an

∂Σ
= ∂

∂Σ

{ K∑
k=1

πkN (xn|µk,Σ)
}

=
K∑

k=1

∂

∂Σ

{
πkN (xn|µk,Σ)

}
=

K∑
k=1

πk
∂

∂Σ

{
exp

[
lnN (xn|µk,Σ)

]}
=

K∑
k=1

πk ·exp
[
lnN (xn|µk,Σ)

] · ∂

∂Σ

[
lnN (xn|µk,Σ)

]
=

K∑
k=1

πk ·N (xn|µk,Σ) · (−1
2
Σ−1 + 1

2
Σ−1SnkΣ

−1)

Substitute the equation above into (∗), we can obtain:

∂ ln p
∂Σ

=
N∑

n=1

1
an

∂an

∂Σ

=
N∑

n=1

∑K
k=1πk ·N (xn|µk,Σ) · (−1

2Σ
−1 +Σ−1SnkΣ

−1)∑K
j=1π jN (xn|µ j,Σ)

=
N∑

n=1

K∑
k=1

γ(znk) · (−1
2
Σ−1 + 1

2
Σ−1SnkΣ

−1)

= −1
2

{ N∑
n=1

K∑
k=1

γ(znk)
}
Σ−1 + 1

2
Σ−1

{ N∑
n=1

K∑
k=1

γ(znk)Snk

}
Σ−1

If we set the derivative equal to 0, we can obtain:

Σ =
∑N

n=1
∑K

k=1γ(znk)Snk∑N
n=1

∑K
k=1γ(znk)

Problem 9.7 Solution

We begin by calculating the derivative of Eq (9.36) with respect to µk:

∂ ln p
∂µk

= ∂

∂µk

{ N∑
n=1

K∑
k=1

znk [ lnπk + lnN (xn|µk,Σk) ]
}

= ∂

∂µk

{ N∑
n=1

znk [ lnπk + lnN (xn|µk,Σk) ]
}

=
N∑

n=1

∂

∂µk

{
znk lnN (xn|µk,Σk)

}
= ∑

xn∈Ck

∂

∂µk

{
lnN (xn|µk,Σk)

}
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Where we have used xn ∈ Ck to represent the data point xn which are
assigned to the k-th cluster. Therefore, µk is given by the mean of those
xn ∈ Ck just as the case of a single Gaussian. It is exactly the same for the
covariance. Next, we maximize Eq (9.36) with respect to πk by enforcing a
Lagrange multiplier:

L = ln p+λ(
K∑

k=1
πk −1)

We calculate the derivative of L with respect to πk and set it to 0:

∂L
∂πk

=
N∑

n=1

znk

πk
+λ = 0

We multiply both sides by πk and sum over k making use of the constraint
Eq (9.9), yielding λ = −N. Substituting it back into the expression, we can
obtain:

πk = 1
N

N∑
n=1

znk

Just as required.

Problem 9.8 Solution

Since γ(znk) is fixed, the only dependency of Eq (9.40) on µk occurs in the
Gaussian, yielding:

∂Ez[ln p]
∂µk

= ∂

∂µk

{ N∑
n=1

γ(znk) lnN (xn|µk,Σk)
}

=
N∑

n=1
γ(znk) · ∂ lnN (xn|µk,Σk)

∂µk

=
N∑

n=1
γ(znk) ·

[
−Σ−1

k (xn −µk)
]

Setting the derivative equal to 0, we obtain exactly Eq (9.16), and conse-
quently Eq (9.17) just as required. Note that there is a typo in Eq (9.16), Σk
shoule be Σ−1

k .

Problem 9.9 Solution

We first calculate the derivative of Eq (9.40) with respect to Σk:

∂Ez

∂Σk
= ∂

∂Σk

{ N∑
n=1

γ(znk) lnN (xn|µk,Σk)
}

=
N∑

n=1
γ(znk)

∂ lnN (xn|µk,Σk)
∂Σk

=
N∑

n=1
γ(znk) ·

[
− 1

2
Σ−1

k + 1
2
Σ−1

k SnkΣ
−1
k

]
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As in Prob 9.6, we have defined:

Snk = (xn −µk)(xn −µk)T

Setting the derivative equal to 0 and rearranging it, we obtain:

Σk =
∑N

n=1γ(znk) Snk∑N
n=1γ(znk)

=
∑N

n=1γ(znk) Snk

Nk

Where Nk is given by Eq (9.18). So now we have obtained Eq (9.19) just
as required. Next to maximize Eq (9.40) with respect to πk, we still need to
introduce Lagrange multiplier to enforce the summation of pik over k equal
to 1, as in Prob 9.7:

L = Ez +λ(
K∑

k=1
πk −1)

We calculate the derivative of L with respect to πk and set it to 0:

∂L
∂πk

=
N∑

n=1

γ(znk)
πk

+λ = 0

We multiply both sides by πk and sum over k making use of the constraint
Eq (9.9), yielding λ = −N (you can see Eq (9.20)- Eq (9.22) for more details).
Substituting it back into the expression, we can obtain:

πk = 1
N

N∑
n=1

γ(znk) = Nk

N

Just as Eq (9.22).

Problem 9.10 Solution

According to the property of PDF, we know that:

p(xb|xa) = p(xa,xb)
p(xa)

= p(x)
p(xa)

=
K∑

k=1

πk

p(xa)
· p(x|k)

Note that here p(xa) can be viewed as a normalization constant used to
guarantee that the integration of p(xb|xa) equal to 1. Moreover, similarly, we
can also obtain:

p(xa|xb) =
K∑

k=1

πk

p(xb)
· p(x|k)

Problem 9.11 Solution

According to the problem description, the expectation, i.e., Eq(9.40), can
now be written as:

Ez[ln p] =
N∑

n=1

K∑
k=1

γ(znk)
{

lnπk + lnN (xn|µk,ϵI)
}
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In the M-step, we are required to maximize the expression above with
respect to µk and πk. In Prob.9.8, we have already proved that µk should be
given by Eq (9.17):

µk = 1
Nk

N∑
n=1

γ(znk)xn (∗)

Where Nk is given by Eq (9.18). Moreover, in this case, by analogy to Eq
(9.16), γ(znk) is slightly different:

γ(znk) = πkN (xn|µk,ϵI)∑
j π jN (xn|µ j,ϵI)

When ϵ→ 0, we can obtain:∑
j
π jN (xn|µ j,ϵI)≈πmN (xn|µm,ϵI), where m = argmin j||xn −µ j||2

To be more clear, the summation is dominated by the max of π jN (xn|µ j,ϵI),
and this term is further determined by the exponent, i.e., −||xn−µ j||2. There-
fore, γ(znk) is given by exactly Eq (9.2), i.e., we have γ(znk) = rnk. Combining
with (∗), we can obtain exactly Eq (9.4). Next, according to Prob.9.9, πk is
given by Eq(9.22):

πk = Nk

N
=

∑N
n=γ(znk)

N
= rnk

N
In other words, πk equals the fraction of the data points assigned to the

k-th cluster.

Problem 9.12 Solution

First we calculate the mean µk:

µk =
∫

xp(x)dx

=
∫

x
K∑

k=1
πk p(x|k)dx

=
K∑

k=1
πk

∫
x p(x|k)dx

=
K∑

k=1
πk µk

Then we deal with the covariance matrix. For an arbitrary random vari-
able x, according to Eq (2.63) we have:

cov[x] = E[(x−E[x])(x−E[x])T ]

= E[xxT ]−E[x]E[x]T
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Since E[x] is already obtained, we only need to solve E[xxT ]. First we only
focus on the k-th component and rearrange the expression above, yielding:

Ek[xxT ] = covk[x]+Ek[x]Ek[x]T = Σk +µkµ
T
k

We further use Eq (2.62), yielding:

E[xxT ] =
∫

xxT
K∑

k=1
πk p(x|k) dx

=
K∑

k=1
πk

∫
xxT p(x|k) dx

=
K∑

k=1
πk Ek[xxT ]

=
K∑

k=1
πk (µkµ

T
k +Σk)

Therefore, we obtain Eq (9.50) just as required.

Problem 9.13 Solution

First, let’s make this problem more clear. In a mixture of Bernoulli dis-
tribution, whose complete-data log likelihood is given by Eq (9.54) and whose
model parameters are πk and µk. If we want to obtain those parameters, we
can adopt EM algorithm. In the E-step, we calculate γ(znk) as shown in Eq
(9.56). In the M-step, we update πk and µk according to Eq (9.59) and Eq
(9.60), where Nk and x̄k are defined in Eq (9.57) and Eq (9.58). Now let’s
back to this problem. The expectation of x is given by Eq (9.49):

E[x] =
K∑

k=1
π

(opt)
k µ

(opt)
k

Here π
(opt)
k and µ

(opt)
k are the parameters obtained when EM is converged.
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Using Eq (9.58) and Eq(9.59), we can obtain:

E[x] =
K∑

k=1
π

(opt)
k µ

(opt)
k

=
K∑

k=1
π

(opt)
k

1

N(opt)
K

N∑
n=1

γ(znk)(opt)xn

=
K∑

k=1

N(opt)
k

N
1

N(opt)
K

N∑
n=1

γ(znk)(opt)xn

=
K∑

k=1

1
N

N∑
n=1

γ(znk)(opt)xn

=
N∑

n=1

K∑
k=1

γ(znk)(opt)xn

N

=
N∑

n=1

xn

N

K∑
k=1

γ(znk)(opt)

= 1
N

N∑
n=1

xn = x̄

If we set all µk equal to µ̂ in initialization, in the first E-step, we can
obtain:

γ(znk)(1) =
π(0)

k p(xn|µk = µ̂)∑K
j=1π

(0)
j p(xn|µ j = µ̂)

=
π(0)

k∑K
j=1π

(0)
j

= π(0)
k

Note that here µ̂ and π(0)
k are the initial values. In the subsequent M-step,

according to Eq (9.57)-(9.60), we can obtain:

µ(1)
k = 1

N(1)
k

N∑
n=1

γ(znk)(1)xn =
∑N

n=1γ(znk)(1)xn∑N
n=1γ(znk)(1)

=
∑N

n=1π
(0)
k xn∑N

n=1π
(0)
k

=
∑N

n=1 xn

N

And

π(1)
k =

N(1)
k

N
=

∑N
n=1γ(znk)(1)

N
=

∑N
n=1π

(0)
k

N
= π(0)

k

In other words, in this case, after the first EM iteration, we find that the
new µ(1)

k are all identical, which are all given by x̄. Moreover, the new π(1)
k are

identical to their corresponding initial value π(0)
k . Therefore, in the second

EM iteration, we can similarly conclude that:

µ(2)
k = µ(1)

k = x̄ , π(2)
k = π(1)

k = π(0)
k

In other words, the EM algorithm actually stops after the first iteration.

Problem 9.14 Solution
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Let’s follow the hint.

p(x,z|µ,π) = p(x|z,µ) · p(z|π)

=
K∏

k=1
p(x|µk)zk ·

K∏
k=1

π
zk
k

=
K∏

k=1

[
πk p(x|µk)

]zk

Then we marginalize over z, yielding:

p(x|µ) = ∑
z

p(x,z|µ,π) = ∑
z

K∏
k=1

[
πk p(x|µk)

]zk

The summation over z is made up of K terms and the k-th term corre-
sponds to zk = 1 and other z j, where j ̸= k, equals 0. Therefore, the k-th term
will simply reduce to πk p(x|µk). Hence, performing the summation over z
will finally give Eq (9.47) just as required. To be more clear, we summarize
the aforementioned statement:

p(x|µ) = ∑
z

K∏
k=1

[
πk p(x|µk)

]zk

=
K∏

k=1

[
πk p(x|µk)

]zk
∣∣∣
z1=1

+ ... +
K∏

k=1

[
πk p(x|µk)

]zk
∣∣∣
zK =1

= π1 p(x|µ1) + ...+ πK p(x|µK )

=
K∑

k=1
πk p(x|µk)

Problem 9.15 Solution

Noticing that πk doesn’t depend on any µki, we can omit the first term in
the open brace when calculating the derivative of Eq (9.55) with respect to
µki:

∂Ez[ln p]
∂µki

= ∂

∂µki

N∑
n=1

K∑
k=1

{
γ(znk)

D∑
i=1

[
xni lnµki + (1− xni) ln(1−µki)

]}
= ∂

∂µki

N∑
n=1

K∑
k=1

D∑
i=1

{
γ(znk)

[
xni lnµki + (1− xni) ln(1−µki)

]}
=

N∑
n=1

∂

∂µki

{
γ(znk)

[
xni lnµki + (1− xni) ln(1−µki)

]}
=

N∑
n=1

γ(znk)
(

xni

µki
− 1− xni

1−µki

)

=
N∑

n=1
γ(znk)

xni −µki

µki(1−µki)
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Setting the derivative equal to 0, we can obtain:

µki =
∑N

n=1γ(znk)xni∑N
n=1γ(znk)

= 1
Nk

N∑
n=1

γ(znk)xni

Where Nk is defined as Eq (9.57). If we group all the µki as a column
vector, i.e., µk = [µk1, µk2, ..., µkD]T , we will obtain Eq (9.59) just as required.

Problem 9.16 Solution

We follow the hint beginning by introducing a Lagrange multiplier:

L = Ez[ln p(X,Z|µ,π)] + λ(
K∑

k=1
πk −1)

We calculate the derivative of L with respect to πk and then set it equal
to 0:

∂L
∂πk

=
N∑

n=1

γ(znk)
πk

+λ = 0 (∗)

Here Ez[ln p] is given by Eq (9.55). We first multiply both sides of the
expression by πk and then adopt summation with respect to k, which gives:

N∑
n=1

K∑
k=1

γ(znk)+
K∑

k=1
λπk = 0

Noticing that
∑K

k=1πk equals 1, we can obtain:

λ = −
N∑

n=1

K∑
k=1

γ(znk)

Finally, substituting it back into (∗) and rearranging it, we can obtain:

πk = −
∑K

k=1γ(znk)

λ
=

∑K
k=1γ(znk)∑N

n=1
∑K

k=1γ(znk)
= Nk

N

Where Nk is defined by Eq (9.57) and N is the summation of Nk over k,
and also equal to the number of data points.

Problem 9.17 Solution

The incomplete-data log likelihood is given by Eq (9.51), and p(xn|µk) lies
in the interval [0, 1], which can be easily verified by its definition, i.e., Eq
(9.44). Therefore, we can obtain:

ln p(X|µ,π) =
N∑

n=1
ln

{ K∑
k=1

πk p(xn|µk)
}≤ N∑

n=1
ln

{ K∑
k=1

πk ×1
}≤ N∑

n=1
ln1 = 0
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Where we have used the fact that the logarithm is monotonic increasing,
and that the summation of πk over k equals 1. Moreover, if we want to achieve
the equality, we need p(xn|µk) equal to 1 for all n = 1,2, ..., N. However, this
is hardly possible.

To illustrate this, suppose that p(xn|µk) equals 1 for all data points. With-
out loss of generality, consider two data points x1 = [x11, x12, ..., x1D]T and
x2 = [x21, x22, ..., x2D]T , whose i-th entries are different. We further assume
x1i = 1 and x2i = 0 since xi is a binary variable. According to Eq (9.44), if we
want p(x1|µk) = 1, we must have µi = 1 (otherwise it muse be less than 1).
However, this will lead p(x2|µk) equal to 0 since there is a term 1−µi = 0 in
the product shown in Eq (9.44).

Therefore, when the data set is pathological, we will achieve this singu-
larity point by adopting EM. Note that in the main text, the author states
that the condition should be pathological initialization. This is also true. For
instance, in the extreme case, when the data set is not pathological, if we
initialize one πk equal to 1 and others all 0, and some of µi to 1 and others 0,
we may also achieve the singularity.

Problem 9.18 Solution

In Prob.9.4, we have proved that if we want to maximize the posterior
by EM, the only modification is that in the M-step, we need to maximize
Q

′
(θ,θold) = Q(θ,θold)+ ln p(θ). Here Q(θ,θold) has already been given by

Ez[ln p], i.e., Eq (9.55). Therefore, we derive for ln p(θ). Note that ln p(θ) is
made up of two parts:(i) the prior for µk and (ii) the prior for π, we begin by
dealing with the first part. Here we assume the Beta prior for µki, where k is
fixed, is the same, i.e.,:

p(µki|ak,bk) = Γ(ak +bk)
Γ(ak)Γ(bk)

µ
ak−1
ki (1−µki)bk−1 , i = 1, 2, ..., D

Therefore, the contribution of this Beta prior to ln p(θ) should be given by:

K∑
k=1

D∑
i=1

(ai −1)lnµki + (bi −1)ln(1−µki)

One thing worthy mentioned is that since we will maximize Q
′
(θ,θold)

with respect to π,µk, we can omit the terms which do not depend on π,µk,
such as Γ(ak +bk)

/
Γ(ak)Γ(bk). Then we deal with the second part. According

to Eq (2.38), we can obtain:

p(π|α) = Γ(α0)
Γ(α1)...Γ(αK )

K∏
k=1

π
αk−1
k

Therefore, the contribution of the Dirichlet prior to ln p(θ) should be given
by:

K∑
k=1

(αk −1)lnπk
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Therefore, now Q
′
(θ,θold) can be written as:

Q
′
(θ,θold)= Ez[ln p]+

K∑
k=1

D∑
i=1

[
(ai−1)lnµki+(bi−1)ln(1−µki)

]
+

K∑
k=1

(αk−1)lnπk

Similarly, we calculate the derivative of Q
′
(θ,θold) with respect to µki.

This can be simplified by reusing the deduction in Prob.9.15:

∂Q
′

∂µki
= ∂Ez[ln p]

∂µki
+ ai −1

µki
− bi −1

1−µki

=
N∑

n=1
γ(znk)(

xni

µki
− 1− xni

1−µki
)+ ai −1

µki
− bi −1

1−µki

=
∑N

n=1 xni ·γ(znk)+ai −1
µki

−
∑N

n=1(1− xni)γ(znk)+bi −1
1−µki

= Nk x̄ki +ai −1
µki

− Nk −Nk x̄ki +bi −1
1−µki

Note that here x̄ki is defined as the i-th entry of x̄k defined in Eq (9.58).
To be more clear, we have used Eq (9.57) and Eq (9.58) in the last step:

N∑
n=1

xni ·γ(znk) = Nk ·
[ 1

Nk

N∑
n=1

xni ·γ(znk)
]
= Nk · x̄ki

Setting the derivative equal to 0 and rearranging it, we can obtain:

µki =
Nk x̄ki +ai −1

Nk +ai −1+bi −1

Next we maximize Q
′
(θ,θold) with respect to π. By analogy to Prob.9.16,

we introduce Lagrange multiplier:

L ∝ Ez +
K∑

k=1
(αk −1)lnπk +λ(

K∑
k=1

πk −1)

Note that the second term on the right hand side of Q
′
in its definition has

been omitted, since that term can be viewed as a constant with regard to π.
We then calculate the derivative of L with respect to πk by taking advantage
of Prob.9.16:

∂L
∂πk

=
N∑

n=1

γ(znk)
πk

+ αk −1
πk

+λ = 0

Similarly, We first multiply both sides of the expression by πk and then adopt
summation with respect to k, which gives:

K∑
k=1

N∑
n=1

γ(znk)+
K∑

k=1
(αk −1)+

K∑
k=1

λπk = 0



184

Noticing that
∑K

k=1πk equals 1, we can obtain:

λ = −
K∑

k=1
Nk −

K∑
k=1

(αk −1) = −N −α0 +K

Here we have used Eq (2.39). Substituting it back into the derivative, we
can obtain:

πk =
∑N

n=1γ(znk)+αk −1
−λ = Nk +αk −1

N +α0 −K

It is not difficult to show that if N is large, the update formula for π and
µ in this case (MAP), will reduce to the results given in the main text (MLE).

Problem 9.19 Solution

We first introduce a latent variable z = [z1, z2, ..., zK ]T , only one of which
equals 1 and others all 0. The conditional distribution of x is given by:

p(x|z,µ) =
K∏

k=1
p(x|µk)zk

The distribution of the latent variable is given by:

p(z|π) =
K∏

k=1
π

zk
k

If we follow the same procedure as in Prob.9.14, we can show that Eq
(9.84) holds. In other words, the introduction of the latent variable is valid.
Therefore, according to Bayes’ Theorem, we can obtain:

p(X,Z|µ,π) =
N∏

n=1
p(zn|π)p(xn|zn,µ) =

N∏
n=1

K∏
k=1

[
πk p(x|µ)

]znk

We further use Eq (9.85), which gives:

ln p(X,Z|µ,π) =
N∑

n=1

K∑
k=1

znk ln
[
πk

D∏
d=1

M∏
j=1

µ
xni j

ki j

]
=

N∑
n=1

K∑
k=1

znk

[
lnπk +

D∑
d=1

M∑
j=1

xni j lnµki j

]

Similarly, in the E-step, the responsibilities are evaluated using Bayes’
theorem, which gives:

γ(znk) = E[znk] = πk p(xn|µk)∑K
j=1π j p(xn|µ j)
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Next, in the M-step, we are required to maximize Ez[ln p(X,Z|µ,π)] with
respect to π and µk, where Ez[ln p(X,Z|µ,π)] is given by:

Ez[ln p(X,Z|µ,π)] =
N∑

n=1

K∑
k=1

γ(znk)
[

lnπk +
D∑

i=1

M∑
j=1

xni j lnµki j

]
Notice that there exists two constraints: (i) the summation of πk over k

equals 1, and (ii) the summation of µki j over j equals 1 for any k and i, we
need to introduce Lagrange multiplier:

L = Ez[ln p]+λ(
K∑

k=1
πk −1)+

K∑
k=1

D∑
i=1

ηki(
M∑
j=1

µki j −1)

First we maximize L with respect to πk. This is actually identical to the
case in the main text. To be more clear, we calculate the derivative of L with
respect to πk:

∂L
∂πk

=
N∑

n=1

γ(znk)
πk

+λ

As in Prob.9.16, we can obtain:

πk = Nk

N

Where Nk is defined as:

Nk =
N∑

n=1
γ(znk)

N is the summation of Nk over k, and also equals the number of data
points. Then we calculate the derivative of L with respect to µki j:

∂L
∂µki j

=
N∑

n=1

γ(znk)xni j

µki j
+ηki

We set it to 0 and multiply both sides by µki j, which gives:

N∑
n=1

γ(znk) xni j +ηkiµki j = 0

By analogy to deriving πk, an intuitive idea is to perform summation for
the above expression over j and hence we can use the constraint

∑
j µki j = 1.

ηki = −
M∑
j=1

N∑
n=1

γ(znk) xni j = −
N∑

n=1
γ(znk)

[ M∑
j=1

xni j

]
= −

N∑
n=1

γ(znk) = −Nk



186

Where we have used the fact that
∑

j xni j = 1. Substituting back into the
derivative, we can obtain:

µki j = −
∑N

n=1γ(znk) xni j

ηki
= 1

Nk

N∑
n=1

γ(znk) xni j

Problem 9.20 Solution

We first calculate the derivative of Eq (9.62) with respect to α and set it
to 0:

∂E[ln p]
∂α

= M
2

1
2π

2π
α

− E[wTw]
2

= 0

We rearrange the equation above, which gives:

α = M
E[wTw]

(∗)

Therefore, we now need to calculate the expectation E[wTw]. Notice that
the posterior has already been given by Eq (3.49):

p(w|t) = N (mN ,SN )

To calculate E[wTw], here we write down an property for a Gaussian ran-
dom variable: if x∼N (m,Σ), we have:

E[xTAx] = Tr[AΣ]+mTAm

This property has been shown in Eq(378) in ’the Matrix Cookbook’. Uti-
lizing this property, we can obtain:

E[wTw] = Tr[SN ]+mT
NmN

Substituting it back into (∗), we obtain what is required.

Problem 9.21 Solution

We calculate the derivative of Eq (9.62) with respect to β and set it equal
to 0:

∂ ln p
∂β

= N
2

1
2π

2π
β

− 1
2

N∑
n=1

E[(tn −wTϕn)2] = 0

Rearranging it, we obtain:

β = N∑N
n=1E[(tn −wTϕn)2]

Therefore, we are required to calculate the expectation. To be more clear,
this expectation is with respect to the posterior defined by Eq (3.49):

p(w|t) = N (mN ,SN )
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We expand the expectation:

E[(tn −wTϕn)2] = E[t2
n −2tn ·wTϕn +wTϕnϕ

T
n w]

= E[t2
n]−E[2tn ·wTϕn]+E[wT (ϕnϕ

T
n )w]

= t2
n −2tn ·E[ϕT

n w]+Tr[ϕnϕ
T
n SN ]+mT

Nϕnϕ
T
n mN

= t2
n −2tnϕ

T
n ·E[w]+Tr[ϕnϕ

T
n SN ]+mT

Nϕnϕ
T
n mN

= t2
n −2tnϕ

T
n mN +Tr[ϕnϕ

T
n SN ]+mT

Nϕnϕ
T
n mN

= (tn −mT
NϕN )2 +Tr[ϕnϕ

T
n SN ]

Substituting it back into the derivative, we can obtain:

1
β

= 1
N

N∑
n=1

{
(tn −mT

NϕN )2 +Tr[ϕnϕ
T
n SN ]

}
= 1

N

{
||t−ΦmN ||2 +Tr[ΦTΦSN ]

}
Note that in the last step, we have performed vectorization. Here the j-th

row of Φ is given by ϕ j, identical to the definition given in Chapter 3.

Problem 9.22 Solution

First let’s expand the complete-data log likelihood using Eq (7.79), Eq
(7.80) and Eq (7.76).

ln p(t|X,w,β)p(w|α) = ln p(t|X,w,β)+ ln p(w|α)

=
N∑

n=1
ln p(tn|xn,w,β−1)+

M∑
i=1

lnN (wi|0,α−1
i )

=
N∑

n=1
lnN (tn|wTϕn,β−1)+

M∑
i=1

lnN (wi|0,α−1
i )

= N
2

ln
β

2π
− β

2

N∑
n=1

(tn −wTϕn)2 + 1
2

M∑
i=1

ln
αi

2π
−

M∑
i=1

αi

2
w2

i

Therefore, the expectation of the complete-data log likelihood with respect
to the posterior of w equals:

Ew[ln p] = N
2

ln
β

2π
− β

2

N∑
n=1

Ew[(tn −wTϕn)2]+ 1
2

M∑
i=1

ln
αi

2π
−

M∑
i=1

αi

2
Ew[w2

i ]

We calculate the derivative of Ew[ln p] with respect to αi and set it to 0:

∂Ew[ln p]
∂αi

= 1
2

1
2π

2π
αi

− 1
2
Ew[w2

i ] = 0

Rearranging it, we can obtain:

αi = 1
Ew[w2

i ]
= 1

Ew[wwT ] (i,i)
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Here the subscript (i, i) represents the entry on the i-th row and i-th
column of the matrix Ew[wwT ]. So now, we are required to calculate the
expectation. To be more clear, this expectation is with respect to the posterior
defined by Eq (7.81):

p(w|t,X,α,β) = N (m,Σ)

Here we use Eq (377) described in ’the Matrix Cookbook’. We restate it
here: if w∼N (m,Σ), we have:

E[wwT ] = Σ+mmT

According to this equation, we can obtain:

αi = 1
Ew[wwT ] (i,i)

= 1
(Σ+mmT ) (i,i)

= 1
Σii +m2

i

Now We calculate the derivative of Ew[ln p] with respect to β and set it to
0:

∂Ew[ln p]
∂β

= N
2

1
2π

2π
β

− 1
2

N∑
n=1

Ew[(tn −wTϕn)2] = 0

Rearranging it, we obtain:

β(new) = N∑N
n=1Ew[(tn −wTϕn)2]

Therefore, we are required to calculate the expectation. By analogy to the
deduction in Prob.9.21, we can obtain:

1
β(new) = 1

N

N∑
n=1

{
(tn −mTϕN )2 +Tr[ϕnϕ

T
nΣ]

}
= 1

N

{
||t−Φm||2 +Tr[ΦTΦΣ]

}
To make it consistent with Eq (9.68), let’s first prove a statement:

(β−1A+ΦTΦ)Σ = β−1I

This can be easily shown by substituting Σ, i.e., Eq(7.83), back into the
expression:

(β−1A+ΦTΦ)Σ = (β−1A+ΦTΦ) (A+βΦTΦ)−1 = β−1I

Now we start from this statement and rearrange it, which gives:

ΦTΦΣ = β−1I−β−1AΣ = β−1(I−AΣ)
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Substituting back into the expression for β(new):

1
β(new) = 1

N

{
||t−Φm||2 +Tr[ΦTΦΣ]

}
= 1

N

{
||t−Φm||2 +Tr[β−1(I−AΣ)]

}
= 1

N

{
||t−Φm||2 +β−1Tr[I−AΣ]

}
= 1

N

{
||t−Φm||2 +β−1 ∑

i
(1−αiΣii)

}
= ||t−Φm||2 +β−1 ∑

i γi

N

Here we have defined γi = 1−αiΣii as in Eq (7.89). Note that there is a
typo in Eq (9.68), mN should be m.

Problem 9.23 Solution

Some clarifications must be made here, Eq (7.87)-(7.88) only gives the
same stationary points, i.e., the same α⋆ and β⋆, as those given by Eq (9.67)-
(9.68). However, the hyper-parameters estimated at some specific iteration
may not be the same by those two different methods.

When convergence is reached, Eq (7.87) can be written as:

α⋆ = 1−α⋆Σii

m2
i

Rearranging it, we can obtain:

α⋆ = 1
m2

i +Σii

This is identical to Eq (9.67). When convergence is reached, Eq (9.68) can
be written as:

(β⋆)−1 = ||t−Φm||2 + (β⋆)−1 ∑
i γi

N
Rearranging it, we can obtain:

(β⋆)−1 = ||t−Φm||2
N −∑

i γi

This is identical to Eq (7.88).

Problem 9.24 Solution
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We substitute Eq (9.71) and Eq (9.72) into Eq (9.70):

L(q,θ)+KL(q||p) = ∑
Z

q(Z)
{

ln
p(X,Z|θ)

q(Z)
− ln

p(Z|X,θ)
q(Z)

}
= ∑

Z
q(Z)

{
ln

p(X,Z|θ)
p(Z|X,θ)

}
= ∑

Z
q(Z) ln p(X|θ)

= ln p(X|θ)

Note that in the last step, we have used the fact that ln p(X|θ) doesn’t
depend on Z, and that the summation of q(Z) over Z equal to 1 because q(Z)
is a PDF.

Problem 9.25 Solution

We calculate the derivative of Eq (9.71) with respect to θ, given q(Z) =
p(Z|X,θ(old)):

∂L(q,θ)
∂θ

= ∂

∂θ

{∑
Z

p(Z|X,θ(old)) ln
p(X,Z|θ)

p(Z|X,θ(old))

}
= ∂

∂θ

{∑
Z

p(Z|X,θ(old)) ln p(X,Z|θ)−∑
Z

p(Z|X,θ(old)) ln p(Z|X,θ(old))
}

= ∂

∂θ

{∑
Z

p(Z|X,θ(old)) ln p(X,Z|θ)
}

= ∑
Z

p(Z|X,θ(old))
∂ ln p(X,Z|θ)

∂θ

= ∑
Z

p(Z|X,θ(old))
1

p(X,Z|θ)
∂p(X,Z|θ)

∂θ

= ∑
Z

p(Z|X,θ(old))
1

p(X,Z|θ)
∂p(X|θ) · p(Z|X,θ)

∂θ

= ∑
Z

p(Z|X,θ(old))
p(X,Z|θ)

[
p(X|θ)

∂p(Z|X,θ)
∂θ

+ p(Z|X,θ)
∂p(X|θ)

∂θ

]
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We evaluate this derivative at θ = θold:

∂L(q,θ)
∂θ

∣∣∣
θold =

{ ∑
Z

p(Z|X,θ(old))
p(X,Z|θ)

[
p(X|θ)

∂p(Z|X,θ)
∂θ

+ p(Z|X,θ)
∂p(X|θ)

∂θ

] }∣∣∣
θold

= ∑
Z

p(Z|X,θ(old))
p(X,Z|θ(old))

[
p(X|θ(old))

∂p(Z|X,θ)
∂θ

∣∣∣
θ(old) + p(Z|X,θ(old))

∂p(X|θ)
∂θ

∣∣∣
θ(old)

]
= ∑

Z

1
p(X|θ(old))

[
p(X|θ(old))

∂p(Z|X,θ)
∂θ

∣∣∣
θ(old) + p(Z|X,θ(old))

∂p(X|θ)
∂θ

∣∣∣
θ(old)

]
= ∑

Z

∂p(Z|X,θ)
∂θ

∣∣∣
θ(old) +

∑
Z

p(Z|X,θ(old))
p(X|θ(old))

· ∂p(X|θ)
∂θ

∣∣∣
θ(old)

= ∑
Z

∂p(Z|X,θ)
∂θ

∣∣∣
θ(old) +

1
p(X|θ(old))

· ∂p(X|θ)
∂θ

∣∣∣
θ(old)

= ∑
Z

∂p(Z|X,θ)
∂θ

∣∣∣
θ(old) +

∂ ln p(X|θ)
∂θ

∣∣∣
θ(old)

=
{ ∂

∂θ

∑
Z

p(Z|X,θ)
}∣∣∣

θ(old) +
∂ ln p(X|θ)

∂θ

∣∣∣
θ(old)

= ∂1
∂θ

∣∣∣
θ(old) +

∂ ln p(X|θ)
∂θ

∣∣∣
θ(old)

= ∂ ln p(X|θ)
∂θ

∣∣∣
θ(old)

This problem can be much easier to prove if we view it from the perspec-
tive of KL divergence. Note that when q(Z) = p(Z|X,θ(old)), the KL divergence
vanishes, and that in general KL divergence is less or equal to zero. There-
fore, we must have:

∂KL(q||p)
∂θ

∣∣∣
θ(old) = 0

Otherwise, there exists a point θ in the neighborhood near θ(old) which
leads the KL divergence less than 0. Then using Eq (9.70), it is trivial to
prove.

Problem 9.26 Solution

From Eq (9.18), we have:

Nold
k = ∑

n
γold(znk)

If now we just re-evaluate the responsibilities for one data point xm, we can
obtain:

Nnew
k = ∑

n ̸=m
γold(znk)+γnew(zmk)

= ∑
n
γold(znk)+γnew(zmk)−γold(zmk)

= Nold
k +γnew(zmk)−γold(zmk)
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Similarly, according to Eq (9.17), we can obtain:

µnew
k = 1

Nnew
k

∑
n ̸=m

γold(znk)xn + γnew(zmk)xm

Nnew
k

= 1
Nnew

k

∑
n
γold(znk)xn + γnew(zmk)xm

Nnew
k

− γold(zmk)xm

Nnew
k

=
Nold

k

Nnew
k

1
Nold

k

∑
n
γold(znk)xn + γnew(zmk)xm

Nnew
k

− γold(zmk)xm

Nnew
k

=
Nold

k

Nnew
k

µold
k +

[
γnew(zmk)−γold(zmk)

] xm

Nnew
k

= µold
k −

Nnew
k −Nold

k

Nnew
k

µold
k +

[
γnew(zmk)−γold(zmk)

] xm

Nnew
k

= µold
k − γnew(zmk)−γold(zmk)

Nnew
k

µold
k +

[
γnew(zmk)−γold(zmk)

] xm

Nnew
k

= µold
k + γnew(zmk)−γold(zmk)

Nnew
k

·
(
xm −µold

k

)
Just as required.

Problem 9.27 Solution

By analogy to the previous problem, we use Eq (9.24)-Eq(9.27), beginning
by first deriving an update formula for mixing coefficients πk:

πnew
k =

Nnew
k

N
= 1

N

{
Nold

k +γnew(zmk)−γold(zmk)
}

= πold
k + γnew(zmk)−γold(zmk)

N

Here we have used the conclusion (the update formula for Nnew
k ) in the

previous problem. Next we deal with the covariance matrix Σ. By analogy to
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the previous problem, we can obtain:

Σnew
k = 1

Nnew
k

∑
n ̸=m

γold(znk) (xn −µnew
k ) (xn −µnew

k )T

+ 1
Nnew

k
γnew(zmk) (xm −µnew

k ) (xm −µnew
k )T

≈ 1
Nnew

k

∑
n ̸=m

γold(znk) (xn −µold
k ) (xn −µold

k )T

+ 1
Nnew

k
γnew(zmk) (xm −µnew

k ) (xm −µnew
k )T

= 1
Nnew

k

∑
n
γold(znk) (xn −µold

k ) (xn −µold
k )T

+ 1
Nnew

k
γnew(zmk) (xm −µnew

k ) (xm −µnew
k )T

− 1
Nnew

k
γold(zmk) (xm −µold

k ) (xm −µold
k )T

= 1
Nnew

k
Nold

k Σold
k + 1

Nnew
k

γnew(zmk) (xm −µnew
k ) (xm −µnew

k )T

− 1
Nnew

k
γold(zmk) (xm −µold

k ) (xm −µold
k )T

=
{
1+

Nold
k −Nnew

k

Nnew
k

}
Σold

k

+ 1
Nnew

k
γnew(zmk) (xm −µnew

k ) (xm −µnew
k )T

− 1
Nnew

k
γold(zmk) (xm −µold

k ) (xm −µold
k )T

=
{
1+ γold(zmk)−γnew(zmk)

Nnew
k

}
Σold

k

+γnew(zmk)
Nnew

k
(xm −µnew

k ) (xm −µnew
k )T

−γold(zmk)
Nnew

k
(xm −µold

k ) (xm −µold
k )T

= Σold
k

+γnew(zmk)
Nnew

k

{
(xm −µnew

k ) (xm −µnew
k )T −Σold

}
−γold(zmk)

Nnew
k

{
(xm −µold

k ) (xm −µold
k )T −Σold

k

}
One important thing worthy mentioned is that in the second step, there

is an approximate equal sign. Note that in the previous problem, we have
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shown that if we only recompute the data point xm, all the center µk will
also change from µold

k to µnew
k , and the update formula is given by Eq (9.78).

However, for the convenience of computing, we have made an approximation
here. Other approximation methods can also be applied here. For instance,
you can replace µnew

k with µold
k whenever it occurs.

The complete solution should be given by substituting Eq (9.78) into the
right side of the first equal sign and then rearranging it, in order to construct
a relation between Σnew

k and Σold
k . However, this is too complicated.

0.10 Variational Inference

Problem 10.1 Solution

This problem is very similar to Prob.9.24. We substitute Eq (10.3) and Eq
(10.4) into Eq (10.2):

L(q)+KL(q||p) =
∫

Z
q(Z)

{
ln

p(X,Z)
q(Z)

− ln
p(Z|X)
q(Z)

}
dZ

=
∫

Z
q(Z)

{
ln

p(X,Z)
p(Z|X)

}
dZ

=
∫

Z
q(Z) ln p(X)dZ

= ln p(X)

Note that in the last step, we have used the fact that ln p(X) doesn’t de-
pend on Z, and that the integration of q(Z) over Z equal to 1 because q(Z) is
a PDF.

Problem 10.2 Solution

To be more clear, we are required to solve:{
m1 = µ1 −Λ−1

11Λ12 (m2 −µ2)
m2 = µ2 −Λ−1

22Λ21 (m1 −µ1)

To obtain the equation above, we need to substitute E[zi] = mi, where
i = 1, 2, into Eq (10.13) and Eq (10.14). Here the unknown parameters are
m1 and m2. It is trivial to notice that mi = µi is a solution for the equation
above.

Let’s solve this equation from another perspective. Firstly, if any (or both)
of Λ−1

11 and Λ−1
22 equals 0, we can obtain mi = µi directly from Eq (10.13)-

(10.14). When none of Λ−1
11 and Λ−1

22 equals 0, we substitute m1, i.e., the first
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