
SOLUTIONS MANUAL

THIRD EDITION

Neural
Networks
and
Learning Machines

Simon Haykin
and
Yanbo Xue
McMaster University
Canada

CHAPTER 1
Rosenblatt’s Perceptron

Problem 1.1

(1) If wT(n)x(n) > 0, then y(n) = +1.
If also x(n) belongs to C1, then d(n) = +1.
Under these conditions, the error signal is

e(n) = d(n) - y(n) = 0
and from Eq. (1.22) of the text:

w(n + 1) = w(n) + ηe(n)x(n) = w(n)
This result is the same as line 1 of Eq. (1.5) of the text.

(2) If wT(n)x(n) < 0, then y(n) = -1.
If also x(n) belongs to C2, then d(n) = -1.
Under these conditions, the error signal e(n) remains zero, and so from Eq. (1.22)
we have

w(n + 1) = w(n)
This result is the same as line 2 of Eq. (1.5).

(3) If wT(n)x(n) > 0 and x(n) belongs to C2 we have
y(n) = +1
d(n) = -1

The error signal e(n) is -2, and so Eq. (1.22) yields
w(n + 1) = w(n) -2ηx(n)

which has the same form as the first line of Eq. (1.6), except for the scaling factor 2.

(4) Finally if wT(n)x(n) < 0 and x(n) belongs to C1, then
y(n) = -1
d(n) = +1

In this case, the use of Eq. (1.22) yields
w(n + 1) = w(n) +2ηx(n)

which has the same mathematical form as line 2 of Eq. (1.6), except for the scaling
factor 2.

Problem 1.2

The output signal is defined by

y
v
2
--- 

 tanh=

b
2

1
2
--- wixi

i
∑+ 

 tanh=

Equivalently, we may write

(1)

where

Equation (1) is the equation of a hyperplane.

Problem 1.3

(a) AND operation: Truth Table 1

This operation may be realized using the perceptron of Fig. 1

The hard limiter input is

If x1 = x2 = 1, then v = 0.5, and y = 1
If x1 = 0, and x2 = 1, then v = -0.5, and y = 0
If x1 = 1, and x2 = 0, then v = -0.5, and y = 0
If x1 = x2 = 0, then v = -1.5, and y = 0

Inputs Output

x1 x2 y

1
0
1
0

1
1
0
0

1
0
0
0

b wixi
i

∑+ y
′

=

y
′ 2 y()1–

tanh=

oo

o

o o

o

x1

x2

w1 = 1

w2 = 1

+1

 v
y

Hard
limiter

Figure 1: Problem 1.3

b = -1.5

v w1x1 w2x2 b+ +=

x1 x2 1.5–+=

These conditions agree with truth table 1.

OR operation: Truth Table 2

The OR operation may be realized using the perceptron of Fig. 2:

In this case, the hard limiter input is

If x1 = x2 = 1, then v = 1.5, and y = 1
If x1 = 0, and x2 = 1, then v = 0.5, and y = 1
If x1 = 1, and x2 = 0, then v = 0.5, and y = 1
If x1 = x2 = 0, then v = -0.5, and y = -1

These conditions agree with truth table 2.

Inputs Output

x1 x2 y

1
0
1
0

1
1
0
0

1
1
1
0

oo

o

o o

o

x1

x2

w1 = 1

w2 = 1

+1

 v
y

Hard
limiter

Figure 2: Problem 1.3

b = -0.5

v x1 x2 0.5–+=

COMPLEMENT operation: Truth Table 3

The COMPLEMENT operation may be realized as in Figure 3::

The hard limiter input is

If x = 1, then v = -0.5, and y = 0
If x = 0, then v = 0.5, and y = 1

These conditions agree with truth table 3.

(b) EXCLUSIVE OR operation: Truth table 4

This operation is nonlinearly separable, which cannot be solved by the perceptron.

Problem 1.4

The Gaussian classifier consists of a single unit with a single weight and zero bias, determined in
accordance with Eqs. (1.37) and (1.38) of the textbook, respectively, as follows:

Input x, Output, y

1
0

0
1

Inputs Output

x1 x2 y

1
0
1
0

1
1
0
0

0
1
1
0

oo o
 v

y

Hard
limiter

o
w1 = -1

b = -0.5 Figure 3: Problem 1.3

v wx b+ x– 0.5+= =

w
1

σ2
------ µ1 µ2–()=

20–=

Problem 1.5

Using the condition

in Eqs. (1.37) and (1.38) of the textbook, we get the following formulas for the weight vector and
bias of the Bayes classifier:

b
1

2σ2
--------- µ2

2 µ1
2

–()=

0=

C σ2I=

w
1

σ2
------ µ1 µ2–()=

b
1

2σ2
--------- µ1

2 µ2
2

–()=

CHAPTER 4
Multilayer Perceptrons

Problem 4.1

Assume that each neuron is represented by a McCulloch-Pitts model. Also assume that

The induced local field of neuron 1 is

We may thus construct the following table:

The induced local field of neuron is

Accordingly, we may construct the following table:

x1 0 0 1 1

x2 0 1 0 1

v1 -1.5 -0.5 -0.5 0.5

y2 0 0 0 1

x1 0 0 1 1

x2 0 1 0 1

y1 0 0 0 1

v2 -0.5 0.5 -0.5 -0.5

y2 0 1 1 1

+1

-21+1

+1

x1

x2
-0.5

2
y2

-1.5
Figure 4: Problem 4.1

xi
1 if the input bit is 1
0 if the input bit is 0 


 

=

v1 x1 x2 1.5–+=

v2 x1 x2 2 y1– 0.5–+=

2

1

From this table we observe that the overall output y2 is 0 if x1 and x2 are both 0 or both 1, and it is
1 if x1 is 0 and x2 is 1 or vice versa. In other words, the network of Fig. P4.1 operates as an
EXCLUSIVE OR gate.

Problem 4.2

Figure 1 shows the evolutions of the free parameters (synaptic weights and biases) of the neural
network as the back-propagation learning process progresses. Each epoch corresponds to 100 iter-
ations. From the figure, we see that the network reaches a steady state after about 25 epochs. Each
neuron uses a logistic function for its sigmoid nonlinearity. Also the desired response is defined as

Figure 2 shows the final form of the neural network. Note that we have used biases (the negative
of thresholds) for the individual neurons.

d 0.9 for symbol bit() 1
0.1 for symbol bit() 0 


 

=

Figure 1: Problem 4.2, where one epoch = 100 iterations
2

Problem 4.3

If the momentum constant α is negative, Equation (4.43) of the text becomes

Now we find that if the derivative has the same algebraic sign on consecutive iterations

of the algorithm, the magnitude of the exponentially weighted sum is reduced. The opposite is
true when alternates its algebraic sign on consecutive iterations. Thus, the effect of the

momentum constant α is the same as before, except that the effects are reversed, compared to the
case when α is positive.

Problem 4.4

From Eq. (4.43) of the text we have

(1)

For the case of a single weight, the cost function is defined by

x1

x2

b1 = 1.6

w11= -4.72

w22 = -3.52

w31 = -6.80

w32 = 6.44 b3 = -2.85

+1

Output

b2 = 5.0

+1

1

2

3

Figure 2: Problem 4.2

w21 = -3.51

w12 = -4.24

∆w ji n() η α n-t ∂E t()
∂w ji t()

t=0

n

∑–=

η 1–()n-t α n-t ∂E t()
∂w ji t()

t=0

n

∑–=

∂E ∂w ji⁄

∂E ∂w ji⁄

∆w ji n() η α n-t ∂E t()
∂w ji t()

t=1

n

∑–=

E k1 w w0–()2
k2+=
3

Hence, the application of (1) to this case yields

In this case, the partial derivative has the same algebraic sign on consecutive itera-

tions. Hence, with 0 < α < 1 the exponentially weighted adjustment to the weight w at
time n grows in magnitude. That is, the weight w is adjusted by a large amount. The inclusion of
the momentum constant α in the algorithm for computing the optimum weight w* = w0 tends to
accelerate the downhill descent toward this optimum point.

Problem 4.5

Consider Fig. 4.14 of the text, which has an input layer, two hidden layers, and a single output
neuron. We note the following:

Hence, the derivative of with respect to the synaptic weight connecting neuron k in

the second hidden layer to the single output neuron is

(1)

where is the activation potential of the output neuron. Next, we note that

(2)

where is the output of neuron k in layer 2. We may thus proceed further and write

(3)

∆w n() 2k1η α n-t
w t() w0–()

t=1

n

∑–=

∂E t() ∂w t()⁄

∆w n()

y1
3()

F A1
3()() F w x,()= =

F A1
3()() w1k

3()

∂F A1
3()()

∂w1k
3()----------------------

∂F A1
3()()

∂ y1
3()----------------------

∂ y1
3()

∂v1
3()------------

∂v1
3()

∂w1k
3()-------------=

v1
3()

∂F A1
3()()

∂ y1
3()---------------------- 1=

y1
3() ϕ v1

3()()=

v1
3()

w1k
3()

yk
2()

k
∑=

yk
2()

∂ y1
3()

∂v1
3()------------ ϕ′ v1

3()() ϕ′ A1
3()

= =
4

(4)

Thus, combining (1) to (4):

Consider next the derivative of F(w,x) with respect to , the synaptic weight connecting

neuron j in layer 1 (i.e., first hidden layer) to neuron k in layer 2 (i.e., second hidden layer):

(5)

where is the output of neuron in layer 2, and is the activation potential of that neuron.

Next we note that

(6)

(7)

(8)

(9)

∂v1
3()

∂w1k
3()------------- yk

2()
=

ϕ Ak
2()()=

∂F w x,()
∂w1k

3()----------------------
∂F A1

3()()

∂w1k
3()----------------------=

ϕ′ A1
3()()ϕ Ak

3()()=

wkj
2()

∂F w x,()
∂wkj

2()----------------------
∂F w x,()

∂ y1
3()----------------------

∂ y1
3()

∂v1
3()------------

∂v1
3()

∂ yk
2()------------

∂ yk
2()

∂vk
2()------------

∂vk
2()

∂wkj
2()-------------=

yk
2()

vk
1()

∂F w x,()
∂ y1

3()---------------------- 1=

∂ y1
3()

∂v1
3()------------ ϕ′ A1

3()()=

v1
3()

w1k
3()

yk
2()

k
∑=

∂v1
3()

∂ yk
2()------------ w1k

3()
=

yk
2() ϕ vk

2()()=

∂ yk
2()

∂vk
2()------------ ϕ′ vk

2()() ϕ′ Ak
2()()= =
5

(10)

Substituting (6) and (10) into (5), we get

Finally, we consider the derivative of F(w,x) with respect to , the synaptic weight

connecting source node i in the input layer to neuron j in layer 1. We may thus write

(11)

where is the output of neuron j in layer 1, and is the activation potential of that neuron.

Next we note that

(12)

(13)

(14)

vk
2()

wkj
1()

y j
1()

j
∑=

∂vk
2()

∂wkj
1()------------- y j

1() ϕ v j
1()() ϕ A j

1()()= = =

∂F w x,()
∂wkj

2()---------------------- ϕ′ A1
3()()w1k

3()ϕ′ Ak
2()()ϕ A j

1()()=

w ji
1()

∂F w x,()
∂w ji

1()----------------------
∂F w x,()

∂ y1
3()----------------------

∂ y1
3()

∂v1
3()------------

∂v1
3()

∂ y j
1()------------

∂ y j
1()

∂v j
1()------------

∂v j
1()

∂w ji
1()-------------=

y j
1()

vi
1()

∂F w x,()
∂ y1

3()---------------------- 1=

∂ y1
3()

∂v1
3()------------ ϕ′ A

3()()=

v1
3()

w1k
3()

yk
2()

k
∑=

∂v1
3()

∂ y j
1()------------ w1k

3()∂ yk
2()

∂ y j
1()------------

k
∑=

w1k
3() ∂ yk

2()

∂vk
2()------------

∂vk
2()

∂ y j
1()------------

k
∑=

w1k
3() ϕ′ Ak

2()()
∂vk

2()

∂ y j
1()------------

k
∑=
6

(15)

(16)

(17)

Substituting (12) to (17) into (11) yields

Problem 4.12

According to the conjugate-gradient method, we have

(1)

where, in the second term of the last line in (1), we have used η(n - 1) in place of η(η). Define

We may then rewrite (1) as

(2)

On the other hand, according to the generalized delta rule, we have for neuron j:

(3)

Comparing (2) and (3), we observe that they have a similar mathematical form:

∂vk
2()

∂ y j
1()------------ wkj

2()
=

y j
1() ϕ v j

1()()=

∂ y j
1()

∂v j
1()------------ ϕ′ v j

1()() ϕ′ A j
1()()= =

v j
1()

w ji
1()

xi
i

∑=

∂v j
1()

∂w ji
1()------------- xi=

∂F w x,()
∂w ji

1()---------------------- ϕ′ A1
3()() w1k

3()ϕ′ Ak
2()()wkj

2()

k
∑ 

  ϕ′ A j
1()()xi=

∆w n() η n()p n()=

η n() g n()– β n 1–()p n 1–()+[]=

η– n()g n() β n 1–()η n 1–()p n 1–()+≈

∆w n 1–() η n 1–()p n 1–()=

∆w n() η n()g n() β n 1–()∆w n 1–()+–≈

∆w j n() α∆w j n 1–() ηδ j n()y n()+=
7

• The vector -g(n) in the conjugate gradient method plays the role of δj(n)y(n), where δj(n) is the
local gradient of neuron j and y(n) is the vector of inputs for neuron j.

• The time-varying parameter β(n - 1) in the conjugate-gradient method plays the role of
momentum α in the generalized delta rule.

Problem 4.13

We start with (4.127) in the text:

(1)

The residual r(n) is governed by the recursion:

Equivalently, we may write

(2)

Hence multiplying both sides of (2) by sT(n - 1), we obtain

(3)

where it is noted that (by definition)

Moreover, multiplying both sides of (2) by rT(n), we obtain

(4)

where it is noted that AT = A. Dividing (4) by (3) and invoking the use of (1):

(5)

which is the Hesteness-Stiefel formula.

β n() sT
n 1–()Ar n()

sT
n 1–()As n 1–()

---–=

r n() r n 1–() η n 1–()As n 1–()–=

η n 1–()As n 1–()– r n() r n 1–()–=

η n 1–()sT
n 1–()As n 1–() sT

n 1–() r n() r n 1–()–()–=

sT
n 1–()r n 1–()=

sT
n 1–()r n() 0=

η n 1–()rT
n()As n 1–()– η n 1–()sT

n 1–()Ar n 1–()–=

rT
n() r n() r n 1–()–()=

β n() rT
n() r n() r n 1–()–()

sT
n 1–()r n 1–()

--=
8

In the linear form of conjugate gradient method, we have

in which case (5) is modified to

(6)

which is the Polak-Ribiére formula. Moreover, in the linear case we have

in which case (6) reduces to the Fletcher-Reeves formula:

Problem 4.15

In this problem, we explore the operation of a fully connected multilayer perceptron trained with
the back-propagation algorithm. The network has a single hidden layer. It is trained to realize the
following one-to-one mappings:

(a) Inversion:

, 1< x < 100

(b) Logarithmic computation
, 1< x < 10

(c) Exponentiation

, 1< x < 10

(d) Sinusoidal computation

,

(a) f(x) = 1/x for 1< x < 100
The network is trained with:

sT
n 1–()r n 1–() rT

n 1–()r n 1–()=

β n() rT
n() r n() r n 1–()–()

rT
n 1–()r n 1–()

--=

rT
n()r n 1–() 0=

β n() rT
n()r n()

rT
n 1–()r n 1–()

---=

f x() 1
x
---=

f x() x10log=

f x() e
x–

=

f x() xsin= 0 x
π
2
---≤ ≤
9

learning-rate parameter η = 0.3, and
momentum constant α = 0.7.

Ten different network configurations were trained to learn this mapping. Each network was
trained identically, that is, with the same η and α, with bias terms, and with 10,000 passes of the
training vectors (with one exception noted below). Once each network was trained, the test dataset
was applied to compare the performance and accuracy of each configuration. Table 1 summarizes
the results obtained:

The results of Table 1 indicate that even with a small number of hidden neurons, and with a rela-
tively small number of training passes, the network is able to learn the mapping described in (a)
quite well.

(b) f(x) = log10x for 1< x < 10
The results of this second experiment are presented in Table 2:

Here again, we see that the network performs well even with a small number of hidden neurons.
Interestingly, in this second experiment the network peaked in accuracy with 10 hidden neurons,
after which the accuracy of the network to produce the correct output started to decrease.

(c) f(x) = e- x for 1< x < 10
The results of this third experiment (using the logistic function as with experiments (a)

Table 1

Number of hidden neurons
Average percentage error
at the network output

 3
 4
 5
 7
 10
 15
 20
 30
 100
30 (trained with 100,000 passes)

 4.73%
 4.43
 3.59
 1.49
 1.12
 0.93
 0.85
 0.94
 0.9
 0.19

Table 2

Number of hidden neurons
Average percentage error
at the network output

 2
 3
 4
 5
 7
 10
 15
 20
 30
 100
30 (trained with 100,000 passes)

 2.55%
 2.09
 0.46
 0.48
 0.85
 0.42
 0.85
 0.96
 1.26
 1.18
 0.41
10

and (b)), are summarized in Table 3:

These results are unacceptable since the network is unable to generalize when each neuron is
driven to its limits.

The experiment with 30 hidden neurons and 100,000 training passes was repeated, but this
time the hyperbolic tangent function was used as the nonlinearity. The result obtained this time
was an average percentage error of 3.87% at the network output. This last result shows that the
hyperbolic tangent function is a better choice than the logistic function as the sigmoid function for

realizing the mapping f(x) = e- x.

(d) f(x) = sinx for 0< x < π/2
Finally, the following results were obtained using the logistic function with 10,000
training passes, except for the last configuration:

The results of Table 4 show that the accuracy of the network peaks around 20 neurons, where after
the accuracy decreases.

Table 3

Number of hidden neurons
Average percentage error
at the network output

 2
 3
 4
 5
 7
 10
 15
 20
 30
 100
30 (trained with 100,000 passes)

 244.0‘%
 185.17
 134.85
 133.67
 141.65
 158.77
 151.91
 144.79
 137.35
 98.09
 103.99

Table 4

Number of hidden neurons
Average percentage error
at the network output

 2
 3
 4
 5
 7
 10
 15
 20
 30
 100
30 (trained with 100,000 passes)

 1.63‘%
 1.25
 1.18
 1.11
 1.07
 1.01
 1.01
 0.72
 1.21
 3.19
 0.4
11

CHAPTER 6
Support Vector Machines

Problem 6.1

From Eqs. (6.2) in the text we recall that the optimum weight vector wo and optimum bias bo
satisfy the following pair of conditions:

for di = +1

for di = -1

where i = 1, 2, ...,N. Equivalently, we may write

as the defining condition for the pair (wo, bo).

Problem 6.2

In the context of a support vector machine, we note the following:

1. Misclassification of patterns can only arise if the patterns are nonseparable.
2. If the patterns are nonseparable, it is possible for a pattern to lie inside the margin of

separation and yet be on the correct side of the decision boundary. Hence, nonseparability
does not necessarily mean misclassification.

Problem 6.3

We start with the primel problem formulated as follows (see Eq. (6.15)) of the text

(1)

Recall from (6.12) in the text that

Premultiplying w by wT:

wo
T xi bo +1≥+

wo
T xi bo -1<+

min
i 1 2 … N, , ,=

wT xi b+ 1=

J w b α, ,() 1
2
---wT w α idiw

T xi b α idi α i
i=1

N

∑+
i=1

N

∑–
i=1

N

∑–=

w α idix
i=1

N

∑=
1

(2)

We may also write

Accordingly, we may redefine the inner product wTw as the double summation:

(3)

Thus substituting (2) and (3) into (1) yields

(4)

subject to the constraint

Recognizing that αi > 0 for all i, we see that (4) is the formulation of the dual problem.

Problem 6.4

Consider a support vector machine designed for nonseparable patterns. Assuming the use of the
“leave-one-out-method” for training the machine, the following situations may arise when the
example left out is used as a test example:

1. The example is a support vector.
Result: Correct classification.

2. The example lies inside the margin of separation but on the correct side of the decision
boundary.

Result: Correct classification.
3. The example lies inside the margin of separation but on the wrong side of the decision

boundary.
Result: Incorrect classification.

wT w α idiw
T xi

i=1

N

∑=

wT α idixi
T

i=1

N

∑=

wT w α idiα jd jx j
T xi

j=1

N

∑
i=1

N

∑=

Q α() 1
2
--- α idiα jd jx j

T xi α i
i=1

N

∑+
j=1

N

∑
i=1

N

∑–=

α idi
i=1

N

∑ 0=
2

Problem 6.5

By definition, a support vector machine is designed to maximize the margin of separation between
the examples drawn from different classes. This definition applies to all sources of data, be they
noisy or otherwise. It follows therefore that by the very nature of it, the support vector machine is
robust to the presence of additive noise in the data used for training and testing, provided that all
the data are drawn from the same population.

Problem 6.6

Since theGram K = {K(xi, xj)} is a square matrix, it can be diagonalized using the similarity
transformation:

where is a diagonal matrix consisting of the eigenvalues of K and Q is an orthogonal matrix

whose columns are the associated eigenvectors. With K being a positive matrix, has
nonnegative entries. The inner-product (i.e., Mercer) kernel k(xi, xj) is the ijth element of matrix
K. Hence,

(1)

Let ui denote the ith row of matrix Q. (Note that ui is not an eigenvector.) We may then rewrite (1)
as the inner product

(2)

where is the square root of .

By definition, we have

(3)

K QΛQT
=

Λ
Λ

k xi x j,() QΛQT()ij=

Q()il Λ()ll QT()lj

l=1

m1

∑=

Q()il Λ()ll Q()lj
l=1

m1

∑=

k xi x j,() ui
T Λu j=

Λ1 2⁄ ui()
T

Λ1 2⁄ u j()=

Λ1 2⁄ Λ

k xi x j,() φT xi()ϕ x j()=
3

Comparing (2) and (3), we deduce that the mapping from the input space to the hidden (feature)
space of a support vector machine is described by

Problem 6.7

(a) From the solution to Problem 6.6, we have

Suppose the input vector xi is multiplied by the orthogonal (unitary) matrix Q. We then have a

new mapping described by

Correspondingly, we may write

(1)

where ui is the ith row of Q. From the definition of an orthogonal (unitary) matrix:

or equivalently

where I is the identity matrix. Hence, (1) reduces to

In words, the Mercer kernel exhibits the unitary invariance property.

ϕ : xi Λ1 2⁄ ui→

φ: xi Λ1 2⁄ ui→

φ′

φ′: Qxi QΛ1 2⁄ ui→

k Qxi Qx j,() QΛ1 2⁄ ui()
T

QΛ1 2⁄ u j()=

Λ1 2⁄ ui()
T

QT Q Λ1 2⁄ u j()=

Q 1– QT
=

QT Q I=

k Qxi Qx j,() Λ1 2⁄ ui()
T

Λ1 2⁄ u j()=

k xi x j,()=
4

(b) Consider first the polynomial machine described by

Consider next the RBF network described by the Mercer kernel:

,

Finally, consider the multilayer perceptron described by

Thus all three types of the support vector machine, namely, the polynomial machine, RBF
network, and MLP, satisfy the unitary invariance property in their own individual ways.

k Qxi Qx j,() Qxi()T Qx j() 1+()
p

=

xi
T QT Qx j 1+()

p
=

xi
T x j 1+()

p
=

k xi xJ,()=

k Qxi Qx j,() 1

2σ2
--------- Qxi Qx j–

2
– 

 exp=

1

2σ2
--------- Qxi Qx j–()T Qxi Qx j–()– 

 exp=

1

2σ2
--------- xi x j–()T QT Q xi x j–()– 

 exp=

1

2σ2
--------- xi x j–()T xi x j–()– 

 exp= QT Q I=

k xi xJ,()=

k Qxi Qx j,() β0 Qxi()T Qx j() β1+()tanh=

β0xi
T QT Qx j β1+()tanh=

β0xi
T x j β1+()tanh=

k xi xJ,()=
5

Problem 6.17

The truth table for the XOR function, operating on a three-dimensional pattern x, is as follows:

To proceed with the support vector machine for solving this multidimensional XOR problem, let
the Mercer kernel

The minimum value of power p (denoting a positive integer) needed for this problem is p = 3. For
p = 2, we end up with a zero weight vector, which is clearly unacceptable.

Setting p = 3, we thus have

where

and likewise for xi. Then, proceeding in a manner similar but much more cumbersome than that
described for the two-dimensional XOR problem in Section 6.6, we end up with a polynomial
machine defined by

This machine satisfies the entries of Table 1.

Table 1

Inputs
Desired response

x1 x2 x3 y

 +1
 +1
 -1
 +1
 +1
 -1
 -1
 -1

 +1
 -1
 +1
 +1
 -1
 +1
 -1
 -1

 +1
 +1
 +1
 -1
 -1
 -1
 -1
 +1

 +1
 -1
 -1
 -1
 +1
 +1
 -1
 +1

k x x j,() 1 xT xi+()
p

=

k x xi,() 1 xT xi+()
3

=

1 3xT xi 3 xT xi()
2

xT xi()
3

+ + +=

x x1 x2 x3, ,[] T
=

y x1 x2 x3, ,=
6

CHAPTER 8
Principal-Components Analysis

Problem 8.5

From Example 8.2 in the text:

(1)

(2)

The correlation matrix of the input is

(3)

where s is the signal vector and σ2 is the variance of an element of the additive noise vector.
Hence, using (2) and (3):

(4)

The vector s is a signal vector of unit length:

Hence, (4) simplifies to

which is the desired result given in (1).

λ0 1 σ2
+=

q0 s=

R ssT σ2I+=

λ0

q0
T Rq0

q0
T q0

-----------------=

sT ssT σ2I+()s

sT s
------------------------------------=

sT s() sT s() σ2 sT s()+

sT s
--=

sT s σ2
+=

s 2 σ2
+=

s 1=

λ0 1 σ2
+=
1

Problem 8.6

From (8.46) in the text we have

(1)

As , and so we deduce from (1) that

 for (2)

where q1 is the eigenvector associated with the largest eigenvalue λ1 of the correlation matrix

R = E[x(n)xT(n)], where E is the expectation operator. Multiplying (2) by its own transpose and
then taking expectations, we get

Equivalently, we may write

(3)

where is the variance of the output y(n). Post-multiplying (3) by q1:

(4)

where it is noted that by definition. From (4) we readily see that , which is the

desired result.

Problem 8.7

Writing the learning algorithm for minor components analysis in matrix form:

Proceeding in a manner similar to that described in Section (8.5) of the textbook, we have the
nonlinear differential equation:

Define

w n 1+() w n() ηy n() x n() y n()w n()–[]+=

n ∞ w n() q1→,→

x n() y n()q1= n ∞→

E x n()xT
n()[] E y

2
n()[] q1q1

T
=

R σY
2 q1q1

T
=

σY
2

Rq1 σY
2 q1q1

T q1 σY
2 q1= =

q1 1= σY
2 λ1=

w n 1+() w n() ηy n() x n() y n()w n()–[]–=

d
dt
-----w t() wT

t()Rw t()[] w t() Rw t()–=
2

(1)

where qk is the kth eigenvector of correlation matrix R = E[x(n)xT(n)] and the coefficient is

the projection of w(t) onto qk. We may then identify two cases as summarized here:

Case I: 1 < k < m

For this first case, we define

 for some fixed m (2)

Accordingly, we find that

(3)

With the eigenvalues of R arranged in decreasing order:

it follows that as .

Case II: k = m

For this second case, we find that

 for (4)

Hence, as .

Thus, in light of the results derived for cases I and II, we deduce from (1) that:

= eigenvector associated with the smallest eigenvalue λm as , and

.

w t() θk t()qk
k=1

M

∑=

θk t()

αk t()
θk t()
θm t()
-------------=

dαk t()
dt

---------------- λm λk–()αk t()–=

λ1 λ2 … λk … λm 0> > > > > >

αk t() 0→ t ∞→

dθm t()
dt

----------------- λmθm t() θm
2

t() 1–()= t ∞→

θm t() 1±= t ∞→

w t() qm→ t ∞→

σY
2 E y

2
n()[] λ m→=
3

Problem 8.8

From (8.87) and (8.88) of the text:

(1)

(2)

where, for convenience of presentation, we have omitted the dependence on time n. Equations (1)
and (2) may be represented by the following vector-valued signal flow graph:

Note: The dashed lines indicate inner (dot) products formed by the input vector x and the
pertinent synaptic weight vectors w0, w1, ..., wj to produce y0, y1, ..., yj, respectively.

Problem 8.9

Consider a network consisting of a single layer of neurons with feedforward connections. The
algorithm for adjusting the matrix of synaptic weights W(n) of the network is described by the
recursive equation (see Eq. (8.91) of the text):

∆w j η y jx ′ η y j
2w j–=

x ′ x wk yk
k=0

j-1

∑–=

o o o

o

. .
 .

o

o

o

o

o

o

o
∆wj

x
-y0

-y1

-yj-1

-yj

ηyj

w0

w1

wj-1

w0

w1

wj-1

wj
4

(1)

where x(n) is the input vector, y(n) is the output vector; and LT[.] is a matrix operator that sets all
the elements above the diagonal of the matrix argument to zero, thereby making it lower
triangular.

First, we note that the asymptotic stability theorem discussed in the text does not apply
directly to the convergence analysis of stochastic approximation algorithms involving matrices; it
is formulated to apply to vectors. However, we may write the elements of the parameter (synaptic
weight) matrix W(n) in (1) as a vector, that is, one column vector stacked up on top of another. We
may then interpret the resulting nonlinear update equation in a corresponding way and so proceed
to apply the asymptotic stability theorem directly.

To prove the convergence of the learning algorithm described in (1), we may use the
method of induction to show that if the first j columns of matrix W(n) converge to the first j

eigenvectors of the correlation matrix R = E[x(n)xT(n)], then the (j + 1)th column will converge to
the (j + 1)th eigenvector of R. Here we use the fact that in light of the convergence of the
maximum eigenfilter involving a single neuron, the first column of the matrix W(n) converges
with probability 1 to the first eigenvector of R, and so on.

Problem 8.10

The results of a computer experiment on the training of a single-layer feedforward network using
the generalized Hebbian algorithm are described by Sanger (1990). The network has 16 output
neurons, and 4096 inputs arranged as a 64 x 64 grid of pixels. The training involved presentation
of 2000 samples, which are produced by low-pass filtering a white Gaussian noise image and then
multiplying wi6th a Gaussian window function. The low-pass filter was a Gaussian function with
standard deviation of 2 pixels, and the window had a standard deviation of 8 pixels.

Figure 1, presented on the next page, shows the first 16 receptive field masks learned by
the network (Sanger, 1990). In this figure, positive weights are indicated by “white” and negative
weights are indicated by “black”; the ordering is left-to-right and top-to-bottom.

The results displayed in Fig. 1 are rationalized as follows (Sanger, 1990):

• The first mask is a low-pass filter since the input has most of its energy near dc (zero
frequency).

• The second mask cannot be a low-pass filter, so it must be a band-pass filter with a mid-band
frequency as small as possible since the input power decreases with increasing frequency.

• Continuing the analysis in the manner described above, the frequency response of successive
masks approaches dc as closely as possible, subject (of course) to being orthogonal to
previous masks.

The end result is a sequence of orthogonal masks that respond to progressively higher
frequencies.

W n() W n() η n() y n()xT
n() LT y n()yT

n()[] W n()–{ }+=
5

Figure 1: Problem 8.10 (Reproduced with permission of Biological Cybernetics)
6

CHAPTER 9
Self-Organizing Maps

Problem 9.1

Expanding the function g(yj) in a Taylor series around yj = 0, we get

(1)

where

 for k = 1, 2,

Let

Then, we may rewrite (1) as

Correspondingly, we may write

Consequently, a nonzero g(0) has the effect of making dwj/dt assume a nonzero value when
neuron j is off, which is undesirable. To alleviate this problem, we make g(0) = 0.

g y j() g 0() g
1() 0() y j

1
2!
-----g

2() 0() y j
2 …+ + +=

g
k() 0() ∂k

g y j()

∂ y j
k

y j 0=

=

y j
1, neuron j is on
0, neuron j is off




=

g y j() g 0() g
i() 0() 1

2!
-----g

2() 0() …,+ + + neuron j is on

g 0() neuron j is off





=

dw j

dt
---------- η y jx g y j()w j–=

ηx w j g 0() g
1() 0() 1

2!
-----g

2() 0() …+ + +– neuron j is on

g 0()w j– neuron j is off 



 

=

1

Problem 9.2

Assume that y(c) is a minimum L2 (least-squares) distortion vector quantizer for the code vector c.
We may then form the distortion function

This distortion function is similar to that of Eq. (10.20) in the text, except for the use of c and

in place of x and , respectively. We wish to minimize D2 with respect to y(c) and .

Assuming that is a smooth function of the noise vector , we may expand the

decoder output in using the Taylor series. In particular, using a second-order approximation,
we get (Luttrell, 1989b)

(1)

where

where δij is a Kronecker delta function. We now make the following observations:

• The first term on the right-hand side of (1) is the conventional distortion term.
• The second term (i.e., curvature term) arises due to the output noise model .

Problem 9.3

Consider the Peano curve shown in part (d) of Fig. 9.9 of the text. This particular self-organizing
feature map pertains to a one-dimensional lattice fed with a two-dimensional input. We see that
(counting from left to right) neuron 14, say, is quite close to neuron 97. It is therefore possible for
a large enough input perturbation to make neuron 14 jump into the neighborhood of neuron 97, or
vice versa. If this change were to happen, the topological preserving property of the SOM
algorithm would no longer hold

For a more convincing demonstration, consider a higher-dimensional, namely, three-
dimensional input structure mapped onto a two-dimensional lattice of 10-by-10 neurons. The

D2
1
2
--- f c() c ′ y c()() c–

2 cd∫=

c ′
x ′ c ′ y()

π ν() ν
x ′ ν

π ν() x ′ c x() ν+() x–
2 νd∫

1
D2

2
------ ∇ k

2
+ 

  x ′ c() x–
2≈

π∫ ν()dν 1=

niπ ν() dν()∫ 0=

nin jπ ν() dν()∫ D2δij=

π ν()
2

network is trained with an input consisting of 8 Gaussian clouds with unit variance but different
centers. The centers are located at the points (0,0,0,...,0), (4,0,0,...,0), (4,4,0,...,0), (0,4,0,...,0),
(0,0,4,...,0), (4,0,4, ...,0), (4,4,4, ..., 0), and (0,4,4, ...,0). The clouds occupy the 8 corners of a cube
as shown in Fig. 1a. The resulting labeled feature map computed by the SOM algorithm is shown
in Fig. 1b. Although each of the classes is grouped together in the map, the planar feature map
fails to capture the complete topology of the input space. In particular, we observe that class 6 is
adjacent to class 2 in the input space, but is not adjacent to it in the feature map.

The conclusion to be drawn here is that although the SOM algorithm does perform
clustering on the input space, it may not always completely preserve the topology of the input
space.

Figure 1: Problem 9.3

Problem 9.4

Consider for example a two-dimensional lattice using the SOM algorithm to learn a two-
dimensional input distribution as illustrated in Fig. 9.8 in the textbook. Suppose that the neuron at
the center of the lattice breaks down; this failure may have a dramatic effect on the evolution of
the feature map. On the other hand, a small perturbation applied to the input space leaves the map
learned by the lattice essentially unchanged.

Problem 9.5

The batch version of the SOM algorithm is defined by

 for some prescribed neuron j (1)

where πj,i is the discretized version of the pdf of noise vector . From Table 9.1 of the text
we recall that πj,i plays a role analogous to that of the neighborhood function. Indeed, we can

w j

πj i, xi
i

∑
πj i,

i
∑

--------------------=

π ν() ν
3

substitute hj,i(x) for πj,i in (1). We are interested in rewriting (1) in a form that highlights the role of
Voronoi cells. To this end we note that the dependence of the neighborhood function hj,i(x) and
therefore πj,i on the input pattern x is indirect, with the dependence being through the Voronoi cell
in which x lies. Hence, for all input patterns that lie in a particular Voronoi cell the same
neighborhood function applies. Let each Voronoi cell be identified by an indicator function Ii,k
interpreted as follows:

Ii,k = 1 if the input pattern xi lies in the Voronoi cell corresponding to winning neuron k. Then in
light of these considerations we may rewrite (1) in the new form

(2)

Now let mk denote the centroid of the Voronoi cell of neuron k and Nk denote the number of input
patterns that lie in that cell. We may then simplify (2) as

(3)

where Wj,k is a weighting function defined by

(4)

with

 for all j

Equation (3) bears a close resemblance to the Watson-Nadaraya regression estimator
defined in Eq. (5.61) of the textbook. Indeed, in light of this analogy, we may offer the following
observations:

• The SOM algorithm is similar to nonparametric regression in a statistical sense.
• Except for the normalizing factor Nk, the discretized pdf πj,i and therefore the neighborhood

function hj,i plays the role of a kernel in the Watson-Nadaraya estimator.

w j

πj k, I i k, xi
i

∑
k
∑

πj k, I i k,
i

∑
k
∑

-------------------------------------=

w j

πj k, N kmk
k
∑

πj k, N k
k
∑

--------------------------------=

W j k, mk
k
∑=

W j k,
πj k, N k

πj k, N k
k
∑
------------------------=

W j k,
k
∑ 1=
4

• The width of the neighborhood function plays the role of the span of the kernel.

Problem 9.6

In its basic form, Hebb’s postulate of learning states that the adjustment ∆wkj applied to the
synaptic weight wkj is defined by

where yk is the output signal produced in response to the input signal xj.

The weight update for the maximum eigenfilter includes the term and, additionally,

a stabilizing term defined by . The term provides for synaptic amplification.

In contrast, in the SOM algorithm two modifications are made to Hebb’s postulate of
learning:

1. The stabilizing term is set equal to .

2. The output yk of neuron k is set equal to a neighborhood function.

The net result of these two modifications is to make the weight update for the SOM algorithm
assume a form similar to that in competitive learning rather than Hebbian learning.

Problem 9.7

In Fig. 1 (shown on the next page), we summarize the density matching results of computer
simulation on a one-dimensional lattice consisting of 20 neurons. The network is trained with a
triangular input density. Two sets of results are displayed in this figure:

1. The standard SOM (Kohonen) algorithm, shown as the solid line.
2. The conscience algorithm, shown as the dashed line; the line labeled “predict” is its

straight-line approximation.

In Fig. 1, we have also included the exact result. Although it appears that both algorithms fail to
match the input density exactly, we see that the conscience algorithm comes closer to the exact
result than the standard SOM algorithm.

∆wkj η yk x j=

η yk x j

yk
2
wkj– η yk x j

ykwkj–
5

Figure 1: Problem 9.7

Problem 9.11

The results of computer simulation for a one-dimensional lattice with a two-dimensional
(triangular) input are shown in Fig. 1 on the next page for an increasing number of iterations. The
experiment begins with random weights at zero time, and then the neurons start spreading out.

Two distinct phases in the learning process can be recognized from this figure:

The neurons become ordered (i.e., the one-dimensional lattice becomes untangled), which
happens at about 20 iterations.

The neurons spread out to match the density of the input distribution, culminating in the
steady-state condition attained after 25,000 iterations.
6

Figure 1: Problem 9.11
7

	0131471406_im_fm
	0131471406_im1
	0131471406_im4
	0131471406_im5
	0131471406_im6
	0131471406_im8
	0131471406_im9
	0131471406_im10
	0131471406_im11
	0131471406_im12
	0131471406_im13
	0131471406_im15

