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Hence, we go back to deal with the Gaussian terms:

ﬁ N/ |SN|1/2
2T |S0|1/2

Gaussian terms = ( exp{—(bn —bo)B}
If we substitute the expressions above into p(t), we will obtain (3.118)
immediately.

0.4 Linear Models Classification

Problem 4.1 Solution

If the convex hull of {x,} and {yy} intersects, we know that there will be a
point z which can be written as z = ) ,, @, X, and also z = Y, ,yn. Hence we
can obtain:

wlz+wy = W' anxn) +wo
n

= (Z anﬁ'TXn) + (Z an)wo

= Y ap(®xn +wp) (%)

Where we have used Y ,, a, = 1. And if {x,} and {yn} are linearly separa-
ble, we have Wl xp +wo > 0 and WTyn +wqo <0, for Vxy, yn. Together with
a, = 0 and (%), we know that Wz +wg > 0. And if we calculate Wl z+ wy
from the perspective of {y,} following the same procedure, we can obtain
wlz+wy < 0. Hence contradictory occurs. In other words, they are not lin-
early separable if their convex hulls intersect.

We have already proved the first statement, i.e., "convex hulls intersect”
gives "not linearly separable”, and what the second part wants us to prove
is that "linearly separable" gives "convex hulls do not intersect". This can be
done simply by contrapositive.

The true converse of the first statement should be if their convex hulls do
not intersect, the data sets should be linearly separable. This is exactly what
Hyperplane Separation Theorem shows us.

Problem 4.2 Solution

Let’s make the dependency of E D(W) on wy explicitly:
— 1
Ep(W) = 5Tr{(xw +1wp” — T XW + 1wy’ -T)}

Then we calculate the derivative of E D(V~V) with respect to wy:

0Ep(W)

= 2Nwp+2XW-T)T1
6W0
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Where we have used the property:

0

X 1" [(AXB + C)(AXB + O)7] = 2AT(AXB + C)B”

We set the derivative equals to 0, which gives:
wo = —]iV(XW—T)Tl =t-Wr's

Where we have denoted:

t= %TTI, and %= %xﬁ
If we substitute the equations above into Ep(W), we can obtain:

Ep(W) = %Tr{(XW+T—XW—T)T(XW+T—XW—T)}
Where we further denote
T=1t', and X=1x"
Then we set the derivative of Ep (W) with regard to W to 0, which gives:
W =X'T
Where we have defined:
X=X-X, and T=T-T

Now consider the prediction for a new given x, we have:

WTX +WwWo
wix+t-Wix
t+Wix-%)

y(x)

If we know that a’t, + b = 0 holds for some a and b, we can obtain:

rp= Larpri o LS ame, -
at=—a = — a = -
N anl "

Therefore,
alyx) = al[t+ W/ (x-%)
= alt+a"wWlix-x%
= -b+alTTXN ' (x-%)
= -b
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Where we have used:
. _ 1
alTl = aT(r-1f =a’(T- NIITT)T

1
= alTT - NaTTTllT =-p1T +p17

= of
Problem 4.3 Solution

Suppose there are @ constraints in total. We can write athner ¢=0,q=
1,2,...,Q for all the target vector t, , n = 1,2...,N. Or alternatively, we can
group them together:

ATt,+b =0

Where A is a @ x @ matrix, and the gth column of A is aq, and mean-
while b is a @ x 1 column vector, and the gth element is bg. for every pair
of {aq, b4} we can follow the same procedure in the previous problem to show
that aqy(x) + b, = 0. In other words, the proofs will not affect each other.
Therefore, it is obvious :

AlTyx)+b=0

Problem 4.4 Solution

We use Lagrange multiplier to enforce the constraint w/w = 1. We now
need to maximize :

LA, w) =wl(mg—my) + Awlw-1)

We calculate the derivatives:

oL(A

And
OL(A,w)

=mg—mj + 2Aw
ow

We set the derivatives above equals to 0, which gives:

W = —ﬁ(mz—ml)u (m2—m1)

Problem 4.5 Solution

We expand (4.25) using (4.22), (4.23) and (4.24).

(mg—m1)?
P
81+S2

llw? (mg —my)|?
ZneCl(wan -m1)?+ Zn602 (WTXn —-mg)?
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The numerator can be further written as:
numerator = [w’ (mg —m;)][w’ (mg - ml)]T = w!Sgw
Where we have defined:
Sp = (mz —m;)(mg —my)”

And ti is the same for the denominator:

denominator = Y [wl(xn-mpP®+ Y [w!(xy-mg)]?
neCy neCq
= wTSWIW + WTSW2W
= WTSWW
Where we have defined:
Sw= Y (Xn-mp)xn-mp)’ + Y (Xy-mp)(xy—mp)"
neCy neCs

Just as required.
Problem 4.6 Solution

Let’s follow the hint, beginning by expanding (4.33).

N N N
4.33) = Z WTXan +wo Z Xpn — Z tnXn
n=1 n=1
= anxn W-—W man—( Z tpXn + Z tnXn)
n=1 n=1 I‘LECl nEC2

= anxn wow'm V(Y Vxat ¥ M)

n=1 n601 Nl n€02 N2
1
= Zxx w—Nw! mm — N(Z n—Z—xn)
e nECllvl nECZIVQ

T

= Z xnanW—Nmm w—N(mj; —mg)

n=1
N
= [Y %nXn?) - Nmm”lw - N(m; —mp)
n=1
If we let the derivative equal to 0, we will see that:
N
[Y XnXn?) - Nmm”lw = N(m; - my)
n=1

Therefore, now we need to prove:

N NN
Y (Xnxn?)-Nmm” = S, + ;v 2
n=1

Sp



94

Let’s expand the left side of the equation above:

N N
left = Y XpXn! — N(==m; + ~—=my)
n=1 N
% T N(N%n 12 3” 2 4 o V1V Ty
= XnXn — —|my||"+ —|mg||” + mipmy
= N2 N2 N2
T 1 2 2 2 14V2 T
= - —|my||* - == |mg|[* -2 mpm
n;xnxn ol = <l N mims
N NN NN NN
= Y Xaxn! + (N + ——2 —2Ny)|imy || + (Ng + ——2 — 2Np)|Img|[> - 22 m;m,
n=1 N
N NN
= Y Xnxn? + (V1 - 2N)|my [ + (N2 - 2Np)|mg|l? + ——2|jm; — mg||?
n=1
N NNy
= Y XnXn! +Nillmy||? - 2m; - (Nym;7) + No|img|® - 2ms - (Nomp”) + S
n=1
N N1Ny
= Y XnXn! +Nillmy|*-2m; Y xl +Nallmg|*-2my Y xf + ——-Sp
n=1 neC, neCs,
= Y XpXn +Nilmy|®*-2my ) x7
neCy neCy
N1Ny
+ Y XnXn® +Nollmg|®>-2mp Y 27 + S
neCs neCy N
NN
= Y GnXa! +Iml2-2m1xD)+ Y axn” +1imgl% - 2max,’) + ——2Sp
neCq neCy
N1Ny
= Y lxn-myl®+ Y lIxn—mg|l*+ S

n€C1
NN
Sw+ ;V 2

Just as required.
Problem 4.7 Solution

Sp

nECz

N

This problem is quite simple. We can solve it by definition. We know that

logistic sigmoid function has

Therefore, we can obtain:

o(a)+o(—a)

the form:
1

ola) = 1+exp(—a)

1 N 1
l+exp(—a) 1+exp(a)
2+exp(a)+exp(—a)
[1+exp(—a)lll+exp(a)l
2+exp(a)+exp(-a)

=1
2+exp(a)+exp(—a)
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Next we exchange the dependent and independent variables to obtain its

inverse. 1

a=————
1+exp(—y)
We first rearrange the equation above, which gives:

l1-a

exp(—y) =
Then we calculate the logarithm for both sides, which gives:
a
= In(——
y =In(3—)

Just as required.
Problem 4.8 Solution
According to (4.58) and (4.64), we can write:

nP(chl)p(Cl)
p(x|C2)p(Cs)
p(C1)
= Inpx|C1)-Inpx|C2)+In
p(C2)
1 T -1 1 T-1 p(C1)
= ——x-p)'E2(x- “(x—pg) = M x - 1
2(x £1) (x u1)+2(x H2) (x—p2) + np(Cz)
_ 1 _ 1 _ p(Cy)
= > Ly, — _ 2y Iyl Zp, Tt In 2
(p1— p2)x ! H1+ 5 He H2 + o Cy
= vaX4-um

Where in the last second step, we rearrange the term according to x, i.e.,
its quadratic, linear, constant term. We have also defined :

w =2y - p2)

And 1 1
wo = _Eﬂsz_lﬂl + Eﬂsz_lﬂz +In

p(Cy)
p(Co)

Finally, since p(C1|x) = o(a) as stated in (4.57), we have p(C1|x) = o(wlx+
wy) just as required.

Problem 4.9 Solution
We begin by writing down the likelihood function.

N K

pUn, tn}lm1, mo, .uig) = [p(pr|Cr) p(Cp)I'*
n=1k=1

N K
T1 T1t7: p(@nlCiIT

n=1k=1
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Hence we can obtain the expression for the logarithm likelihood:

N K N K
Inp =3 3 tn [Inmg + Inp(PnlCr) ox Y Y tar Inmy
n=lk=1 n=1k=1

Since there is a constraint on 73, so we need to add a Lagrange Multiplier
to the expression, which becomes:

N K K
L=) Y tulnm+AM) a,-1)
n=1k=1 k=1

We calculate the derivative of the expression above with regard to 7:
oL X ¢,

= —+A1
aﬂk ,;1 9’

And if we set the derivative equal to 0, we can obtain:

N N,
mp = —(Y tap)/ A= —=E (%)

n=1 A
And if we preform summation on both sides with regard to &, we can see

that:

K

N
1=~} Np)/A=-—
k=1 A

Which gives A = —N, and substitute it into (*), we can obtain n, = N3 /N.

Problem 4.10 Solution

This time, we focus on the term which dependent on gz and X in the
logarithm likelihood.

N K N K
Inp = Z Z Ink [lnﬂk + 1np(¢n|Ck)] X Z Z tnr Inp(Ppn|Cr)
n=1k=1 n=1k=1

Provided p(¢|Cp) = N (d|ug,X), we can further derive:

N K 1 1 = T
Inpoc 3 Y tor [~ sIn|Zl = =(Pn— pr)Z " (P — pz)" |
n=1k=1 2 2
We first calculate the derivative of the expression above with regard to

He:
Olnp

N
=Yt Z Hpn— )
o n; kX (Pn—p

We set the derivative equals to 0, which gives:

N N
Y takZ b = Y tarn T tpr = NpZ g
n=1 n=1
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Therefore, if we multiply both sides by /N, we will obtain (4.161). Now
let’s calculate the derivative of In p with regard to X, which gives:

dlnp N K L 14
= t _Z> L0 5
33 n:lk; wk (~5Z -2 Z;g ton( D — R)Z " (P — i)
N K N
Ink «-1 10 o r
= LY 5T 5o 2 2 taPa—BZT (0 — )
n=1k=1 2 202k:1n: n n n
N1 10 K
- =X - — Y N Tr(E 'Sk
;;1 2 ZOZ};
N_; 1 K ) )
= —EZ_ +§ ZNkZ_ Skz_

Where we have denoted

N
— Y tur(dn — pa)bn — )"

Now we set the derivative equals to 0, and rearrange the equation, which
gives:

- Z—sk

Problem 4.11 Solution

Based on definition, we can write down

M L
p@IC) = TT T g

m=1]=1
Note that here only one of the value among ¢,,1, 2, ... oL is 1, and the
others are all 0 because we have used a 1 —of — L binary coding scheme, and
also we have taken advantage of the assumption that the M components of
¢ are independent conditioned on the class C;. We substitute the expression

above into (4.63), which gives:

M L
= Y Y mi-Inpgm +Inp(Cy)
m=1]=1

Hence it is obvious that ay, is a linear function of the components of ¢.
Problem 4.12 Solution

Based on definition, i.e., (4.59), we know that logistic sigmoid has the

form:
1

ala) = 1+exp(—a)
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Now, we calculate its derivative with regard to a.

do(a) B exp(a) B exp(a) . 1
da [l+exp(-a)12 1l+exp(-a) 1+exp(-a)

=[1-0(a)]- a(a)

Just as required.

Problem 4.13 Solution

Let’s follow the hint.
N
VEw) = -V ) {tyIny,+(1—t,)In(1-y,)}
n=1
N
= - ) Vitylny,+(1-t,)In(1-y,)}
n=1
N d{t,Iny, +(1—t,)In(1-y,)} dy, dan

. dyn da, dw
L %(t_n_ 1-t,
n=1 Yn 1-y,
In—Yn
Yn(L=yn)

I
—

) ¥yn (1=yn) - pp

*Yn (1_yn)'¢n

M= 1=

(tn = Yn)Pn

Il
—

Yn—tn)Pn

=
Il

I
M=

Where we have used y, = o(a,), a, = wT¢n, the chain rules and (4.88).
Problem 4.14 Solution

According to definition, we know that if a dataset is linearly separable,
we can find w, for some points x,, we have wT<p(xn) > 0, and the others
w! p(xm) < 0. Then the boundary is given by w ¢p(x) = 0. Note that for any
point xg in the dataset, the value of wl¢(xg) should either be positive or
negative, but it can not equal to 0.

Therefore, the maximum likelihood solution for logistic regression is triv-
ial. We suppose for those points x, belonging to class C1, we have w’ ¢p(x,) >
0 and w” ¢p(xg) < 0 for those belonging to class Cy. According to (4.87), if
|w| — oo, we have

p(C1lp(xp)) = o(wl Pp(xp)) — 1

Where we have used w” ¢p(x,) — +0o. And since w’ ¢p(xy) — —co, we can
also obtain:

p(Colp(xm)) = 1- p(C1lp(xm)) = 1 - (Wl p(xm)) — 1
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In other words, for the likelihood function, i.e.,(4.89), if we have |w| — oo,
and also we label all the points lying on one side of the boundary as class C1,
and those on the other side as class Cg, the every term in (4.89) can achieve
its maximum value, i.e., 1, finally leading to the maximum of the likelihood.

Hence, for a linearly separable dataset, the learning process may prefer
to make |w| — oo and use the linear boundary to label the datasets, which
can cause severe over-fitting problem.

Problem 4.15 Solution(Waiting for update)

Since yj, is the output of the logistic sigmoid function, we know that 0 <
¥n <1 and hence y,(1 - y,) > 0. Then we use (4.97), for an arbitrary non-zero
real vector a # 0, we have:

N
aTHa = a’[) y,(1-y,)¢,0 ]a
n=1

yn(1=y)(@La) (¢pla)

I
M=

1

= Y y(-yn) b2
n=1

= i

Where we have denoted b, = ¢ a. What’s more, there should be at least
one of {b1, bg,...,b N} not equal to zero and then we can see that the expression
above is larger than 0 and hence H is positive definite.

Otherwise, if all the b, = 0, a = [a1, as,...,ay]? will locate in the null
space of matrix ®@py.py. However, with regard to the rank-nullity theorem,
we know that Rank(®) + Nullity(®) =M, and we have already assumed that
those M features are independent, i.e., Rank(®) = M, which means there is
only 0 in its null space. Therefore contradictory occurs.

Problem 4.16 Solution
We still denote y,, = p(t = 1|¢p,), and then we can write down the log

likelihood by replacing ¢,, with m, in (4.89) and (4.90).

N
Inp(tjlw) = {rpIny, + (1-7m,)In(1-y,)}

n=1
Problem 4.17 Solution
We should discuss in two situations separately, namely j = & and j # k.
When j # k&, we have:
Oyr _ —explar)-expla;)
da; [Y,expla;)]?

And when j = &k, we have:

=Yk )Yy

Oy _ explap)Xjexpla;) —explar)explar)
dap [X)expla;)]?

= ye—yp = ye(L— )



100

Therefore, we can obtain:

Oyr
e _ In:—v:
aaj yk( kj yj)

Where I is the elements of the indentity matrix.
Problem 4.18 Solution

We derive every term ¢, Iny,; with regard to a;.

Otnr Inypp _ Otnr InYynk OYnr aaj

ow; O0Ynk Oa; Owj

1
tnk_'ynk(ij_ynj)’(l’n

nk

= tpeUkj—Ynj)Pn

Where we have used (4.105) and (4.106). Next we perform summation
over n and k.

|
M=
M=

Vw,E = tnk Ukj = Ynj) bn

Il
-
_
I
[

N K
nkYnj®n— 2 Y tnklpjdn

n=1k=1

Il
M= .
M=

S
Il
-
ol
Il

N
tnk)ynj (,bn] - Zl tnj(Pn

I
M=
M= -

[(

S
1]
—
4
I
—

I
M=

N
Ynj Gn— Z tnj‘»bn
n=1

i
u

Il
M=

(ynj - tnj)(pn
1

S
Il

Where we have used the fact that for arbitrary n, we have Zle thr = 1.
Problem 4.19 Solution

We write down the log likelihood.

N
In p(tiw) = {tnlnyn+(1_tn)1n(1_yn)}

n=1

Therefore, we can obtain:

Vwlinp
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Where we have used y = p(¢t = 1la) = ®(a) and a, = W ¢p,,. According to
(4.114), we can obtain:

1 1
V'@ = HO10, D]y, = =exp(-5a”)

Hence, we can obtain:

N _an
YVn—t, exp(—=3)
Vwinp =
v nglﬁ)’n(]-_yn) Vo "

To calculate the Hessian Matrix, we need to first evaluate several deriva-
tives.

i Yn—1Iln )= i Yn—tn _ayn.aa_n
ow yp(1-yp) O0yn yn(1=yn) Oa, Ow
yn(l_yn)_(yn_tn)(l_zyn)

= o} n)Pn
[yn(]-_yn)]z @)

2
YR 4tn—2yntn exp(—%")(p
v2A-y2  Vom

And
2 2
i{exp(—%")} _ i{exp(—%”)}aan
ow Vo oa, Vo ow
2
9
= mexp( 5 Ybr
Therefore, using the chain rule, we can obtain:
az a2 a2
i{ Yn—tn_exp(=F) i{ Yn—tn exp(—y")+ Yn—tn iexp(—gn)}
ow yn(1-yn) V2r ow yp(1-yn) V2r  ya(l-yp)0W 27

2
exp(—%”)

\/2_nyn(]- - yn)

2
Y2 +ty —2ynty €xp(=%)
yn(l_yn) vV 27

Finally if we perform summation over n, we can obtain the Hessian Ma-
trix:

_an(yn_tn)] bn

H

VVwInp
2
N 6  y,—t, exp(-3)

)3

—A
m10w yn(1-yn)  V2nm
2
N y;21+tn_2yntnexp(_a7n)
n=1 yn(1=2yn) vVan

}'(pn

e L
)

- n n_tn Y
anly )]\/ﬂyn(l—yn
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Problem 4.20 Solution(waiting for update)

We know that the Hessian Matrix is of size MK x MK, and the (j,%k)th
block with size M x M is given by (4.110), where j,k =1,2,...,K. Therefore,
we can obtain:

T & T
u Hu = Z Z u; Hj yuy (%)
Jj=1k=1

Where we use ug to denote the £ th block vector of u with size M x 1, and
H; x to denote the (j,%)th block matrix of H with size M x M. Then based on
(4.110), we further expand (4.110):

K

o

<
1l
—
o
Il
—

N
() = W (= Y Ynkkj = yn)) P Pn” e
n=1

Il
M=
M=
M=

u;P{—ynk(ij — Yn)) Pn Pn” hug

(-
Il
-
ol
Il
—
S
Il
—

Il
M=
M=
M=
- H
™=

K N
u; {— ynkaJ(pn(pn hag + Z Z T{ynkynj(pn(l’n hak

Jj=1k=1n=1 j=lk=1n
L& T T X al T T

= Z Z uk{_ynk PnPn” hug + Z Z Ynjuy {pnbn” tynrux
k=1n=1 Jj=lk=1n=1

Problem 4.21 Solution

It is quite obvious.
a
D(a) = f N(610,1)d6
-0
1 a
- —+f H(010,1)d6
0
a
- 5+ we0a0
0

exp(—62/2)do

L1 f
Nor
\/;_‘/2_ 0 7exp( 0%/2)do

T

1+ — | ——exp(-6%2
(+\/§f0 ﬁexp( 04/2)d6)

+

NI NH= NI NI~ DN~ DN

1
1+ —erf(a)
{ 7 f(@)}
Where we have used

0 1
f A 010,1)d0 =
oo 2
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Problem 4.22 Solution
If we denote (@) = p(D|0)p(0), we can write:

(D) f »(DI0)p(8)d0 = f £0)do

(2].[)M/2
f(oMAP)W

(2”)M/2
p(D|0MAP)p(0MAP)W

Where 074 p is the value of 8 at the mode of £(0), A is the Hessian Matrix
of —Inf(0) and we have also used (4.135). Therefore,

M 1
Inp(D) =InpD|Opyap) + InpO@pap) + 31112” - §1n|A|

Just as required.
Problem 4.23 Solution

According to (4.137), we can write:

M 1
Inp(D) Inp(D|Oprap) + Inp@prap) + Eann— anIAI

M 1 1
Inp(D16yap) = 5 27 — S In|Vol = —(Omap —m) Vo (@ ap —m)

M 1
+—1In27 — =InlA|
2 2

1 1 1
Inp(D1Oxap) = 5 Vol - S (Omap -m) Vo 1 @yap -m) - S InlA|

Where we have used the definition of the multivariate Gaussian Distri-
bution. Then, from (4.138), we can write:

A

~VVInp(D|0yap)r@map)
= —VVInpD|0yap)—VVInpO@pyap)

1 _
= H-VV{- §(BMAP -~m)" Vo Oy ap - m)}
= H+V{V0_1(0MAp—m)}
= H+Vy!

Where we have denoted H = —VVInp(D|0prap). Therefore, the equation
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above becomes:

1 1
Inp(D) = Inp(DIOyap) - 5Omap —m)' Vo Oyap —m) - S Inf[Vol- H+V,'|}

1 _ 1
Inp(D|Opap) - §(HMAP —m)"Vy X Oy ap —m) - §ln{ IVoH +1|}

u

1 1 1
Inp(DIOxap) = 5 Omap —m) Vo 1(@yap -m) - 5 Vol - S In[H|

u

1 _ 1
Inp(D10xyap) ~ 5Omap —m)"Vy X @y ap —m) - 5 In[H + const

Where we have used the property of determinant: |[A|-|B| = |AB|, and the
fact that the prior is board, i.e. I can be neglected with regard to VoH. What'’s
more, since the prior is pre-given, we can view Vy as constant. And if the data
is large, we can write:

N A
H= )Y H,=NH
n=1

Where H = 1/N Zf:’zl H,, and then

u

1 1
Inp(D) Inp(D|0yrap) — 5((;vMAP —m)'Vo 1@y ap -m) - 51n|H| +const

u

1 N
Inp(D1Byap) = 5 Omap - m) Vo 1(0yap —m) - 5 InINH] + const

u

M 1 I
Inp(D|@prap) — Q(HMAP —m)TVo_l(BMAp -m) — ElnN - §ln|H| + const

u

Inp(D|0pap) - %IHN

This is because when N >> 1, other terms can be neglected.
Problem 4.24 Solution(Waiting for updating)
Problem 4.25 Solution

We first need to obtain the expression for the first derivative of probit
function ®(Aa) with regard to a. According to (4.114), we can write down:

2y - 4200 dla
= \/%exp{ - %(la)z}
Which further gives:
22090 7
And for logistic sigmoid function, according to (4.88), we have
do

1
— =0(1-0)=05x05=-
Ja o(l-0) x 1
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Where we have used 0(0) = 0.5. Let their derivatives at origin equals, we

have:
A 1

Vonr 4
i.e., A = V27 /4. And hence A% = 7/8 is obvious.

Problem 4.26 Solution

We will prove (4.152) in a more simple and intuitive way. But firstly, we
need to prove a trivial yet useful statement: Suppose we have a random vari-
able satisfied normal distribution denoted as X ~ A/ (X|u,o 0?), the probability
of X <xis P(X <x) = ®(XE), and here x is a given real number. We can see
this by writing down the 1ntegral.

PX<x) = fx ! exp[- 5 (X w?ldX
00 V2o
= fT 1 exp(——yz)ady
\/_
= —ex (—— 2yd
f \/— p Y Y
= o=h)
o

Where we have changed the variable X = u+o0y. Now consider two ran-
dom variables X ~ A (0,A"2) and Y ~ A (,u,az). We first calculate the condi-
tional probability P(X <Y |Y = a):

-0
PX<Y|Y =a)=PX<a)= QD(%) = ®(1a)
Together with Bayesian Formula, we can obtain:

+00
PX<Y) = f PX<Y|Y =a)pdf(Y =a)dY

+00
f ®(Aa) N (alp,0?)da

(e.o]

Where pdf(-) denotes the probability density function and we have also
used pdf(Y) = N (u,0%). What’s more, we know that X —Y should also sat-
isfy normal distribution, with:

EX-Y]=E[X]-E[Y]=0-pu=—-pu
And
var[X - Y1 = varlX1+var[Y]= 172+ 0>
Therefore, X —Y ~ A (—u,A~2 +02) and it follows that:
0—(-pw ) = o U
Vitio? ViZio?
Since P(X <Y) = P(X -Y <0), we obtain what have been required.

PX-Y <0) = d( )



106

0.5 Neural Networks

Problem 5.1 Solution

Based on definition of tanh(-), we can obtain:

e — o=@
tanh(a) = ——
ed+e @
3 2e?
- e?+e @
= -14+2———
1+e2a
= 202a)-1
If we have parameters wjls), w%s) and w(2js) w(zs) for a network whose

hidden units use logistic sigmoid function as activation and w(m w%) and

wfjt) w%) for another one using tanh(:), for the network using tanh(-) as

activation, we can write down the following expression by using (5.4):

M
a(,:) — Z’ w(2t) tanh(a(t))+w§320t)

Z w(2t)[2o_(2a(t)) 1] +w(2t)

What’s more, we also have :
b

(s) (28) (s) (2s)
Zw U(aj )+wk0

(s) — @

To make the two networks equivalent, i.e., a 3 a;’, we should make

k ’
sure:
(S) _ 2a(t)
(2s) _ (2¢t)
Wy, Zwa
(2s) M (2¢) (2¢t)
— LWy, Wi,

Note that the first condition can be achieved by simply enforcing:

wl® =201 and wl¥ = 2wV
Ji Ji Jjo Jjo

Therefore, these two networks are equivalent under a linear transforma-
tion.

Problem 5.2 Solution
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It is obvious. We write down the likelihood.
N 1
p(TIX,w) = H N (Anly(xXn, W), 8 71)
n=1

Taking the negative logarithm, we can obtain:

B T NK
E(w,p) = ~Inp(TX,w) = 5 Y [(y(Xn, W)—tn) (y(xn,w)—tn)]—Tlnﬁ+const

n=1

Here we have used const to denote the term independent of both w and
B. Note that here we have used the definition of the multivariate Gaussian
Distribution. What’s more, we see that the covariance matrix $~'I and the
weight parameter w have decoupled, which is distinct from the next prob-
lem. We can first solve wy, by minimizing the first term on the right of the
equation above or equivalently (5.11), i.e., imaging f is fixed. Then according
to the derivative of E(w, ) with regard to 8, we can obtain (5.17) and hence

BmL.
Problem 5.3 Solution

Following the process in the previous question, we first write down the
negative logarithm of the likelihood function.

N
Ew,X) = % > {[yXn, W) —tn]” =7 [y (xn, W) — tal} + %VlnIZI + const (x)

n=1

Note here we have assumed X is unknown and const denotes the term
independent of both w and X. In the first situation, if X is fixed and known,
the equation above will reduce to:

N
Ew) = % > {[y(xn,w)—tn]TZ_l[y(xn,w)—tn]} + const
n=1
We can simply solve wyr, by minimizing it. If £ is unknown, since X is
in the first term on the right of (), solving wy, will involve X. Note that in
the previous problem, the main reason that they can decouple is due to the
independent assumption, i.e., X reduces to $'I, so that we can bring S to the
front and view it as a fixed multiplying factor when solving wiy..

Problem 5.4 Solution

Based on (5.20), the current conditional distribution of targets, consider-
ing mislabel, given input x and weight w is:

pt=1x,w)=(1-¢€)-p(t,=1x,w) + €- p(t, =0[x, W)
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Note that here we use ¢ to denote the observed target label, ¢, to denote
its real label, and that our network is aimed to predict the real label ¢, not ¢,
i.e., p(t, = 1|x,w) = y(X,w), hence we see that:

pt=1x,w) = (1-€)-y(x,w) + - [1- y(x,w)] (%)
Also, it is the same for p(t = 0|x, w):

pt=01x,w) = (1-¢€)-[1-y(x,w)] + € y(x,w) (%)
Combing () and (**), we can obtain:

pltix,w) = (1-e)-y'A-y)' T +e-1-y)y'

Where y is short for y(x,w). Therefore, taking the negative logarithm, we
can obtain the error function:

N
Ew) = - Y In{(1-0)-y(1-y) ™ +e-(1-y)nyn '}
n=1
When ¢ = 0, it is obvious that the equation above will reduce to (5.21).
Problem 5.5 Solution
It is obvious by using (5.22).

N
—In [ ] p(tixn, w)

n=1

N K
~In [T T 22 (n, W) [1 - yp(xn, w)] 7
n=1k=1
& 1-¢
> In{yp(xn, W) [1- yp(xn, w)| "}

E(w)

M=

S
Il
-
o
Il
—

I
|

M=

M=

In [y (1= i)'

S
Il
-
ol
Il
—

I
|

M=

M=

{tnk Inypp +(1=t,)In(1 =y, )}

S
Il
—
ol
Il
—

Where we have denoted

Ynk = yk(Xn,W)
Problem 5.6 Solution

We know that y; = o(ay), where () represents the logistic sigmoid func-

tion. Moreover,
do
— =0(1-0
da ( )



109

dE(w) 1
= —tp— -] + (A —tp) (1- )
da, kyk[yk i) kl_yk[yk i)
1-t,
= (1—1v3) -
[k yk][l_yk yk]
= (A=tp)yr—tr(1—y)
= Yr—lz

Just as required.
Problem 5.7 Solution

It is similar to the previous problem. First we denote yp, = yi(Xp,w). If
we use softmax function as activation for the output unit, according to (4.106),

we have: 4
YEn
daj :ykn(ij_yjn)
Therefore,
dE(w) d N K
= - trnl ,
da, dak{ n;k; ko 10 Y (Xn, W)}
>y
= - ——trnInyg
n=1k:1daj{ " )

1

Il

|
M=
M=

[ Yen Trj— yjn)]

kn

S
Il
—
J
Il
-

Il

|
M=
M=

(tankj —tkn yjn)

S
Il
—
o
Il
—

N K
tenhj+ Y, D thnYin
n=1k=1

Il

|
M=
M=

S
Z
—
x>
il
—

N
= - tjn+zyjn
1 n=1

S
Il

N
Z (yjn - tjn)
n=1
Where we have used the fact that only when k2 = j, I;,; = 1 # 0 and that
Zi{:ltkn = 1.
Problem 5.8 Solution

It is obvious based on definition of ’tanh’, i.e., (5.59).

d (e teT (e +e ) — (e —e ) —e™)
%tanh(a) = (@100

B ~ (ea _ e—a)z

B (e® + e—9)2

1- tamh(at)2
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Problem 5.9 Solution

We know that the logistic sigmoid function o(a) € [0,1], therefore if we
perform a linear transformation A(a) = 20(a)—1, we can find a mapping func-
tion A(a) from (—oco, +oo) to [-1,1]. In this case, the conditional distribution
of targets given inputs can be similarly written as:

1+ y(x,w) ](1+t)/2 [ 1- y(X,W)]u—t)/z

pltlx,w) = | 5 5

Where [1+y(x,w)|/2 represents the conditional probability p(C1|x). Since
now y(xX,w) € [—1,1], we also need to perform the linear transformation to
make it satisfy the constraint for probability. Then we can further obtain:

% {1+tn 1+ y, 1—tnln1—yn

E(w) 5t g 2}

L\'JIH=

=1
N
Z {1+t)In(1+y,) + (1 —¢)In(1 - y,)} + NIn2

Problem 5.10 Solution

It is obvious. Suppose H is positive definite, i.e., (5.37) holds. We set v
equals to the eigenvector of H, i.e., v = u; which gives:

viHv = vI(Hv) = wiT Auy = A;]lus)1?

Therefore, every A; should be positive. On the other hand, If all the eigen-
values A; are positive, from (5.38) and (5.39), we see that H is positive defi-
nite.

Problem 5.11 Solution

It is obvious. We follow (5.35) and then write the error function in the
form of (5.36). To obtain the contour, we enforce E(w) to equal to a constant
C.

1
E(w) = E(w*)+ §Zaia? =C
i

We rearrange the equation above, and then obtain:
Y Aiaf =B
15

Where B = 2C —2E(w™) is a constant. Therefore, the contours of con-
stant error are ellipses whose axes are aligned with the eigenvector u; of
the Hessian Matrix H. The length for the jth axis is given by setting all
a; =0,s.t.i1#]:

B
a; = /1—
J
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In other words, the length is inversely proportional to the square root of
the corresponding eigenvalue ;.

Problem 5.12 Solution

If H is positive definite, we know the second term on the right side of
(5.32) will be positive for arbitrary w. Therefore, E(w*) is a local minimum.
On the other hand, if w* is a local minimum, we have

1
E(w")-E(w) = —E(W—W*)TH(W—W*) <0
In other words, for arbitrary w, (w—w*)TH(w—w"*) > 0, according to the
previous problem, we know that this means H is positive definite.

Problem 5.13 Solution

It is obvious. Suppose that there are W adaptive parameters in the net-
work. Therefore, b has W independent parameters. Since H is symmetric,
there should be W(W + 1)/2 independent parameters in it. Therefore, there
are W+ W(W +1)/2 = W(W + 3)/2 parameters in total.

Problem 5.14 Solution

It is obvious. Since we have
2
€
En(wji+€) = En(wji) +eE, ;i) + 5 By w;i) + O(e?)

And

&2

E,(wj;—¢€) = E,(wj;)—€cE),(w;i)+ EE’,:(wji) +0(?)
We combine those two equations, which gives,
E (wji+€)~E,(wj; —€) = 2¢E,(w;;) + 0(e®)
Rearrange the equation above, we obtain what has been required.

Problem 5.15 Solution

It is obvious. The back propagation formalism starts from performing
summation near the input, as shown in (5.73). By symmetry, the forward
propagation formalism should start near the output.

Oy,  Oh(ap) , Oay,
_— = = h
0x; 0x; (@) 0x;

ki =

()

Where A(-) is the activation function at the output node aj;. Considering
all the units j, which have links to unit k:
Oay, Oay, 0a

a .
= Y ST 2 Y g (a5 )
0x; S daj 0x; I 0x;
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Where we have used:
ap = Zwkaj, zj = h(a;)
J

It is similar for da j/0x;. In this way we have obtained a recursive formula
starting from the input node:

0x;

Oa; _ |wy;,if there is a link from input unit i to [
0,if there isn’t a link from input unit i to /

Using recursive formula (x#) and then (x), we can obtain the Jacobian
Matrix.

Problem 5.16 Solution
It is obvious. We begin by writing down the error function.

1 N 9 1 N M 9
E=§Z||Yn_tn|| =§Z Z(yn,m_tn,m)
n=1

n=1m=1

Where the subscript m denotes the mthe element of the vector. Then we
can write down the Hessian Matrix as before.

N M N M
H=VVE = Z Z Vyn,mvyn,m + Z Z (yn,m - tn,m)VVYn,m

n=1m=1 n=1m=1

Similarly, we now know that the Hessian Matrix can be approximated as:

N M r
H= Z Z by mby m

n=1m=1
Where we have defined:
bnm = Vynm
Problem 5.17 Solution
It is obvious.
Ouffws N air %f f 2y-9) aab;:sp Ox, Dddxdi

dy? 0y Oy
= -t t)dxdt
/f[(y )aw,aws " ow; 0w, |p(x,Bydx

Since we know that

0y? 0y?
f f (y-t—2_ p(x,t)dxdt f [ (y— ) —2  p(tIx)p(x)dxdt
0w, 0w, 0w, 0w,

Ws

dy?
féwra {f(y_t)p(ﬂx)dt}p(x)dx
0
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Note that in the last step, we have used y = [#p(¢[x)d¢. Then we substi-
tute it into the second derivative, which gives,

’E dy Ody
= tdxdt
ow, 0w, f_[aws ow, p(x,t)dx
dy Oy
= d
owg 0w, p(x)dx

Problem 5.18 Solution

By analogy with section 5.3.2, we denote wzljip as those parameters corre-
sponding to skip-layer connections, i.e., it connects the input unit i with the
output unit 2. Note that the discussion in section 5.3.2 is still correct and
now we only need to obtain the derivative of the error function with respect

to the additional parameters wzlzip.

0E, OE, Odap 5
skip skip kX
Owy; dar owy;

Where we have used a; = y; due to linear activation at the output unit
and:

M
_ 2), . skip
Vi = .Z()wijJ+Zwki X
J= 4

Where the first term on the right side corresponds to those information
conveying from the hidden unit to the output and the second term corre-
sponds to the information conveying directly from the input to output.

Problem 5.19 Solution

The error function is given by (5.21). Therefore, we can obtain:

N SE
VE(w) = Va
nX::l dan "
N oo
- _ Z 5 [tnIny, +(1-t,)In(1l-y,)|Va,
n=1 n
_ i {a(tnlnyn) Oyn , 00— tn)In(1 - yy) Oy, \Va
el 0y, Oay 0y oa, "
= - Z [_'yn(l_yn)"'(l_tn) 'yn(l_yn)]van
n=1 Yn 1_yn

Z

= - [tn(l_yn)_(l_tn)yn]van

I
—

I
M= 5

(yn —tn)Va,

S
Il
—
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Where we have used the conclusion of problem 5.6. Now we calculate the
second derivative.

N
VVE(w) = Z {yn(1 = yn)Va,Va, +(yn —t,)VVa,}
n=1

Similarly, we can drop the last term, which gives exactly what has been
asked.

Problem 5.20 Solution(waiting for update)
We begin by writing down the error function.
N K
Ew) = - Z Z tnklnynk
n=1k=1

Here we assume that the output of the network has K units in total and
there are W weights parameters in the network. WE first calculate the first
derivative:

dE
da,
[

N
VE = ) -Va,,

n=1

N K

= _Z d (Ztnklnynk)]'van
n=1 Gan p=1

N
= ch-Van

n=1

Note that here ¢,, = —dE/da, is a vector with size K x 1, Va,, is a matrix
with size K x W. Moreover, the operator - means inner product, which gives
VE as a vector with size 1 x W. According to (4.106), we can obtain the jth
element of ¢p:

0 K
Cnj = —aj(k;tnk Iny,z)
K

0
= - — (e Inynr)
(=10a;

K
Ink
= =) Zyuldrj—yn))

k=1JYnk
K K

= - Z tnklkj+ Z tnkYnj
k=1 k=1

K
= _tnj"‘ynj(z tnk)
k=1

= ynj_tnj
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Now we calculate the second derivative:

N
VVE = Z(jzn

n=1

Va,)-Va, +¢,VVa,
Here dc,/da,, is a matrix with size K x K. Therefore, the second term can
be neglected as before, which gives:

N de
H= Z(da:Van)-Van

Problem 5.21 Solution

We first write down the expression of Hessian Matrix in the case of K
outputs.
N K r
Hyx =) ) buib,,
n=1k=1

Where b, = Vwa, ;. Therefore, we have:

K

T T
Hy.x =Hyg + ) byi1kby, 1, = Hvg + BniiBy
k=1

Where By 1 = [by+1,1, bN+1,2, ..., by+1k] is a matrix with size W x K,
and here W is the total number of the parameters in the network. By analogy
with (5.88)-(5.89), we can obtain:

-1 T -1
_1 HN,KBN+1BN+1HN,K

-1
HN+1,K = HN,K_ 1+BT

(%)
-1
N+1HN,KBN+1

Furthermore, similarly, we have:

N+1

T T
Hy.1x+1 =Hyiig + ) b, k+1b;, k1 = Hvi1x + Bre1Bg
n=1

Where Bx,1 = [b1x+1, b2 k+1, ..., bN+1,K+1]1s a matrix with size W x (N +
1). Also, we can obtain:

-1 T -1
HN+1,KBK+1BK+1HN+1,K

H! =H o —
N+1,K+1 N+1,K T -1
1+By Hy ; ¢Bk+1

Where HI_V}Jr1 x 18 defined by (*). If we substitute () into the expression
above, we can obtain the relationship between Hz_vl+1 x4 and Hz_le'

Problem 5.22 Solution



We begin by handling the first case.

0*E, 0 (OEn
@4 2 @) 5 (2
dwkjdwk,j, Owkj 6wk,j,
0 OE, day
 ow (2) dar §u'2.

By

0 aEn azj/wkr‘/zj'/

ow? dar  ow?
J

k/l
0 OE,
" u® a0y
kj

0 OE oE, 0z
= ( n)Zj/+ n %
ow'® day

kj

0 OE, day
= +0
dak (aakl )a (2) =7

Oay awfj)

0 (0E )
= Y AVAL
dayp Oap '’

= Z]Z]’Mkk’

Then we focus on the second case, and if here j # '

*E, 0 ,OE,
VoD - aw(l)(aw(l))
Jji O ji T
3 0 O0E, 0day
= ow (1) w 6ak, 61,0(1)
0 OE,
— Z (2) h (ajl)xll)

W ow'Y Oa
Ji

0 OE,
Zh (aj )x, (1) day

)

6 ok, oa
"oy (2) k
;h (aJ )xz Z aa ) (1)

jl

0 OE,
Ba)xir (2) (2)h
kE (@;)x; Ek 30, day )y h(a)x;)

Zh'(aj:)xir ZMkk/wg), ng)h (aJ)xl
k' k

xi'xih/(aj’)h,(aj)zzwge%)' wfj)M kR!
k' k

116
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When j =/, similarly we have:

O’Ey o OE, o
=2~ "h'(a)xi)
aw(.li)aw(<1.? % awﬁ) Oay J
=y 0 (O w w® oh'(a;)
- Y G s DG
Ji w;
oh'(a;)
- x"xh(aJ)h(aJ)ZZw(z)' (2)Mkk’+xz Z(a (2)) (1;
k!
jl
= xpxh (aj)h (aJ)ZZw(Z). ;ezj)Mkk""xi’ (2))h"(aj)xl
ap

= xpxh'(aph (aJ)ZZw(Z). (2)Mkk/+h(aj)x Xy Zak/w@’

It seems that what we have obtained is slightly different from (5.94) when

= j'. However this is not the case, since the summation over %’ in the second
term of our formulation and the summation over & in the first term of (5.94) is
actually the same (i.e., they both represent the summation over all the output
units). Combining the situation when j = j' and j # j/, we can obtain (5.94)
just as required. Finally, we deal with the third case. Similarly we first focus

on j#j"

0*E, 0 (OEn
MDA 2 1) (2)
6wji awkj, Owﬁ Owkj,
0 OE, dap

ow'l 0ar 5y®
Ji kj

0 0E,0)jwjzj
ow'l day aw(2)
Jt

0 (OEn )
= —_— 2
ow'l oay /
Jji
0 OE, Oap
= er

k! Oak/ aak aw(l)
= zerMkkr (2)h(aj)xl

= x;h (aj)zj ZMkk/w(Z)

Note that in (5.95), there are two typos: (i)Hpz should be M. (ii) j should



exchange position with j’
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in the right side of (5.95). When j = j', we have:

’E, 0 (9En

M4, (2 1) 2)

6wji 6wkj dwﬁ Owkj
o OE, oay

Combing these two situations, we obtain (5.95) just as required.

Problem 5.23 Solution

ow'l 0ap 5@
Ji kj

0 OE,0) wk;z;

1) (2)
ow;) 0ar  Ow
0 (OEn )
= —_—(—2z;
ow'V dap /
Ji
B 0 (OEn . O0E, 0z;
- ow'l Oay / day, 'V
Ji Ji

OE, 0z;
day, w(.l.)
Jji

= xih'(aj)Zj ZMkk/wf,} +
k!

= xih'(aj)2j ;Mkk’wfr; + 5kh'(aj)xi

It is similar to the previous problem.

0*E, 0 0E,
Owp 10wy, j © Owpy Owgj
0 OE,
 dwpry ( Oay, 2
6wk/,-r 0 aEn

2.
I day dap dap
= zjxi’Mkk’
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And
0’E 0 0E, da
n _ (Z n k )
awkri/awﬂ awkrir 7 0ak 6wji
0 oE,

= (Z

awkrir 7 aak

wi;h'(@)x;)

0 OFE
= h'(a)xjwp——(—=
% I Jawk/i/ aak

Zh,( ) 0 OE, ap
= a)xijwy; —(—
7 TV da day,  wery

= Y h(@)xiwpiMppxi
7

= xixph'(a))) wiiMpp
7

Finally, we have
0’E, é OE,
Owpi Wi Owprir Owg;
0 OFE
= (—x;)
0wkri, aak
8 OE, dap
i
"Oap dap wpy
= X% Mg

Problem 5.24 Solution

It is obvious. According to (5.113), we have:

a; = ijixi+wj0
i

1 b
;iji'(axi+b)+wj0—;;wﬁ

= ijixierjo =aj
i
Where we have used (5.115), (5.116) and (5.117). Currently, we have
proved that under the transformation the hidden unit a; is unchanged. If
the activation function at the hidden unit is also unchanged, we have z; = z;.
Now we deal with the output unit yp:

Y = Zﬁkj5j+ﬁko
= icwkj-2j+cwk0+d
J
= CZ[wkj'Zj""ka]"'d
= chk+d
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Where we have used (5.114), (5.119) and (5.120). To be more specific,
here we have proved that the linear transformation between y, and y; can
be achieved by making transformation (5.119) and (5.120).

Problem 5.25 Solution

Since we know the gradient of the error function with respect to w is:
VE = H(w-w")
Together with (5.196), we can obtain:

w® = W(T—l)_pVE

= WD pHwW D - wt)

Multiplying both sides by uf, using w; = wlu i, we can obtain:

w;r) — u}"[w(r—l) —pH(W(T_l)—W*)]
— w;r—l) _ puJTH(W(T—l) —W*)

_ o G-D T (1-1) %
w; pnju; (w w)

(-1 o«

;W)

_ N,,,(T-1) Lk

= (1_P77])wj T pnjw;

— w;T—l) _pnj(w

Where we have used (5.198). Then we use mathematical deduction to
prove (5.197), beginning by calculating w}l):
w®
J

(1-pnw'? + pnjw;
= pnjw;

[1-(1-pn))]w;

Suppose (5.197) holds for 7, we now prove that it also holds for 7 + 1.

(t+1) _ () .
wi = (1-pnw” +pnw]

1-pn)[1-1-pn)" Jw} +pnjw;
= {d-pnp[1-A-pn)" ]| +pnjtw;
[1 _(1 _pnj)‘[+1]w;

Hence (5.197) holds for 7 = 1,2, .... Provided |1-pn;| <1, we have (1—
pn;)* — 0 as T — oo ans thus w'? = w*. If 7 is finite and nj >> (p7)71, the
above argument still holds since 7 is still relatively large. Conversely, when
nj <<(p7)™!, we expand the expression above:

|w37)| =1[1-A-pn)" |wil = [tpnw]l << [w}]
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We can see that (p7)~! works as the regularization parameter « in section
3.5.3.
Problem 5.26 Solution

Based on definition or by analogy with (5.128), we have:

Oyn
Q, = _Z( - k|£ 0)2
= _Z Z |<f 0)2
= _Z(Z ynk)

aynk 0x;

Where we have denoted
0x;

T; = 0_5 |f:0
And this is exactly the form given in (5.201) and (5.202) if the nth obser-
vation y,; is denoted as y; in short. Firstly, we define a; and f; as (5.205)
shows, where z; and a; are given by (5.203). Then we will prove (5.204) holds:

0z; oh(a;)
aJ = ;Tla—xi—;‘lfl OXi
Z 0h(a;) 0a;
= T; R
: ! Oaj Ox;

0
h/(aj)ZTi a_x'aj = h'(aj)ﬂj

15
Moreover,

o an _ .6Zi/wJ'irZir
bi = Zi"rldxi _;TL 0x;
owjjrzy 0z
Z Z JL 12 —Zrizwﬁlaz_l
l’ y '!

Lwji Zn = 2wy

So far we have proved that (5.204) holds and now we aim to find a forward
propagation formula to calculate ,. We firstly begin by evaluating {§;} at
the input units, and then use the first equation in (5.204) to obtain {«} at the
input units, and then the second equation to evaluate {§;} at the first hidden
layer, and again the first equation to evaluate {a;} at the first hidden layer.
We repeatedly evaluate {8;} and {a;} in this way until reaching the output
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layer. Then we deal with (5.206):

0Q, o 1 9y 1. 0(Gyp)?
" = (] =
dwrs w2 %( W =3,

1 0(Gy)* 0(Gy) 04y

= = g
2% AGyr) Owrs ; L

oyp, Oy Oa,
= Gv, 4 = ar9
%‘ Yk [aw,s] %‘ k [Gar aw,s]

= Zakﬁg[b‘krzs] = Zak{%[ékr]zs +C§[ZS](5kr}
k k

= ) ap{Prrzs + asOpr}
%

Provided with the idea in section 5.3, the backward propagation formula
is easy to derive. We can simply replace E, with y; to obtain a backward
equation, so we omit it here.

Problem 5.27 Solution

Following the procedure in section 5.5.5, we can obtain:
1
Q= f TVyx))? p(x)dx

Since we have T = 0s(x, &) / 0¢ and s = x+ ¢, so we have T = 1. Therefore,
substituting T into the equation above, we can obtain:

1
Q=; f (Vy(x))? p(x)dx

Just as required.
Problem 5.28 Solution

The modifications only affect derivatives with respect to the weights in
the convolutional layer. The units within a feature map (indexed m) have
different inputs, but all share a common weight vector, w'™. Therefore, we
can write:

(m)

OBy _ g OB 04" _ - som )

= = . 2.
dwgm) r 0a™ 6uw'™ F J T
J 1
Here ag.m ) denotes the activation of the Jjth unit in th mth feature map,

whereas wﬁm) denotes the ith element of the corresponding feature vector
and finally zg'Jn ) denotes the ith input for the jth unit in the mth feature map.

Note that 6;’”) can be computed recursively from the units in the following
layer.

Problem 5.29 Solution
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It is obvious. Firstly, we know that:

0 9 Wi —Hj 2
awi{njﬂ(wiluj,aj)}=—ﬂj 0? N (wilp;,0%)

We now derive the error function with respect to w;:

0E _ OE , 9A0w)
ow;,  Ow; Owi
OE

- {Zl (gnjﬂ(wiluj,af))}

awi awl

_ OE -2 0 {ln(anﬂ(wilyj,Ui))}

ow; ow; =1

OE 1 0

= — {anﬂ(w I/JJ,U )}

Ow; Y 7N (wilw,0%) 0w |15

OE 1

S {z "

awi Z ”]Jv(w IIJ_], 2)

JJV(w |j» 07 )}
j

wi—H;j
oE ZJlfa U)
A

owi " SN il o)

6E+ M ﬂjJV(winaU?) w; — W
Ow; ;T3 YpmpN wilpe,03)  0F
oE

M w; —
= +AY Yj(wi)%

Where we have used (5.138) and defined (5.140).
Problem 5.30 Solution
Is is similar to the previous problem. Since we know that:

0 2 Wi—Hj 2
aj{ﬂjﬂ(wimj,(fj)} = ﬂja—?c/‘/(win,Uj)
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We can derive:

)]
Ou;

[y

0 M
_/IZ _{Zﬂjﬂ(wiluj’aﬁ)}

i Zjail i N (w; |,Uj,(7?) ouj | ;=1

_,12 e
i Zyzlﬂjﬂ(wimpa’?) ! 0?
N (wilp;,a2) Ui —w;

K ’ 2 ! 2 l :AZYj(wi)
T Yy TN Wilpg,03) 0 :

1 w;—

u;
JJV(wi“Jj,U?)

B~ wi
o2
J

Note that there is a typo in (5.142). The numerator should be p; —w;

instead of y; —w ;. This can be easily seen through the fact that the mean and
variance of the Gaussian Distribution should have the same subindex and
since 0 is in the denominator, u; should occur in the numerator instead of

Problem 5.31 Solution

It is similar to the previous problem. Since we know that:

oo

(w; — pj)*

1
{ﬂjz/V(wi“lj,U?)} = (_0'_ +—3)njﬂ(wi|uj,0§)

. 3
J J
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We can derive:

O0E  0AQ(W)
0o B 00 ;
M
= —A—{Zln(an,/V(w IuJ,U )}
doj |5 j=1

g {fr et
{g N Wilyj,o 2)}

=

- 1Yy

i Z’] 17TJ=/V(wl|ﬂJ,0' )60'_]

1 0
= - N (wilp;,o 2)
;ZJ (TN (Wilpj,o 2)(90]{ J J }
1 1 (wi—p))?
= AZ M 3 (f— - 3J )anV(w I, o%)
7 ijlnjﬂ(wilyj,aj) o o

B mj N (wilpj, o) (1 (wi_,uj)z)

T XM N Wilpg,02) \ 0 o
1 (wi_ﬂj)z)
= AZY'(w')(———
A U U?

Just as required.
Problem 5.32 Solution

It is trivial. We begin by verifying (5.208) when j # k.

0 f e |
on; on; | Xrexp(ng)
_ —exp(nplexp(;)
[Zrexpnp)]?
= -7’

And if now we have j =k:

im0 e |
ony, ong | Xrexp(ng)
exp(y) [Xr exp(nr)] —exp(nr)exp(ny)

(S expp)]?

= T — TRk

If we combine these two cases, we can easily see that (5.208) holds. Now
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we prove (5.147).
oE AaQ(w)
on; on;

0 M 2

i j=1

M
= —AZ o {ln{ > njﬂ(wiluj,ai)}}

= -2 . i{% N (Wi |ﬂk>0k)}
i Zﬁlﬂjﬂ(wiluj,a )0n; | k=1
= -1 1 % i{ﬂkﬂ(w Iuk,ak)}
T X N (il 0%) =100,
1 M9

= - — s N (Wil g, 07)
;Z‘] IHJJV(LU |'uj, ) zlaﬂk{ k l”k k}

1 M
- _ N (w; i, o )(6 Mi—T;mp)
ZL:ZJ anJV(w I,uJ, g’ Hien OO RTS i

M

_k
on;

- ZZ T JV(w i, o {”J‘/V(w |,UJ,U )= anﬂ(w I,uk,ak))}
i j=1"%J 7,0

B 1 { anV(wi“Jjan) njzkzlﬂkﬂ(wiluk’ak))}
T Z i wilpg,0® X N il 0%)
=AY {riwi)-m}t =AY {n;—v;wi}

Just as required.
Problem 5.33 Solution

It is trivial. We set the attachment point of the lower arm with the ground
as the origin of the coordinate. We first aim to find the vertical distance from
the origin to the target point, and this is also the value of xs.

Lqsin(m —61)+ Lgsin(6y — (7w —6071))
L{sinf1— Lgsin(61 +69)

X2

Similarly, we calculate the horizontal distance from the origin to the tar-
get point.

—L1cos(mt—601)+Locos(Bg — (1 —671))
L1cosf01—Lgcos(01+69)

X1

From these two equations, we can clearly see the forward kinematics’ of
the robot arm.
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Problem 5.34 Solution
By analogy with (5.208), we can write:

onp(x)
0a”
J

= 6 pmj(x) — 7 j(X)7p(X)
Using (5.153), we can see that:

K
E, = —ln{ Y nkW(tn|pk,a§)}
k=1

Therefore, we can derive:

OE G K >
J J
1 0
- _ RN (bl py,02)
YK N (tality, k>0a {Zl e
1

dnk
= - Z JV(t )
YK RN (bl k)k 10 " *

1
s STV kZ ,knj(xn)—nj<xn)nk(xn)]W(tnmk,az)
n ks =1

K
n-(xn)ﬂ(tnlﬂ-,az-)—n~(xn) wp(Xp) N (tn ,02)}
Zk lﬂkg/V(tn”lk, %){ J 77 J kgl k kYR

7 (%) N (b, |8 ; aU' )+71 i(X5) 7 (Xp) N (b |y, 0 )
Zlenkﬂ(tnlpk,ai){ J J J k;l k jr O }

And if we denoted (5.154), we will have:
OoE,

0a”
J

—]/j+71j

Note that our result is slightly different from (5.155) by the subindex. But
there are actually the same if we substitute index j by index % in the final
expression.

Problem 5.35 Solution

We deal with the derivative of error function with respect to p, instead,
which will give a vector as result. Furthermore, the /th element of this vector
will be what we have been required. Since we know that:

ﬂk
o}

0
@{ﬂkﬂ(tn|ﬂk,02)} = nkJV(tn“lk’o-k)
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One thing worthy noticing is that here we focus on the isotropic case as
stated in page 273 of the textbook. To be more precise, A (t,|y,, k) should
be A (t,] uk,oil). Provided with the equation above, we can further obtain:

oE, 0
= In ) 7mp N (tplpy,o0%)
oy, 6Mk{ kz mr k}
L {Z N (] )}
= T Hp,0
1 K 2
= - . T N (tnl ey, 07)
YK N (tnlpy, 02) 02 mER T
-
= Tk 5 i
O%

Hence noticing (5.152), the /th element of the result above is what we are

required.
ok, _ ok, _ k,ukl_
OaZl Olr] OZ

Problem 5.36 Solution

Similarly, we know that:

0 D ||tn_ﬂk||2 2
— N (L] ,02) ={——+—— rmpN(t,lp,,07)
aak{ E nllE,0p } { or Uz k nilp,0p

Therefore, we can obtain:

0E, 0

{ In Z nkﬂ(tnlpk,ak)}

0oy B ooy,
1 0
- Tp N (bn |y, 02)
Zk 17Tk N Rnlpy, 0 k)aak{z " k
1 D ity —pmll?
= - 7 B . ——+% ”k‘js/(tnlﬂk,gi)
Zkzlﬂkd‘/(tnmk,(fk) O o,

D Ity — P
Op o'k

Note that there is a typo in (5.157) and the underlying reason is that:
l02Ip«p| = (0P
Problem 5.37 Solution

First we know two properties for the Gaussian distribution A (t|g, 02I):

E[t] = f tN (tlp,0’)dt = p
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E[It1%] = f lt112 (tlp, 02D dt = Lo? + ||l

Where we have used E[t”At] = Tr[Ac?I]+ u” Ap by setting A = I. This
property can be found in Matrixcookbook eq(378). Here L is the dimension of
t. Noticing (5.148), we can write:

E[t|x]

ftp(tlx)dt

K
ftz TN (b, 02)dt
k=1

K
Tp, tﬂ(tlyk,az)dt
k=1

K
Z 2y 72
k=1

Then we prove (5.160).

s2(x)

ELI[t — E[tIx]]1%x] = E[(t* — 2¢E[tIx] + E[t/x]?) [x]
E[t?|x] — E[2tE[t|x]/x] + E[t|x]? = E[t?|x] - E[t|x]?

K K

fntu2 S N g, 02— 11 S oy 1P
k=1 =1

K 9 9 K

Y. e [P A Gy 0Dt 11 Y map P

k=1 =1

S 2 2 S 2

3 mp@o? + D -1 Y. mpml

k=1 =1

K K
2 2 2
mpoy + ) Rl P =11 ol

h
M=

k=1 k=1 =1
X 2 X 2 X 2 X 2
L};”kok"‘;lﬂk“ﬂkﬂ _2X”z-zlwl” +1X”z-zlwl”
K 9 K 9 K K K K
LY mpoi+ Y mpllmll —2<anl)(2nkuk)+(znk)||znml||2
k=1 k=1 =1 k=1 k=1 =1
K 9 K 9 K K K K 9
LY mpoy+ Y mpllpgll® =20 mp)(Y mpp) + Y mell Y mll
k=1 k=1 =1 k=1 k=1 =1
K K K
LY mpop+ Y mellpg— Y mmll®
A kI 1K
k=1 k=1 =1
X 2 X 2
Y mp Loy + 1y, — ) mmll
k=1 =1

Note that there is a typo in (5.160), i.e., the coefficient L in front of 0% is
missing.
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Problem 5.38 Solution

From (5.167) and (5.171), we can write down the expression for the pre-
dictive distribution:

p(tx,D,a,p)

fp(W|D,6¥,ﬁ)p(t|X,W,,B)dw

u

fq(W|D)p(t|X,W,ﬁ)dw

f N (wiwyap, AN (tig" w — g7 wiap + y(x, wyap), 1 dw

Note here p(t|x,w, B) is given by (5.171) and ¢g(w|D) is the approximation
to the posterior p(w|D, a, §), which is given by (5.167). Then by analogy with
(2.115), we first deal with the mean of the predictive distribution:

T T
mean = g W-—g WMAP *+ Y(X, WMAP)|lw=wyp

= y(X,wmaP)
Then we deal with the covariance matrix:
Covariance matrix = ﬁ_l + gTA_lg

Just as required.
Problem 5.39 Solution

Using Laplace Approximation, we can obtain:
pDIw,Ppwia) = pDIwnap, Ap(Wyapl@)exp {~(w—waiap) AW - wyiap)|

Then using (5.174), (5.162) and (5.163), we can obtain:

pDla,p)

fp(DIW,ﬂ)p(w, a)dw

f p(DIwyap, B)p(Wyiapla)exp {—(w ~wiap) T A(w — WMAP)} dw

(27.[)W/2
p(D|wpyap, ,B)P(WMAPW)W

— 1_[ (/V(tnly(xn,WMAP),ﬂ_l)z/V(WMAPlo’a_ll) |A|1/2
n=1

If we take logarithm of both sides, we will obtain (5.175) just as required.

Problem 5.40 Solution

For a k-class classification problem, we need to use softmax activation
function and also the error function is now given by (5.24). Therefore, the
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Hessian matrix should be derived from (5.24) and the cross entropy in (5.184)
will also be replaced by (5.24).

Problem 5.41 Solution

By analogy to Prob.5.39, we can write:

(27T)W/2

p(Dl]a) = p(D|WMAP)p(WMAP|C¥)W

Since we know that the prior p(w|a) follows a Gaussian distribution, i.e.,
(5.162), as stated in the text. Therefore we can obtain:

Inp(D|a)

1
In p(D|wpmap) + In p(wyapla) — 2 In|A| + const

T

W 1
In p(D|wpap) — gw w + Elna— §ln |A| + const
w 1
= —E(wpap) + Elna— Eln |A| + const

Just as required.

0.6 Kernel Methods

Problem 6.1 Solution

Recall that in section.6.1, a, can be written as (6.4). We can derive:

an, = _%{WT(P(Xn)_tn}
1
= _Z{wl(pl(xn)"‘w2¢)2(xn)+-'-+wM§bM(Xn)_tn}
_ W _Wwe _ _WwM in
- 1 (,bl(xn) 1 (,DZ(Xn) 1 (,bM(xn)+ 1
= (cn- %)gbl(xn) +(cn - %)gbz(xn) ot len- wTM)ng(xn)

Here we have defined:

_ tn/A
C p1(Xp) + Po(Xn) + ...+ Par(Xp)

Cn

From what we have derived above, we can see that a, is a linear com-
bination of ¢(x,). What’s more, we first substitute K = ®o®7 into (6.7), and
then we will obtain (6.5). Next we substitute (6.3) into (6.5) we will obtain
(6.2) just as required.

Problem 6.2 Solution
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By analogy to Eq (2.115), i.e.,

p(y) = fp(yIX)p(X)dx
We can obtain:
plan+1lty) = NAp+b, L1+ AATAT) (%)
Where we have defined:
A=K'C,b=0,L! =c-Kk'CHk

And
u= a}{,, A=H
Therefore, the mean is given by:
Ap+b =k'Cyla}y = kT Cy'Cy(ty —on) =k  (ty —on)
Where we have used Eq (6.84). The covariance matrix is given by:
L '+AA AT = c-K'Cilk+ KT CH M KT CHT
= c-kI(Cy{ -CyHICHK
= =K' (Ci - G Wy + ) IC K
= c-K'(Cy - (CyWNCy + CH K
Where we have used Eq (6.85) and the fact that Cp is symmetric. Then we

use matrix identity (C.7) to further reduce the expression, which will finally
give Eq (6.88).

Problem 6.27 Solution(Wait for update) This problem is really complicated.
What’s more, I find that Eq (6.91) seems not right.

0.7 Sparse Kernel Machines

Problem 7.1 Solution
By analogy to Eq (2.249), we can obtain:

1 Ny

1
Y =k t=+1
N1 = Z, (x, %z)

n=1

p(x|t) =
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where N, represents the number of samples with label # = +1 and it is
the same for N_;. Z; is a normalization constant representing the volume of
the hypercube. Since we have equal prior for the class, i.e.,

oo f05 =41
P05 t=-1

Based on Bayes’ Theorem, we have p(¢|x) ox p(x|t)- p(¢), yielding:

N+1
Z k(x,x,) t=+1

'~ P
px) = ’

1
—Z k(x,x,) t=-1
-1p=1

NI~ N[+

Where 1/Z is a normalization constant to guarantee the integration of the
posterior equal to 1. To classify a new sample x*, we try to find the value ¢t*
that can maximize p(¢|x). Therefore, we can obtain:

N+1

+1 if Z -k(x, xn)>—z -k(X,X5,)
+1 N_1
t* = n= n= (*)
N+1
-1 if Z -k(x, xn)<—z k(x,%x,)
41 = N_1;
If we now choose the kernel function as k(x,x’) = xIx’,we have:
N+1 N+1
Z k(x,x,) = Z x %, = X' %41

N +1p +1 p=1
Where we have denoted:

1 N+1

Xi1= Xn

+1 pn=1

and similarly for Xx_;. Therefore, the classification criterion (x) can be
written as:

t*— +1 if X,1=2X_1
-1 if X,1<X_1

When we choose the kernel function as k(x,x’) = ¢p(x)T ¢p(x'), we can sim-
ilarly obtain the classification criterion:

o +1 if P(x41) = P(x_1)
-1 if P(x41) < P(x_1)
Where we have defined:

N+1

(ﬁ(X+1) = N,
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Problem 7.2 Solution

Suppose we have find wy and b¢, which can let all points satisfy Eq (7.5)
and simultaneously minimize Eq (7.3). This hyperlane decided by wy and
by is the optimal classification margin. Now if the constraint in Eq (7.5)
becomes:

tn(Wl p(x,)+b) 2y

We can conclude that if we perform change of variables: wo— > ywg and
b— > yb, the constraint will still satisfy and Eq (7.3) will be minimize. In
other words, if the right side of the constraint changes from 1 to y, The new
hyperlane decided by ywg and yb is the optimal classification margin. How-
ever, the minimum distance from the points to the classification margin is
still the same.

Problem 7.3 Solution

Suppose we have x; belongs to class one and we denote its target value
t1 = 1, and similarly xo belongs to class two and we denote its target value
to = —1. Since we only have two points, they must have ¢;-y(x;) = 1 as shown
in Fig. 7.1. Therefore, we have an equality constrained optimization problem:
wT(p(x1)+ b=1

1
minimize —||w| |2 s.t. T
2 w Pp(xg)+b =-1

This is an convex optimization problem and it has been proved that global
optimal exists.

Problem 7.4 Solution

Since we know that

1
= Tiwll
Therefore, we have:
1 2
— = llwll
0

In other words, we only need to prove that

9 N
Iwli? = Y an
n=1

When we find th optimal solution, the second term on the right hand side
of Eq (7.7) vanishes. Based on Eq (7.8) and Eq (7.10), we also observe that its
dual is given by:

_ N1,
L@ =) ap—=llwll
n=1 2
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Therefore, we have:
1. . N 1,
—llwll* = L(a) = L(a) = )_ an— =Wl
2 = 2

Rearranging it, we will obtain what we are required.
Problem 7.5 Solution

We have already proved this problem in the previous one.
Problem 7.6 Solution

If the target variable can only choose from {—1,1}, and we know that
p(t =1ly) = o(y)
We can obtain:
pt=-1y)=1-p( = 1ly) = 1-0(y) = o(-y)
Therefore, combining these two situations, we can derive:
p(tly) = o(yt)

Consequently, we can obtain the negative log likelihood:

N N N
~InpM) = ~In [[ 0(yntn) = = Y In0Gntn) = Y. ELr(yntn)
n=1 n=1 n=1

Here D represents the dataset, i.e.,.D = {(x,,,t,);n = 1,2,...,N}, and Err(yt)
is given by Eq (7.48). With the addition of a quadratic regularization, we ob-
tain exactly Eq (7.47).

Problem 7.7 Solution

The derivatives are easy to obtain. Our main task is to derive Eq (7.61)
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using Eq (7.57)-(7.60).

N =~ 1 9 N ~
n=1 n=1
N N R
- an(€+6n+yn_tn)_Zd\n(€+6n+yn_tn)
n=1 n=1

N 1 N N .
CY (En+&p)+ §||w||2 — Y @n+n)én— ) @n+0n)n
n=1 n=1 n=1

N N
=Y anle+yn—tn)— ) @nle+yn—tp)
n=1

n=1

N N 1 9 N N
n=1 n=1 n=1

N N
- Z (an +d\n)€_ Z (an _é\n)(yn - tn)
n=1 n=1
1 9 N N
= —||W|| - Z(an +6n)6_ Z(an_d\n)(yn_tn)
2 n=1 n=1

1 N N N
- 5||W||2 =Y (an— @)W PR, +b—1,)— Y (an+ane+ Y.
n=1 n=1 n=1

1 N N N
= §||w||2— Y (@n @)W px,)+b)— Y (an+ane+ Y (an—an)ty
n=1 n=1 n=1

N N
Y (an+@nde+ Y (an—@nlty

1 2 N T
= Zwll* =) (an—@)W $(xp) -
n=1 n=1 n=1

2

1 9 9 N N
= EIIWII —lIwll® =) (an+@nde+ Y (an—@nltn
n=1 n=1

1 9 N N
= _EHW“ _Z(an+&n)€+ Z(an_an)tn
n=1 n=1

Just as required.
Problem 7.8 Solution

This obviously follows from the KKT condition, described in Eq (7.67) and
(7.68).

Problem 7.9 Solution

The prior is given by Eq (7.80).

M
pwla) = [[AH(0,a;") = #(w|0,A™)
i=1

Where we have defined:
A =diag(a;)
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The likelihood is given by Eq (7.79).

ptIX,w,p) = ﬁp(tn|xn,w,ﬁ‘1)
n;l
= nﬂmmw%(xn),ﬁ—l)
= N (tlow,f'D)
Where we have defined:

D = [p(x1), Pp(x2), ...,(P(Xn)]T

Our definitions of ® and A as consistent with the main text. Therefore,
according to Eq (2.113)-Eq (2.117), we have:

pwit,X a,p) = A (m,2)
Where we have defined:
> =A+p0To)!
And
m = @7t
Just as required.
Problem 7.10&7.11 Solution

It is quite similar to the previous problem. We begin by writting down the
prior:

M
pwla) = [[A4(0,a;1) = #(wl0,A™)
i=1

Then we write down the likelihood:

N
p(tn|Xn,W,ﬁ_l)
n=1
N
N (W p(x,), 1)
=1

p(tIX,w, )

n

= N(t|Ow,B ')

Since we know that:

ptX a,p) = fp(th,w,,B)p(wla)dw
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First as required by Prob.7.10, we will solve it by completing the square.
We begin by write down the expression for p(t|X,w, §):

rtX, a,p)

f N (w|0, A" N (t|®w, D) dw
(ﬁ)N/Z.;. ﬁ am-fexp{—E(w)}dw
21 @emMz St

Where we have defined:

B

1
E(w) = ngAw+ Ellt—(l)wll2

We expand E(w) with respect to w:

E(w) = %{WT(A+ T ®)w - 26tT (Ow) + ﬁtTt}

1
= §{WTZ_1W—2mTZ_1W+,BtTt}
1
= 5{(W—m)TZ_l(w—m)+ﬂtTt—mTZ_1m}

Where we have used Eq (7.82) and Eq (7.83). Substituting E(w) into the
integral, we will obtain:

_ (B 1

ail/z -fexp{—E(w)}dw
1

= (E)N/2 . ;
2 2m)M2

:E ﬁjg

1 _
ail/2 .(zn)M/2 . IZII/zexp{ _ §(ﬁtTt _mT> lm)}

3
I
—

_  Bove sz 17 o1e, _Llor, o rso1
= (271) IZIV% I] ;% -exp 2(ﬁt t-m" X 'm)

m=1

_ (ﬁ)N/2_|z|1/2_ ﬁ a1/2~exp{—E(t)}
27 m=1 !

We further expand E(t):

E(t) %(,BtTt—mT > 1m)

= %(,BtTt—(,BZ(I)Tt)TZ‘l(ﬁZd)Tt))

1
= E(ﬁtTt -pATozz"120Tt)

- %(ﬁtTt— gt oze’t)
- %tT(ﬁI—ﬁ2(I>Z(I)T)t
_ %tT pI- po(A + poT @) 10T |t

1 1
= 51;T(,6‘1I+(I)A‘lcpT)‘lt = 5tTC‘lt
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Note that in the last step we have used matrix identity Eq (C.7). There-
fore, as we know that the pdf is Gaussian and the exponential term has been
given by E(t), we can easily write down Eq (7.85) considering those normal-
ization constant.

What’s more, as required by Prob.7.11, the evaluation of the integral can
be easily performed using Eq(2.113)- Eq(2.117).

Problem 7.12 Solution

According to the previous problem, we can explicitly write down the log
marginal likelihood in an alternative form:

N N
InptX a,p) = —lnﬁ——ln2n+—ln|2|+ Zlnal E(t)
We first derive:
dE(t) 1d T
= >
da; 2dal(m m)
1d T IvgT
= —= tTPXI It
2dal ﬁ )
= t'PIDt
2d0¢l(/3 )

1 Il
5 ﬂd (B )- i]
1 1
= ST @TH@THT 1] = Sm?,

In the last step, we have utilized the following equation:

d
—Tr(AX'B) = -X TATBTX T
dX
Moreover, here I; is a matrix with all elements equal to zero, expect the
i-th diagonal element, and the i-th diagonal element equals to 1. Then we
utilize matrix identity Eq (C.22) to derive:

dn|Z| _  dln|Z7}

da; B da;
= -Tr|X
= —Zi

Therefore, we can obtain:

dnp 1 1 , 1
- _Cm?_Zy
da; 2a; 2 g“u




Set it to zero and obtain:

1-ai2i _ vi
m;

%

1
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Then we calculate the derivatives of In p with respect to § beginning by:

Then we continue:

dE(t)
ap

Therefore,

din|Z| _  dIn|Z7}
g dap
d T
- —Tr[Z%(AJr,B(D <1>)]
= —Tr[zchcb]
1, 1d, o
= —t't— x>
2 2dﬁ( Im)
1 T 1d T 1 T
= ZtTt-= ox3 '@
St 2d,6(ﬂ t t)
_ Ly 1d — T ozot)

2" ' 2dp
W ptlozo’t - 1 ﬁ2i(th>zq>Tt)
2 2" 4p
{tTt 26tT @z 0Tt - B2 ﬁ(tTCDZ(I)Tt)}
{tTt 2t7(®m) - f —ﬁ(tTcpchTt)}
Z—l
{t"t—2¢" (@m) - 2 Trl——= (tT(I)Z(DTt) I}

ap
t7t— 2t (@m) + ﬁ2Tr[Z(<I)Tt)(<I)Tt)TZ 0" o]}

t"t -2t (@m) + Tr[mm” - o7 @]}

HNIHNDIH DN N

= E{tTt —2tT(®m) + Tr[(I)mmT . CI)T]}
1 2

= —||[t—®m]||
2

we have obtained:

dlnp l(N
dg 2

2 T
5° [t— ®m]||2 - Tr[Z® m])
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Using Eq (7.83), we can obtain:

o070 = zoTo+p'ZA-p1ZA
= IpoT®+A)p-pIZA
= It -pzA
= (I-ZA)p!

Setting the derivative equal to zero, we can obtain:

_lt-®m|? _ [|t—®m]]?
T N-Tr(I-XA)  N-Y,7;

,6_1
Just as required.

Problem 7.13 Solution

This problem is quite confusing. In my point of view, the posterior should
be denoted as p(wlt,X,{a;,b;},ap,bp), where ag,bg controls the Gamma dis-
tribution of B, and a;,b; controls the Gamma distribution of a;. What we
should do is to maximize the marginal likelihood p(t|X,{a;,b;},ap,bp) with
respect to {a;,b;},ap,b5. Now we do not have a point estimation for the hyper-
parameters § and «;. We have a distribution (controled by the hyper priors,
ie., {ai,bi},ap,bp) instead.

Problem 7.14 Solution

We begin by writing down p(¢|x,w, ). Using Eq (7.76) and Eq (7.77), we
can obtain:
plelx,w, %) = N (tw! ¢x),(6*)7H)

Then we write down p(w|X,t,a*,$*). Using Eq (7.81), (7.82) and (7.83),
we can obtain:
pwiX,t,a*, ") = ¥ (wm,Z)

Where m and X are evaluated using Eq (7.82) and (7.83) given a = a*
and § = B*. Then we utilize Eq (7.90) and obtain:

pEx, X, t,a*,f*) = f,/V(t|wT<p(x),(ﬁ*)—l)mw|m,2)dw

f</V(t|¢(X)TW,(ﬁ*)_l)ﬂ(wlm,Z)dw

Using Eq (2.113)-(2.117), we can obtain:
p(tIx,X,t,a*, %) = N (u,0%)

Where we have defined:
p=m"Ppx)
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And
o2 = () 1+ )T ZPp(x)

Just as required.
Problem 7.15 Solution
We just follow the hint.

1
L(a) —§{N1n2n+1n|0| +tfC 1y

1 _ _
= —§{N1n2n +In|C_;|+In|1+a; 1(pLTC_i1¢pi|

-1 T-1
C_i‘pi‘Pi C

wlCl - 2= iy
" ait+@]Clle; }
Clg;plC}

—_—
a;i+@l Cly;

1 _ _ 1
= L(a)-;Ill+a; loTC lo, 1+ 5tT

2
1 1 q;
= Lla_)-=In|l+a; s;|+-—
(a_;) 2 n| a; sil 2@+,
2
- Lla)--m&rsi, 1 4
2 a; 2a;+s;
1 q?
= L(a_))+=|lna; -In(a; +s;) + — =La_;)+ Ma;)
2 a;+S;

Where we have defined A(a;), s; and q; as shown in Eq (7.97)-(7.99).
Problem 7.16 Solution
We first calculate the first derivative of Eq(7.97) with respect to «;:

oA 1.1 1 q?

aa’i 2 a; _ai+s,~ _(ai+si)2
Then we calculate the second derivative:

21 1.1 1 2q?
+ + .
(a; +8))2%  (a;+s;)3

0z 2 a2
1 l

Next we aim to prove that when a; is given by Eq (7.101), i.e., setting the
first derivative equal to 0, the second derivative (i.e., the expression above) is
negative. First we can obtain:

s? 5iq7
1 15
5 +8; = B
q; —Si q; —Si

a;+s; =
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Therefore, substituting a; +s; and a; into the second derivative, we can

obtain:

%A
aa?

Just as required.

1[ (@?-s) (@7-3) 297(g7—s)’
2 s‘i1 S?Q? s?q?
1 qj(q} =51  sHqi-s)®  2si(q} -s)
2 qisy sia; 514}
1(g7-s)”
E1(14—34’[_q‘i‘+slz.+2si(qlz-—Si)]

iSi

2 )2
lu[_(qZ—si)z]
2 q?s? '
1(g?—s)*
2 q‘ils‘i1

Problem 7.17 Solution

We just follow the hint. According to Eq (7.102), Eq (7.86) and matrix
identity (C.7), we have:

Qi

= @ Ct

= ol 1+oA dT) 1t

= @l (BI-BIDA + @7 pID) '@ pI)t
= @7 (f-poA+po @) 0 )t

= ¢T(p-proz0)t

= Polt- ol ozt

Similarly, we can obtain:

Just as required.

S; = ¢?C_1(Pi
¢! (p-pOZO g,
Bol @~ frpl DD,

Problem 7.18 Solution

We begin by deriving the first term in Eq (7.109) with respect to w. This
can be easily evaluate based on Eq (4.90)-(4.91).

ow

N

0 N B .
—{ ¥ talnya + A=t IA-ya)} = 3 (t = ya)p,, = O"(6-Y)
n=1

n=1
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Since the derivative of the second term in Eq (7.109) with respect to w
is rather simple to obtain. Therefore, The first derivative of Eq (7.109) with

respect to w is:
Olnp

=0T (t-y)-Aw

For the Hessian matrix, we can first obtain:

20"y} = é%{(tn—ynm}
N 4
= _n;l%{yn"pn}
N oo(wl¢p,)
— _ZU‘;—W(I,?;

S
I
—

do(a) da
0a ow "

|
|
M=

S
Il
—

Where we have defined @ = w’ ¢,. Then we can utilize Eq (4.88) to derive:

i{q)T(t—y)} =- % o(1-0)-¢,-¢T = ~-0TB®
ow = n n

Where B is a diagonal N x N matrix with elements b, = y,(1-y,). There-
fore, we can obtain the Hessian matrix:

o (al
H=—{ np}=—(d)TB<D+A)
ow U Oow

Just as required.
Problem 7.19 Solution
We begin from Eq (7.114).

ptlw")p(w*|a)2m)M2 x| V2

[ ﬁ P(tnlxn,W)] [ ﬁ JV(wi|O,ai_1)](2n)M/2|Z|1/2‘
n=1 i=1

p(tla)

w=w*

N
[ TT pttnln, )] - A (w10, A)- @) 2 22|
n=1 w

We further take logarithm for both sides.

Nl (t )+ 1InA( 0A)+%1 2 +11 b2
Y Inp(tplxn, w)+1InA (w0, 5 In27+ S ln| |”w:w*

n=1

Inp(t|a)

I
M=

n=1

1 1 1
[ty Iny, +(1-t,)In(1 - y,)] - “wlAwW - =1In|A|+=In|Z| + const] |
2 2 2 W=w*

N 1 5 1 1
= nX::l [tnIny, +(1-t,)In(1 - y,)] - §W Aw] + [élnIZI - éln |A| + const] |w:w*
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Using the Chain rule, we can obtain:

Oln p(t|a) _ Olnp(tla) ow
Oa; w=w' ow  Oa;lw=w"
Observing Eq (7.109), (7.110) and that (7.110) will equal 0 at w*, we can
conclude that the first term on the right hand side of In p(t|a) will have zero

derivative with respect to w at w*. Therefore, we only need to focus on the
second term:

Oln p(t|a) B 0

1 1
—In|Z|-=1n|A]
2 2

‘w:w*

oa; w=w"* oa;
It is rather easy to obtain:
0o 1 10
—~mnjAl=-=—[YInail] = —
aai[ 2 o |] 26ai[2i" ne; ] 2ai

Then we follow the same procedure as in Prob.7.12, we can obtain:

0o 1 1
“n|Z] = -=3;
aai[Z n|X[] 9 ii

Therefore, we obtain:
Olnp(t|a) 1 1
—— = — -2
oa; 2a; 2

Note: here I draw a different conclusion as the main text. I have also
verified my result in another way. You can write the prior as the product of
A (w; 10, ai_l) instead of A4 (w|0,A). In this form, since we know that:

1
2a;

o M _
Y A (wil0,a; ) = —(GIna; ~ %w?) =

1 .,
oa; i oa; 2 2

The above expression can be used to replace the derivative of —1/2w? Aw—

1/2In|A|. Since the derivative of the likelihood with respect to a; is not zero
at w*, (7.115) seems not right anyway.

0.8 Graphical Models

Problem 8.1 Solution

We are required to prove:

K
fp(x)dx = f Hp(xklpak)dx =1
x Xp=1
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only depends on only one node (except the root), i.e., its parent. Thus we can
easily change a undirected tree to a directed one by matching the potential
function with the corresponding conditional PDF, as shown in the example.

Moreover, we can choose any node in the undirected tree to be the root and
then work outwards to obtain a directed tree. Therefore, in an undirected tree
with n nodes, there is n corresponding directed trees in total.

Problem 8.19-8.29 Solution (Waiting for update)

I am quite confused by the deduction in Eq(8.66). I do not understand the
sum-prodcut algorithm and the max-sum algorithm very well.

0.9 Mixture Models and EM

Problem 9.1 Solution

For each r,; when n is fixed and 2 = 1,2,...,K, only one of them equals
1 and others are all 0. Therefore, there are K possible choices. When N
data are given, there are KN possible assignments for {r,z;n = 1,2,...,N;k =
1,2,..,K}. For each assignments, the optimal {u;;% = 1,2,...,K} are well de-
termined by Eq (9.4).

As discussed in the main text, by iteratively performing E-step and M-
step, the distortion measure in Eq (9.1) is gradually minimized. The worst
case is that we find the optimal assignment and {g;} in the last iteration. In
other words, KV iterations are required. However, it is guaranteed to con-
verge because the assignments are finite and the optimal {u;} is determined
once the assignment is given.

Problem 9.2 Solution

By analogy to Eq (9.1), we can write down:

K
JIn = JIN_1+ Y raellxN — g l1P
k=1
In the E-step, we still assign the N-th data xy to the closet center and
suppose that this cloest center is u,,. Therefore, the expression above will
reduce to:
IN = IN-1+1%n = 12
In the M-step, we set the derivative of Jy with respect to u; to 0, where
k =1,2,..,K. We can observe that for those u;, £ # m, we have:

0Jy  9dN1
op,  Opy,




171

In other words, we will only update p,, in the M-step by setting the
derivative of Jx equal to 0. Utilizing Eq (9.4), we can obtain:

™) SN rakxn +xN
Hy™ =
Z rnk+1
Zn 1rnkxn XN
_ Zn 1rnk Zn 1rnk
1+ —o—
Zn 1rnk
(N- 1) XN
1+ —5—
Zn 1rnk
xy
_ ”(N D, YNIrak XN iTnk
& 1+ —2—
Zn 17nk
(N-1)
— (N-1) XN~ ﬂm
= Hp
1+Zn 1rnk

So far we have obtained a sequential on-line update formula just as re-
quired.

Problem 9.3 Solution

We simply follow the hint.

p(x) Y p(z)p(x|z)

K
1‘[ |G el )|

Note that we have used 1-of-K coding scheme for z = [21,29,...,zx17. To
be more specific, only one of z1,29,...,zg will be 1 and all others will equal 0.
Therefore, the summation over z actually consists of K terms and the k-th
term corresponds to z; equal to 1 and others 0. Moreover, for the £-th term,
the product will reduce to 7y A (x|p;, 2 ). Therefore, we can obtain:

K 2 K
p@) =Y [ [mer i, 20| = 3 meh (xligy, Za)
Z k=1 k=1

Just as required.
Problem 9.4 Solution

According to Bayes’ Theorem, we can write:

p(0X) x p(X|0)p(0)
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Taking logarithm on both sides, we can write:
Inp(@X) x In p(X|0) + In p(0)

Further utilizing Eq (9.29), we can obtain:

np@®X o Wn{Y pX,ZIO)} +1np(®)
Z

In{[ Y. p(X,ZI6)] - p(O))}

In{Y p(X,ZI0)p(©)}
Z

In other words, in thise case, the only modification is that the term p(X,Z|0)
in Eq (9.29) will be replaced by p(X,Z|0)p(0). Therefore, in the E-step, we still
need to calculate the posterior p(ZX,0°%) and then in the M-step, we are re-
quired to maximize Q'(0,6°'%). In this case, by analogy to Eq (9.30), we can
write down @ (0,0°9):

Q0.0 = Y p@X0")ln [pXZI6)p(®)
= ;p(ZIX,HOId)[lnp(X,ZIH)+lnp(0)]
= Y p(ZIX,0°%)Inp(X,Z10)+ Y p(ZX,0°%)In p(0)
= gp(ZIX,H"ld)lnp(X,Zlﬂ)+lflp(0)-2p(Z|X,0°ld)
= ép(ZIX,BOld)lnp(X,ZIB)+1np(0) ’

= Q0,0°% +1Inp(®)

Just as required.
Problem 9.5 Solution

Notice that the condition on g, £ and & can be omitted here, and we only
need to prove p(Z|X) can be written as the product of p(z,|x,). Correspond-
ingly, the small dots representing g, X and & can also be omitted in Fig 9.6.
Observing Fig 9.6 and based on definition, we can write :

p(X,Z) = p(x1,21)p(z1)...p(XN,ZN)p(2N) = p(X1,21)...p(XN,ZN)

Moreover, since there is no link from z,, to z,, from x,, to x,, and from
Z,, to X, (m #n), we can obtain:

p(Z) = p(z1)...p(zy), pX) = p(x1)..p(XN)
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These can also be verified by calculating the marginal distribution from
p(X,Z), for example:

p(Z) =) pX,Z)= ) px1,21)..pXN,2N) = p(z1)...p(zN)

X X1 eeey XN
According to Bayes’ Theorem, we have
pX|Z)p(Z)
pX)
(11, P2 [T, (2]
H]ryzl p(xn)
N

B p(Xn|zn)p(zy)
- nljl p(xyz)
N

[1 p(znlxs)

n=1

p(Z[X)

Just as required. The essence behind the problem is that in the directed
graph, there are only links from z, to x,,. The deeper reason is that (i) the
mixture model is given by Fig 9.4, and (ii) we assume the data {x,} is i.i.d,
and thus there is no link from x,, to x,,.

Problem 9.6 Solution

By analogy to Eq (9.19), we calculate the derivative of Eq (9.14) with
respect to X:

dln o X N 1 oa
P —{) Ina,} =) ——= ()
0x 0x sia, 0X
Where we have defined:

K
an = Z TN (Xnlpty,, )
k=1

Recall that in Prob.2.34, we have proved:

dln. A 31 1
DAl D) Lo, Looag 5o
35 2 2

Where we have defined:

Spr = (X, — I»lk)(xn —Hp )T
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Therefore, we can obtain:

Oan, 0
oz az{Z”kW(Xn“‘k’Z)}
L
) kza—z{”k”"‘n'ﬂkl)}
=1
K 4
— a—{exp [lnﬂ(xnlﬂk’z)]}
k=1

0
np-exp [ In A (x, 1y, 2)] -E[lnﬂ(xnlpk,Z)

Il
=
= &MN

1
= Y mp N (%, D) <——z +52 'SuZ7h
k=1

Substitute the equation above into (), we can obtain:

dlnp N 1 fa,
X Za,ox
Zleﬂk -JV(Xn|pk,Z)-(—%Z_1 +Z_1Snkz_l)

n=1 Y N (Rl E)

K 1
Y y(znr)- (——z +52 'SuZ7h

I
M=

S

l\:>||—l ﬂ.

k=1
N K K
{ Z Z Y(znk)}z +- Z {Z Z Y(znk)snk}z_
n=1 kzl n=1 :1
If we set the derivative equal to 0, we can obtain:
_ Zz,yzl Zfe{:l Y(znk )Snk

Y YK ¥(zar)

Problem 9.7 Solution
We begin by calculating the derivative of Eq (9.36) with respect to p;:
Olnp 0 N

o, = aﬂk{ Z lenk[lnnk +ln,/V(xn|[tk,Zk)]}

N
- —{ Z 2o [ 1077 +1nJV(xn|pk,Zk)]}

%{znk In A (a2, Z1)}

0
= — 1 In AV (x| 17, Z2)
x,gékaﬂk{ niMp k}

1l
||M2
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Where we have used x, € C}, to represent the data point x, which are
assigned to the k-th cluster. Therefore, p; is given by the mean of those
x, € Cp, just as the case of a single Gaussian. It is exactly the same for the
covariance. Next, we maximize Eq (9.36) with respect to 73 by enforcing a

Lagrange multiplier:
K

L=Inp+AM)_ mp—-1)
k=1

We calculate the derivative of L with respect to 7, and set it to O:

oL X
oy IR0
omp =1 7k

We multiply both sides by 77, and sum over k making use of the constraint
Eq (9.9), yielding A = —N. Substituting it back into the expression, we can
obtain:

1 N
mp = Zvn;znk
Just as required.
Problem 9.8 Solution

Since y(z,;) is fixed, the only dependency of Eq (9.40) on u; occurs in the
Gaussian, yielding:

OE,[Inp] 0 (X
opy, aﬂk{ngl " m }
N Oln N (%, |1, Z1)
= Y(Znr)-
= ouy,

N
= 3 ) |2 0 )|
n=1

Setting the derivative equal to 0, we obtain exactly Eq (9.16), and conse-
quently Eq (9.17) just as required. Note that there is a typo in Eq (9.16), 2,
shoule be Z};l.

Problem 9.9 Solution
We first calculate the derivative of Eq (9.40) with respect to XZj:

ok, 0 (X
= @{ElY(an)lndV(Xan,Zk)}
N ( )alnﬂ(xnlpk,zk)
= Y\Znk
n=1 " 0Zp,

Y 1.0, 1.4 -1
= Zly(znk)'[_ﬁzk +§Zk Snkzk ]
n=
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As in Prob 9.6, we have defined:
Sk = (n — ) (xn — )"
Setting the derivative equal to 0 and rearranging it, we obtain:

Sr1Y@nt)Sur  Xh_1Y(2n) St
k = =
eryzl Y(znk) Nk
Where N}, is given by Eq (9.18). So now we have obtained Eq (9.19) just
as required. Next to maximize Eq (9.40) with respect to 73, we still need to
introduce Lagrange multiplier to enforce the summation of pi; over & equal
to 1, as in Prob 9.7:

K
L=E+M) m-1)
k=1

We calculate the derivative of L with respect to 75, and set it to O:

L _ X yew)

= A=0
aﬂk n=1 TTp

We multiply both sides by 73, and sum over k making use of the constraint
Eq (9.9), yielding A = —N (you can see Eq (9.20)- Eq (9.22) for more details).

Substituting it back into the expression, we can obtain:
1 X Ny

Ty = — Znk) = —

EEN nEZIY( nk) N

Just as Eq (9.22).
Problem 9.10 Solution
According to the property of PDF, we know that:
p(xe,xp)  px) & m
= = - p(x|k)
p(Xq) p(Xq) ;=1 P(Xa)

pP(Xplx,) =

Note that here p(x,) can be viewed as a normalization constant used to
guarantee that the integration of p(x;|x,) equal to 1. Moreover, similarly, we

can also obtain:
K

_ S m
p(xalxb) = ];1 p(Xb)

-p(xlk)

Problem 9.11 Solution

According to the problem description, the expectation, i.e., Eq(9.40), can
now be written as:

N K
E.llnpl=) ) y(znk){lnnk +anV(xn|pk,eI)}
n=1k=1
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In the M-step, we are required to maximize the expression above with
respect to g, and 7. In Prob.9.8, we have already proved that y; should be
given by Eq (9.17):

1 N
= — (znr)x (%)
M, Nk ng’ly k)Xn

Where Ny, is given by Eq (9.18). Moreover, in this case, by analogy to Eq
(9.16), y(z,1) is slightly different:

TN (X |y, €l)
LjmjN Xnlpj,el)

Y(an) =

When € — 0, we can obtain:

an,/V(xnlpj,el)znmﬂ(xnlpm,el), where m:a1qc_3:minj||xn—pjll2
J

To be more clear, the summation is dominated by the max of 7 ;A (x, |p > el),
and this term is further determined by the exponent, i.e., —||x, — j“z_ There-
fore, y(z,1) is given by exactly Eq (9.2), i.e., we have y(z,;) = r,. Combining
with (*), we can obtain exactly Eq (9.4). Next, according to Prob.9.9, n; is
given by Eq(9.22):

_ N _ Y y(znp) Tk
N N N

In other words, m;, equals the fraction of the data points assigned to the

k-th cluster.

Tk

Problem 9.12 Solution

First we calculate the mean p,:

Hy fxp(x)dx

K
fx Z 7, p(x|k)dx
k=1

K

= Z Tp, /xp(xlk)dx

k=1

K
Y. mp oy
k=1

Then we deal with the covariance matrix. For an arbitrary random vari-
able x, according to Eq (2.63) we have:

E[(x — E[x])(x — E[x])T]
Elxx”]-E[x]E[x]”

cov[x]
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Since E[x] is already obtained, we only need to solve E[xx”]. First we only
focus on the k-th component and rearrange the expression above, yielding:

Erlxx”] = covy[x]+Ex[x]E,[x]" = Zp + pppt

We further use Eq (2.62), yielding:

K
Elxx!] = xx! Z ny, p(x|k) dx
k=1

K
Z Ty, xx! px|k)dx
k=1

iy, Exlxx"]

1l
M=

>~
Il
—

e (g, +Z8)

Il
D=

>~
]
-

Therefore, we obtain Eq (9.50) just as required.

Problem 9.13 Solution

First, let’s make this problem more clear. In a mixture of Bernoulli dis-
tribution, whose complete-data log likelihood is given by Eq (9.54) and whose
model parameters are n; and p;. If we want to obtain those parameters, we
can adopt EM algorithm. In the E-step, we calculate y(z,;) as shown in Eq
(9.56). In the M-step, we update 7;, and p; according to Eq (9.59) and Eq
(9.60), where N, and X;, are defined in Eq (9.57) and Eq (9.58). Now let’s
back to this problem. The expectation of x is given by Eq (9.49):

K
t t
Elx] = Y 77" ploP"
k=1

Here ngp D and pg)p D are the parameters obtained when EM is converged.
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Using Eq (9.58) and Eq(9.59), we can obtain:

K
[E[X] — (Opt)llg:pt)

k=1
K

N
_ (opt) 1 Z (opt)
= Y Pl == v "%,
k
=1 N;gpt)nzl

J

3

Il
M=

2

1 (opt)
> Y(znr) Pxy,
NP o

Y(znk )(Opt)xn

Il
M=
M=

Il
M=
™M 2~

[y

_
Il
[
S
I
—

¥Y(znt) Px,
N

S
1l
—

Y(zZnk )(opt)

Il
M=
ol
S
s

=

2~ i
M= |
X

I

M

=
Il
—

If we set all p; equal to fi in initialization, in the first E-step, we can

obtain: 0 0
p PXnlpy, = @)
Y(znk)(l) _ nfk T 7Tgem

ZJljp(xnIuJ ) ZK (0)

Note that here i and 70 k ) are the initial values. In the subsequent M-step,
according to Eq (9.57)-(9.60), we can obtain:

0
plh = V) Vx, = PIARECY L S VAP Ty % _ L%
% nk n = B -
WL Sen® | X N

And
2D N(l) ZZry:1 Y(Znk ) Zn 17 560) = 70
g N N N Tk
In other words, in this case, after the first EM iteration, we find that the
new pgel) are all identical, which are all given by x. Moreover, the new ng) are

identical to their corresponding initial value ng))

EM iteration, we can similarly conclude that:

. Therefore, in the second

@ _ @1 _ @ _ (1) _ O
L Ty =7 =7y

In other words, the EM algorithm actually stops after the first iteration.
Problem 9.14 Solution
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Let’s follow the hint.

pXlz,p) - p(z|m)

K K
z 4
p(xlp)™ 'kl_llﬂkk

p(x,z|p,m)

I
—

k=1

K 2k
[T |[mp(xlpey)]
k=1

Then we marginalize over z, yielding:

K 2k
p&xlp) =) pxzip,m) =) [] [nkp(Xka)]
z 7 k=1

The summation over z is made up of K terms and the k-th term corre-
sponds to z; = 1 and other z;, where j # k, equals 0. Therefore, the k-th term
will simply reduce to n;p(x/u;). Hence, performing the summation over z
will finally give Eq (9.47) just as required. To be more clear, we summarize
the aforementioned statement:

pxlp)

K o
Y10 [ﬂkp(xmk)]
zZ k=1

K 2 K 2

H [nkp(xluk)] ) , + ...+ H [nkp(xlpk)] ‘ ,
k=1 Z1= k=1 K=
m1p(X|py) + ... + Tg p(X|pg)

K

mpp(X|py)
k=1

Problem 9.15 Solution

Noticing that 7, doesn’t depend on any puy;, we can omit the first term in
the open brace when calculating the derivative of Eq (9.55) with respect to

Hei:
OE,[Inp]

Ok

D
{Y(an) Y [niInpug; + (1 —2:)In(1 — )] }
i=1

()]
o Elo
M= iM=

M= T
n—an

{Y(znk) [ni In g + (1 = 26) In(1 — ;)] }

Olki n=1j=1i=
y 0. Y(znk) [2ni In g + (1 —2,3) In(1 — pz;)|
n:laukl

N s
3 Y(an)M
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Setting the derivative equal to 0, we can obtain

ZN71 Y(Znk)xXni
L Zn=1 " " (Znk)Xni
Hki N y(zur) N Z yienk

Where Ny, is defined as Eq (9.57). If we group all the uz; as a column
vector, i.e., g, = [Ur1, pr2, ...

, /.tkD]T, we will obtain Eq (9.59) just as required
Problem 9.16 Solution

We follow the hint beginning by introducing a Lagrange multiplier

K
L = E.[lnp(X, Zlp, )] + MY 71— 1)
k=1

We calculate the derivative of L with respect to 75 and then set it equal
to O:

-y X 5 (+)
Onk o1 TR
Here E.[Inp] is given by Eq (9.55). We first multiply both sides of the

expression by 77 and then adopt summation with respect to %2, which gives

Z Z Y(znp) + Z Amy, =

n=1k=

Noticing that Zf: 17k equals 1, we can obtain

N K
- Z Z Y(znk)
n=1k=1
Finally, substituting it back into (%) and rearranging it, we can obtain
Ay = _25:1Y(an) _ Zley(znk) N,
A

Zz,yzl Zé{zl Y(znk) B F

Where N, is defined by Eq (9.57) and N is the summation of N over &
and also equal to the number of data points

Problem 9.17 Solution

The incomplete-data log likelihood is given by Eq (9.51), and p(x,|u;) lies
in the interval [0, 1], which can be easily verified by its definition, i.e., Eq
(9.44). Therefore, we can obtain

InpX|p,x) =

K N K N
Y In{) mpp&nlpp)}< ) In{) mpx1}<) Inl=
n=1 k=1 n=1 k=1 =
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Where we have used the fact that the logarithm is monotonic increasing,
and that the summation of 73, over k equals 1. Moreover, if we want to achieve
the equality, we need p(x,|u;) equal to 1 for all n = 1,2,...,N. However, this
is hardly possible.

To illustrate this, suppose that p(x,|u;) equals 1 for all data points. With-
out loss of generality, consider two data points x1 = [x11,%12, ., x1p]T and
X9 = [x21,%99, ..., xap 1T, whose i-th entries are different. We further assume
x1; = 1 and x9; = 0 since x; is a binary variable. According to Eq (9.44), if we
want p(x;|p;) = 1, we must have y; = 1 (otherwise it muse be less than 1).
However, this will lead p(x2|p;) equal to O since thereis a term 1—-py; = 0in
the product shown in Eq (9.44).

Therefore, when the data set is pathological, we will achieve this singu-
larity point by adopting EM. Note that in the main text, the author states
that the condition should be pathological initialization. This is also true. For
instance, in the extreme case, when the data set is not pathological, if we
initialize one 7 equal to 1 and others all 0, and some of u; to 1 and others 0,
we may also achieve the singularity.

Problem 9.18 Solution

In Prob.9.4, we have proved that if we want to maximize the posterior
by EM, the only modification is that in the M-step, we need to maximize
Q'(0,6°9) = Q(0,0°9) +Inp(@). Here Q(0,0°9) has already been given by
E,[lnpl, i.e., Eq (9.55). Therefore, we derive for In p(f). Note that In p(0) is
made up of two parts:(i) the prior for y; and (ii) the prior for 7z, we begin by
dealing with the first part. Here we assume the Beta prior for y;;, where & is
fixed, is the same, i.e.,:

[(ap +br) 4,-1 br-1 .
—— (1= i)t =12,..,D
F(ak)r(bk)ukl ( /J'kl) ’ l s &y >

Therefore, the contribution of this Beta prior to In p(8) should be given by:

purilag,by) =

K D
Y. D (@i = DInpgi +(b; = DIn(1 - ;)
k=1i=1

One thing worthy mentioned is that since we will maximize Q’(0,0°1d)
with respect to &, u;, we can omit the terms which do not depend on 7, u,,
such as I'(ag, + b;) /T(az)I'(br). Then we deal with the second part. According
to Eq (2.38), we can obtain:

I'(ao) K ap-1
@)= —————— || n,*
P T(ay).. Tlag) pu

Therefore, the contribution of the Dirichlet prior to In p(@) should be given

by:

K
Z(ak —Dlnn,
k=1
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Therefore, now Q/(0,0°1d) can be written as:

K D K
Q(0,0°)=E.[Inpl+) Y [(a,- —DIn pp; +(b; —1>1n(1—uki)] +Y (ap—1Dlnmy
k=1i=1 k=1

Similarly, we calculate the derivative of Q/(0,0°ld) with respect to uz;.
This can be simplified by reusing the deduction in Prob.9.15:

Q OE(lnp] ai-1 b;-1
Optri Optri Bri 1= i
N ; 1—xp -1 b;-1
_ Z Y(an)(@ _ Xni + a; _ 9
n=1 Mri  1— i Mri  1— g
_ D% Y +ai—1 X (L= xni)y(2ar) +bi =1
HEi 1 - pigi
_ Nk-”_cki"'ai_l_Nk_Nk-’_Cki"‘bi_l
Hri 1-pri

Note that here xj; is defined as the i-th entry of x; defined in Eq (9.58).
To be more clear, we have used Eq (9.57) and Eq (9.58) in the last step:

N 1 N
Y %ni-¥(znk) = Ny - [F Y xni 'Y(znk)] = Np - Xp;
n=1 k n=1

Setting the derivative equal to 0 and rearranging it, we can obtain:

_ Npkpita;-1
B Np+a;—1+b; -1

Hri

Next we maximize Q/(G,H"ld) with respect to 7. By analogy to Prob.9.16,
we introduce Lagrange multiplier:

K K
Lo E+ ) (ap—Dlnm+A(Y 1, - 1)
k=1 k=1

Note that the second term on the right hand side of Q/ in its definition has
been omitted, since that term can be viewed as a constant with regard to .

We then calculate the derivative of L with respect to 7 by taking advantage
of Prob.9.16:

Similarly, We first multiply both sides of the expression by 77, and then adopt
summation with respect to £, which gives:

K N K K
Y Y v+ Y (ap -1+ Y Amp =0
k=1 k=1

n=1 k=1
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Noticing that Zf: 17k equals 1, we can obtain:
K K
A= —ZNk—Z(ak—l) =-N-a9+K
k=1 k=1

Here we have used Eq (2.39). Substituting it back into the derivative, we

can obtain: N
anly(znk)'f' ap—1 _ Np+ap—1

-1  N+ao-K
It is not difficult to show that if N is large, the update formula for ;& and
[ in this case (MAP), will reduce to the results given in the main text (MLE).

Ty =

Problem 9.19 Solution

We first introduce a latent variable z = [z1, 29, ..., 2517, only one of which
equals 1 and others all 0. The conditional distribution of x is given by:
K
pXlz,p) = | | p(x|p,)*
k=1

The distribution of the latent variable is given by:
K
palm) = [}
k=1

If we follow the same procedure as in Prob.9.14, we can show that Eq
(9.84) holds. In other words, the introduction of the latent variable is valid.
Therefore, according to Bayes’ Theorem, we can obtain:

N N K -
P, Zlp,7) = [| p@almpGalzn, ) = [ [] [mepxip)
n=1 n=1k=1

We further use Eq (9.85), which gives:

N K D M
InpX,Zlmm) = Y 3 zweln|me [] []e5!]
d=1j=1

n=1k=1
N K D M

= Y ) znk[lnnk+ > anijln.ukij]
n=1k=1 d=1;=1

Similarly, in the E-step, the responsibilities are evaluated using Bayes’
theorem, which gives:
7 p(Xn | py)
X 7ip(xalp))

Y(znp) = Elzpi] =
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Next, in the M-step, we are required to maximize E,[In p(X,Z|p, x)] with
respect to & and p;, where E,[In p(X,Z|u, )] is given by:

N
E.[lnpX, Zlp, )] = 3 Z y(znk)[lnnk + Z me, lnyku]
n=1k=1 i=1j=1

Notice that there exists two constraints: (i) the summation of 73 over &
equals 1, and (ii) the summation of ug;; over j equals 1 for any £ and i, we
need to introduce Lagrange multiplier:

L=FE, [lnp]+7l(z -1+ Z anl(z [ij —

=1i= Jj=

First we maximize L with respect to 7;. This is actually identical to the
case in the main text. To be more clear, we calculate the derivative of L with
respect to my,:

oL %Y(an) 1

ank )

As in Prob.9.16, we can obtain:

Ny,
T = —
ETN

Where N}, is defined as:

N
N =) y(zap)

n=1

N is the summation of N over k, and also equals the number of data
points. Then we calculate the derivative of L with respect to u;;:

oL _ % Y(znk)xnij 4

Otkij p=1  Mhij

We set it to 0 and multiply both sides by p;;, which gives:

N
Y ¥(Znk)Xnij + Nrittkij = 0
n=1

By analogy to deriving m;, an intuitive idea is to perform summation for
the above expression over j and hence we can use the constraint }_; uz;; = 1.

N
Z Z Y(znk)xnu = Z Y(an)[ Z xnu] == Z Y(z2nr) = =Ny
n=1

j=1ln=1



186

Where we have used the fact that }_;x,;; = 1. Substituting back into the
derivative, we can obtain:

ZN: Y(Z k)x .. 1 N
Hhij = == = o Yy zk) Fnig
Nki Nk pz1

Problem 9.20 Solution

We first calculate the derivative of Eq (9.62) with respect to a and set it
to O:

—F _ - =7 " )
oa 221 « 2
We rearrange the equation above, which gives:
M

(%)

*= ElwTw]

Therefore, we now need to calculate the expectation Eflw” w]. Notice that
the posterior has already been given by Eq (3.49):

p(wlt) = A (my,Sy)

To calculate E[w’ w], here we write down an property for a Gaussian ran-
dom variable: if x ~ A (m, X), we have:

ElxTAx] = Tr[AZ] + m” Am

This property has been shown in Eq(378) in ’the Matrix Cookbook’. Uti-
lizing this property, we can obtain:

Elw’w] = Tr[Sy]+mimy

Substituting it back into (x), we obtain what is required.
Problem 9.21 Solution

We calculate the derivative of Eq (9.62) with respect to f and set it equal

to O: N
Olnp N 1271 1 T. 9
= == El(¢, — =0

ap 221 B 2 1[(”‘”"’")]

n=
Rearranging it, we obtain:

N
YN Eltn - wT,)%

ﬁ:

Therefore, we are required to calculate the expectation. To be more clear,
this expectation is with respect to the posterior defined by Eq (3.49):

p(wlt) = A (my,Sy)
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We expand the expectation:

ELty = 2tn W' b, + W' b, W

= E[2]1-E2t, -w ¢, 1+Ew’ (¢, wl

= 2 -2t, E[¢pIw]+Trlp,dlSn1+mX ¢, my
= 2 -2t,¢L -Elw]l+Trlp, ¢ Sy1+myd,dlmy
= £2-2t,¢ my +Trl¢,pT Sy1+mpp, ¢ my

= (ta—mypy)’+Trldp, by SN

El(t, —wT ¢,)?]

Substituting it back into the derivative, we can obtain:

1 1Y T 2 T
5 = & L {tn-mien) Trig, o8N}

1
= ]T]{Ilt—(DmN||2 +Tr[<pT<psN]}

Note that in the last step, we have performed vectorization. Here the j-th
row of ®@ is given by ¢, identical to the definition given in Chapter 3.
Problem 9.22 Solution

First let’s expand the complete-data log likelihood using Eq (7.79), Eq
(7.80) and Eq (7.76).

InptX,w,B)pwle) = InptX,w,p)+Inp(w|a)

N M
= Y Inp(tplen,w, D+ In ¥ (w;l0,a;t)
n=1 =1

N M
= Y InAN(t, Wi, B+ In¥(w;0,a;1)

n=1 =1

N. B 2, 1¥ o Yo 2
= S-Sy Inoi_y Ziy

2 " on ,;(” W)+ lzzln2n ;2””

Therefore, the expectation of the complete-data log likelihood with respect
to the posterior of w equals:

Nl 0§ Ry
n

Ewllnp]l = o In_— Z[Ew[(tn w <pn)2]+ 21 oy~ L o Ewlw]l
i=1

We calculate the derivative of Ey[In p] with respect to a; and set it to O:

Otwllnp] 1127 1 9
—_— == E “1=0
da; 2oma 2wl
Rearranging it, we can obtain:
1 1

Ewlw?]  EwlwwTl(,

a; =
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Here the subscript (i,i) represents the entry on the i-th row and i-th
column of the matrix Ew[ww?]. So now, we are required to calculate the
expectation. To be more clear, this expectation is with respect to the posterior
defined by Eq (7.81):

pwit,X a,p) = A (m,X)

Here we use Eq (377) described in ‘the Matrix Cookbook’. We restate it
here: if w ~ A (m, X), we have:

T

T] =3 +mm

Elww

According to this equation, we can obtain:

1 ~ 1 1
Ewlwwlliy  (E+mmT);;  Z;+m?

a; =

Now We calculate the derivative of Ey[In p] with respect to f and set it to

OEwllnp] N 127 1X T, 2
—:—————E E. t, — W =0
op 221 p 2,0 wlltn =W $u)]
Rearranging it, we obtain:

N
YN Ewl(t, - wT¢,)?]

ﬂ(new) —

Therefore, we are required to calculate the expectation. By analogy to the
deduction in Prob.9.21, we can obtain:

S i%{(tn—mT¢N)2+Tr[¢ ¢TZ]}
plrew) N oo e

1 2 T
ﬁ{llt—d)mll +Tr[® <I>Z]}
To make it consistent with Eq (9.68), let’s first prove a statement:

A+ 0T®)z = 71O

This can be easily shown by substituting X, i.e., Eq(7.83), back into the
expression:

B rA+0TD)E = A+ 0T D) A+ 0T D) = I
Now we start from this statement and rearrange it, which gives:

o’z = plI-p71AS = pLI-AD)
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Substituting back into the expression for f?¢%):

1
ﬂ(new)

- %{|lt—(l>m||2+Tr[(DT(DZ]}

_ %{Ht—cI>m||2+Tr[/3_1(I—AZ)]}
- %{||t—cl)m||2+,6‘lTr[I—AZ]}
_ %{||t—(l>m||2+,6_1;(1—aizii)}

lIt—®m|®+ 1Y,y
N

Here we have defined y; = 1—a;Z;; as in Eq (7.89). Note that there is a
typo in Eq (9.68), my should be m.

Problem 9.23 Solution

Some clarifications must be made here, Eq (7.87)-(7.88) only gives the
same stationary points, i.e., the same a* and *, as those given by Eq (9.67)-
(9.68). However, the hyper-parameters estimated at some specific iteration
may not be the same by those two different methods.

When convergence is reached, Eq (7.87) can be written as:

*
w_1-a™2
= 2

m:
12

a

Rearranging it, we can obtain:

. 1

a =—2
mi +Zii

This is identical to Eq (9.67). When convergence is reached, Eq (9.68) can

be written as:
llt—®m||®+ ()Y, y;

*\—1 _
(™) " = N
Rearranging it, we can obtain:
(g1 = It=@ml®
N-Y,vi

This is identical to Eq (7.88).
Problem 9.24 Solution
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We substitute Eq (9.71) and Eq (9.72) into Eq (9.70):

L(q,0)+KL(qllp)

p(X,Z10) . p(ZIX,0)
Zq(Z){ln 7 “In Z }

y/
p(X,Z|0)}

;q(Z){lnp(mx,o)

Y q(Z) Inp(X|0)
Z

In p(X10)

Note that in the last step, we have used the fact that In p(X|0) doesn’t
depend on Z, and that the summation of q(Z) over Z equal to 1 because q(Z)
is a PDF.

Problem 9.25 Solution

We calculate the derivative of Eq (9.71) with respect to 6, given g(Z) =
p(ZIX,0CD):

0L(q,0)
00

p(X,Z|0) }

(ZIX,6°'P)In
a1 P(Z/X,60)

0
7]
0
= E{ Zp(ZIX,B(Old))lnp(X,ZIO) - Zp(Z|X,0(old))lnp(Z|X’ o(old))}
z Z
0
00

~o | 2 p@X,6°)np(X, Zi6)}
Z

0lnp(X,Z|0)
00
1 0p(X,Z|0)
pX,Z|0) 00
1 0p(X|0)-p(Z|X,0)
pX,Z|0) 00

p(Z/X,0°')

I
N[

= Y pZX,0'?)
Z

= Y p(ZIX,6°')
V4

_ « p(ZX,0019) op(ZIX,0) 0p(X|0)
= ; X Z0) p(X|0)—— = +p(ZIX,0)—
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We evaluate this derivative at 8 = §°!4:

doL(q,0) p(ZIX,0°'Y) Op(ZIX,0) ap<X|o)
— [ pX|)——— ZX,0
s {; Xz (PR %, 0) [ H e
_ p(ZIX,B(Old)) (ld), OP(ZIX,0) (old) 6p(X|0)
- 7 pX, Z|0(old)) [p(X|0 N 00 o(old) p(ZIX,0 N —— e(old)]
op(Z|X,0) 0p(X|0)
_ (old) (old)
- Z (XIB(OM))[ pX|0*) 00 |0(°1‘” PZIX,6°) == 0("1‘”]
_ y »ZX6) ap<Z|x O Ly p(ZIX,6°'Y) 9pX|0)
- 7 glld) = p(X|0(Old)) 00 glld)
- ¥ Gp(ZIX,B) N 1 0p(X|0)
- 7 00 01D p(Xlo(old)) 00 9Lld
_ Z 0p(Z|X,0) 0ln p(X|0)
7 60 0(old) 60 e(old)
Glnp(XIH)
= { Zp(ZlX 0)} g T 90 9ol
0l 0ln p(X|0)
= E 9ol 00 91D
3 0ln p(X|0)
- 00 9lld)

This problem can be much easier to prove if we view it from the perspec-
tive of KL divergence. Note that when q(Z) = p(ZIX,B(Old)), the KL divergence
vanishes, and that in general KL divergence is less or equal to zero. There-

fore, we must have:
0K L(ql|p)

00

Otherwise, there exists a point 8 in the neighborhood near 8°'Y which

leads the KL divergence less than 0. Then using Eq (9.70), it is trivial to
prove.

=0

1)

Problem 9.26 Solution
From Eq (9.18), we have:

NOld Z YOld(znk)
If now we just re-evaluate the responsibilities for one data point x,,, we can
obtain:

N]Ielew Z Y()ld(znk)'*'?’new(zmk)

n#m

Z ,}/Old(znk) + ,yneW(zmk) _ ,)/Old(zmk)
n

N}gld + ,yneW(ka) _ ,yold(zmk)
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Similarly, according to Eq (9.17), we can obtain:

1d LY k)X
”new — YO (23)%, + L2k 2Em
k Nnew n;n n n N]relew
new old
_ 1d Eme)Xm YO Eme)Xm
B Nnew Z ,),0 (znk )Xn N]I;ZLW - N]l;w
1d
= NO 1 ZYOld(Z )X, + Ynew(zmk )X _ Ydd(zmk )X
Nnew No]d n n N]l:ew N]relew
Nold
- NneW led new(zmk) YO d(zmk) Nnew
NDew _ Nold
= I“l(l:,ld aneW L Old [Ynew(zmk) YOld(zmk)] Nnew
neW(Z k) old(z k)
= Ilzld mNne‘?V/ m old [Ynew(zmk) y° d(zmk)] Nnew
k
_ old , Y (zmr) — YOld(zmk) old
= K Nnew ( Xm — My )
k

Just as required.
Problem 9.27 Solution

By analogy to the previous problem, we use Eq (9.24)-Eq(9.27), beginning
by first deriving an update formula for mixing coefficients 7j:

NneW
e A AR R O
= nold + YV Zme) - YOld(zmk)
k N

Here we have used the conclusion (the update formula for N,Ie‘ew) in the
previous problem. Next we deal with the covariance matrix 2. By analogy to
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the previous problem, we can obtain:

1
Zzew — e Z ,yold(znk)(xn _ﬂgeW)(Xn _ﬂzeW)T
k n#m

+ N]Ielew YneW(ka ) (Xm — ”zew) (Xm _ ﬂzeW)T

1
~ mew 2 ¥ enk) O — D e — D"
k n#m

ew)T

+N}I€1‘3W Ynew(zmk)(xm — ﬂzew)(xm _ ”2

1
- N Dew ZYOld(an)(Xn - ﬂzld)(xn — uzld)T
k n

+ New Ynew(zmk ) (Xm — Mzew) (Xm _ MgeW)T
k

old

7/old(zmk)(xm — ) X — ﬂzld)T

new
Nk

1
= old y-old
= N,°Z0° +

new new )T
Nnew
k

Y @) X — ™) (X —

new
Nk

— N}?ew ')/Old(zmk ) (Xm — I‘Zld) (Xm _ ”Zld)T

Old _ new
Ny~ Ny sold
k

= {1+W

+ Nnew Ynew(zmk)(xm - u}:ew) xm — ”EGW)T
k

new
Nk

1d new
YO (ka)_Y (Zme) 1d
= {1+ S s
k

LS Cme)
N]Ie'leW
Old(Z 2)
_YNTﬁ (i — ) O — o
k
— 1d
= ZZ

neW(Z )
YNTlek {(Xm — 1Y) (% — )T - z°1d}
A

1d
Y Emi)
e oo e 7 )

(Xm = ™) K — pp ™)

Zld)T

One important thing worthy mentioned is that in the second step, there
is an approximate equal sign. Note that in the previous problem, we have
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shown that if we only recompute the data point x,,, all the center p; will
also change from led to u,®", and the update formula is given by Eq (9.78).
However, for the convenience of computing, we have made an approximation
here. Other approximation methods can also be applied here. For instance,
you can replace ;" with ﬂzld whenever it occurs.

The complete solution should be given by substituting Eq (9.78) into the
right side of the first equal sign and then rearranging it, in order to construct

a relation between Z7°" and Zzld. However, this is too complicated.

0.10 Variational Inference

Problem 10.1 Solution

This problem is very similar to Prob.9.24. We substitute Eq (10.3) and Eq
(10.4) into Eq (10.2):

L(g)+KL(qllIp)

pX,Z) . pZX)
7)1 -1 dZ
fzq( {in «@ " q@) |

pX,Z)
fz ¢@{In Pa% laz

f q(Z) Inp(X)dZ
y/
In p(X)

Note that in the last step, we have used the fact that In p(X) doesn’t de-
pend on Z, and that the integration of ¢(Z) over Z equal to 1 because q(Z) is
a PDF.

Problem 10.2 Solution

To be more clear, we are required to solve:

{ m1 = p1—Aj; A1z (ma — )
ma = g — Nyy Ao1 (m1—p1)

To obtain the equation above, we need to substitute E[z;] = m;, where
i1 =1, 2, into Eq (10.13) and Eq (10.14). Here the unknown parameters are
m1 and mg. It is trivial to notice that m; = y; is a solution for the equation
above.

Let’s solve this equation from another perspective. Firstly, if any (or both)
of AIll and A;zl equals 0, we can obtain m; = y; directly from Eq (10.13)-
(10.14). When none of AIll and A§21 equals 0, we substitute m1, i.e., the first
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