
Solutions to Exercises

Chapter 2

2.1 Two-oracle variant of the PAC model

• Assume that C is efficiently PAC-learnable using H in the standard PAC model using
algorithm A. Consider the distribution D = 1

2
(D− + D+). Let h ∈ H be the hypothesis

output by A. Choose δ such that:

P[RD(h) ≤ ε/2] ≥ 1− δ.
From

RD(h) = P
x∼D

[h(x) 6= c(x)]

=
1

2
( P
x∼D−

[h(x) 6= c(x)] + P
x∼D+

[h(x) 6= c(x)])

=
1

2
(RD− (h) +RD+

(h)),

it follows that:

P[RD− (h) ≤ ε] ≥ 1− δ and P[RD+
(h) ≤ ε] ≥ 1− δ.

This implies two-oracle PAC-learning with the same computational complexity.

• Assume now that C is efficiently PAC-learnable in the two-oracle PAC model. Thus, there
exists a learning algorithm A such that for c ∈ C, ε > 0, and δ > 0, there exist m− and m+

polynomial in 1/ε, 1/δ, and size(c), such that if we draw m− negative examples or more
and m+ positive examples or more, with confidence 1 − δ, the hypothesis h output by A
verifies:

P[RD− (h)] ≤ ε and P[RD+
(h)] ≤ ε.

Now, let D be a probability distribution over negative and positive examples. If we could
draw m examples according to D such that m ≥ max{m−,m+}, m polynomial in 1/ε, 1/δ,
and size(c), then two-oracle PAC-learning would imply standard PAC-learning:

P[RD(h)]

≤ P[RD(h)|c(x) = 0]P[c(x) = 0] + P[RD(h)|c(x) = 1]P[c(x) = 1]

≤ ε(P[c(x) = 0] + P[c(x) = 1]) = ε.
If D is not too biased, that is, if the probability of drawing a positive example, or that of
drawing a negative example is more than ε, it is not hard to show, using Chernoff bounds
or just Chebyshev’s inequality, that drawing a polynomial number of examples in 1/ε and
1/δ suffices to guarantee that m ≥ max{m−,m+} with high confidence.

Otherwise, D is biased toward negative (or positive examples), in which case returning
h = h0 (respectively h = h1) guarantees that P[RD(h)] ≤ ε.
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To show the claim about the not-too-biased case, let Sm denote the number of positive
examples obtained when drawing m examples when the probability of a positive example
is ε. By Chernoff bounds,

P[Sm ≤ (1− α)mε] ≤ e−mεα
2/2.

We want to ensure that at least m+ examples are found. With α = 1
2

and m =
2m+

ε
,

P[Sm > m+] ≤ e−m+/4.

Setting the bound to be less than or equal to δ/2, leads to the following condition on m:

m ≥ min{
2m+

ε
,

8

ε
log

2

δ
}

A similar analysis can be done in the case of negative examples. Thus, when D is not too
biased, with confidence 1− δ, we will find at least m− negative and m+ positive examples
if we draw m examples, with

m ≥ min{
2m+

ε
,

2m−

ε
,

8

ε
log

2

δ
}.

In both solutions, our training data is the set T and our learned concept L(T ) is the tightest
circle (with minimal radius) which is consistent with the data.

2.2 PAC learning of hyper-rectangles

The proof in the case of hyper-rectangles is similar to the one given presented within the
chapter. The algorithm selects the tightest axis-aligned hyper-rectangle containing all the
sample points. For i ∈ [2n], select a region ri such that PD[ri] = ε/(2n) for each edge of the
hyper-rectangle R. Assuming that PD[R − R′] > ε, argue that R′ cannot meet all ris, so it
must miss at least one. The probability that none of the m sample points falls into region ri
is (1− ε/2n)m. By the union bound, this shows that

P[R(R′) > ε] ≤ 2n(1− ε/2n)m ≤ 2n exp
(
−
εm

2n

)
. (E.35)

Setting δ to the right-hand side shows that for

m ≥
2n

ε
log

2n

δ
, (E.36)

with probability at least 1− δ, RD(R′) ≤ ε.

2.3 Concentric circles

Suppose our target concept c is the circle around the origin with radius r. We will choose a
slightly smaller radius s by

s := inf{s′ : P (s′ ≤ ||x|| ≤ r) < ε}.
Let A denote the annulus between radii s and r; that is, A := {x : s ≤ ||x|| ≤ r}. By definition
of s,

P (A) ≥ ε. (E.37)
In addition, our generalization error, P (c∆L(T )), must be small if T intersects A. We can
state this as

P (c∆L(T )) > ε =⇒ T ∩A = ∅. (E.38)
Using (E.37), we know that any point in T chosen according to P will “miss” region A with
probability at most 1− ε. Defining error := P (c∆L(T )), we can combine this with (E.38) to
see that

P (error > ε) ≤ P (T ∩A = ∅) ≤ (1− ε)m ≤ e−mε.
Setting δ to be greater than or equal to the right-hand side leads to m ≥ 1

ε
log( 1

δ
).

2.4 Non-concentric circles

As in the previous example, it is natural to assume the learning algorithm operates by return-
ing the smallest circle which is consistent with the data. Gertrude is relying on the logical
implication

error > ε =⇒ T ∩ ri = ∅ for some i, (E.39)
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Figure E.5
Counter-example shows error of tightest circle in gray.

which is not necessarily true here. Figure E.5 illustrates a counterexample. In the figure, we
have one training point in each region ri. The points in r1 and r2 are very close together,
and the point in r3 is very close to region r1. On this training data (some other points may
be included outside the three regions ri), our learned circle is the “tightest” circle including
these points, and hence one diameter approximately traverses the corners of r1. In the figure,
the gray regions are the error of this learned hypotheses versus the target circle, which has a
thick border. Clearly, the error may be greater than ε even while T ∩ ri 6= ∅ for any i; this
contradicts (E.39) and invalidates poor Gertrude’s proof.

2.5 Triangles

As in the case of axis-aligned rectangles, consider three regions r1, r2, r3, along the sides of
the target concept as indicated in figure E.6. Note that the triangle formed by the points
A”, B”, C” is similar to ABC (same angles) since A”B” must be parallel to AB, and similarly
for the other sides.

Assume that P[ABC] > ε, otherwise the statement would be trivial. Consider a triangle
A′B′C′ similar to ABC and consistent with the training sample and such that it meets all
three regions r1, r2, r3.

Since it meets r1, the line A′B′ must be below A”B”. Since it meets r2 and r3, A′ must be

in r2 and B′ in r3 (see figure E.6). Now, since the angle Â′B′C′ is equal to ̂A”B”C”, C′

must be necessarily above C”. This implies that triangle A′B′C′ contains A”B”C”, and thus
error(A′B′C′) ≤ ε.

error(A′B′C′) > ε =⇒ ∃i ∈ {1, 2, 3} : A′B′C′ ∩ ri = ∅.
Thus, by the union bound,

P[error(A′B′C′) > ε] ≤
3∑
i=1

P[A′B′C′ ∩ ri = ∅] ≤ 3(1− ε/3)m ≤ 3e−3mε.

Setting δ to match the right-hand side gives the sample complexity m ≥ 3
ε

log 3
δ

.

2.8 Learning intervals
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Rectangle triangles.

Given a sample S, one algorithm consists of returning the tightest closed interval IS containing
positive points. Let I = [a, b] be the target concept. If P[I] < ε, then clearly R(IS) < ε.
Assume that P[I] ≥ ε. Consider two intervals IL and IR defined as follows:

IL = [a, x] with x = inf{x : P[a, x] ≥ ε/2}
IR = [x′, b] with x′ = sup{x′ : P[x′, b] ≥ ε/2}.

By the definition of x, the probability of [a, x[ is less than or equal to ε/2, similarly the
probability of ]x′, b] is less than or equal to ε/2. Thus, if IS overlaps both with IL and IR,
then its error region has probability at most ε. Thus, R(IS) > ε implies that IS does not
overlap with either IL or IR, that is either none of the training points falls in IL or none falls
in IR. Thus, by the union bound,

P[R(IS) > ε] ≤ P[S ∩ IL = ∅] + P[S ∩ IR = ∅]

≤ 2(1− ε/2)m ≤ 2e−mε/2.

Setting δ to match the right-hand side gives the sample complexity m = 2
ε

log 2
δ

and proves

the PAC-learning of closed intervals. �

2.9 Learning union of intervals

Given a sample S, our algorithm consists of the following steps:

(a) Sort S in ascending order.

(b) Loop through sorted S, marking where intervals of consecutive positively labeled points
begin and end.

(c) Return the union of intervals found on the previous step. This union is represented by a
list of tuples that indicate start and end points of the intervals.

This algorithms works both for p = 2 and for a general p. We will now consider the problem
for C2. To show that this is a PAC-learning algorithm we need to distinguish between two
cases.

The first case is when our target concept is a disjoint union of two closed intervals: I =
[a, b] ∪ [c, d]. Note, there are two sources of error: false negatives in [a, b] and [c, d] and also
false positives in (b, c). False positives may occur if no sample is drawn from (b, c). By
linearity of expectation and since these two error regions are disjoint, we have that R(hS) =
RFP(hS) +RFN,1(hS) +RFN,2(hS), where

RFP(hS) = P
x∼D

[x ∈ hS , x 6∈ I],

RFN,1(hS) = P
x∼D

[x 6∈ hS , x ∈ [a, b]],

RFN,2(hS) = P
x∼D

[x 6∈ hS , x ∈ [c, d]].
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Since we need to have that at least one of RFP(hS), RFN,1(hS), RFN,2(hS) exceeds ε/3 in
order for R(hS) > ε, by union bound

P(R(hS) > ε) ≤ P(RFP(hS) > ε/3 or RFN(hS),1 > ε/3 or RFN(hS),2 > ε/3)

≤ P(RFP(hS) > ε/3) +
2∑
i=1

P(RFN(hS),i > ε/3) (E.40)

We first bound P(RFP(hS) > ε/3). Note that if RFP(hS) > ε/3, then P((b, c)) > ε/3 and
hence

P(RFP(hS) > ε/3) ≤ (1− ε/3)m ≤ e−mε/3.
Now we can bound P(RFN(hS),i > ε/3) by 2e−mε/6 using the same argument as in the previous
question. Therefore,

P(R(hS) > ε) ≤ e−mε/3 + 4e−mε/6 ≤ 5e−mε/6.

Setting, the right-hand side to δ and solving for m yields that m ≥ 6
ε

log 5
δ

.

The second case that we need to consider is when I = [a, d], that is, [a, b] ∩ [c, d] 6= ∅. In
that case, our algorithm reduces to the one from exercise 2.8 and it was already shown that
only m ≥ 2

ε
log 2

δ
samples is required to learn this concept. Therefore, we conclude that our

algorithm is indeed a PAC-learning algorithm.

Extension of this result to the case of Cp is straightforward. The only difference is that in
(E.40), one has two summations for p − 1 regions of false positives and 2p regions of false

negatives. In that case sample complexity is m ≥ 2(2p−1)
ε

log 3p−1
δ

.

Sorting step of our algorithm takes O(m logm time and steps (b) and (c) are linear in m,
which leads to overall time complexity O(m logm).

2.10 Consistent hypotheses

Since PAC-learning with L is possible for any distribution, let D be the uniform distribution
over Z. Note that, in that case, the cost of an error of a hypothesis h on any point z ∈ Z is
PD[z] = 1/m. Thus, if RD(h) < 1/m, we must have RD(h) = 0 and h is consistent. Thus,
choose ε = 1/(m+1). Then, for any δ > 0, with probability at least 1−δ over samples S with
|S| ≥ P ((m+ 1), 1/δ) points (where P is some fixed polynomial) the hypothesis hS returned
by L is consistent with Z since RD(hS) ≤ 1/(m+ 1).

2.11 Senate laws

(a) The true error in the consistent case is bounded as follows:

RD(h) ≤
1

m
(log |H|+ log

1

δ
). (E.41)

For δ = .05, m = 200 and |H| = 2800, RD(h) ≤ 5.5%.

(b) The true error in the inconsistent case is bounded as:

RD(h) ≤ R̂D(h) +

√
1

2m
(log 2|H|+ log

1

δ
). (E.42)

For δ = .05, R̂D(h) = m′/m = .1, m = 200 and |H| = 2800, RD(h) ≤ 27.05%.

2.12 Bayesian bound. For any fixed h ∈ H, by Hoeffding’s inequality, for any δ > 0,

P

R(h)− R̂S(h) ≥

√
log 1

p(h)δ

2m

 ≤ p(h)δ. (E.43)
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By the union bound,

P

∃h : R(h)− R̂S(h) ≥

√
log 1

p(h)δ

2m

 ≤ ∑
h∈H

P

R(h)− R̂S(h) ≥

√
log 1

p(h)δ

2m


≤
∑
h∈H

p(h)δ = δ.

In the case of a finite hypothesis set and a uniform prior p(h) = 1/|H|, the bound coincides
with the one presented in the chapter.

2.13 Learning with an unknown parameter.

(a) By definition of acceptance,

P[h is accepted] = P[R̂S(h) ≤ 3/4ε]

≤ P[R̂S(h) ≤ 3/4R(h)] (R(h) ≥ ε)

≤ exp
(
−
n

2
R(h)(1/4)2

)
(Chernoff bound)

= exp
(
−
R(h)

ε
log

2i+1

δ

)
(def. of n)

= exp
(
− log

2i+1

δ

)
=

δ

2i+1
. (R(h) ≥ ε)

(b) By definition, P[h is rejected] = P[R̂S(h) ≥ 3
4
ε]. Since R(h) ≤ ε/2, P[h is rejected] ≤

P[R̂S(h) ≥ 3
4
ε | R(h) = ε/2]. By the Chernoff bounds, we can thus write

P[h is rejected] ≤ exp
(
−
n

3

ε

2
(1/2)2

)
(Chernoff bound)

= exp
(
−

4

3
log

2i+1

δ

)
(def. of n)

≤ exp
(
− log

2i+1

δ

)
=

δ

2i+1
.

(c) The estimate s̃ is then an upper bound on s and thus, by definition of algorithm B,
P[R(hi) ≤ ε/2] ≥ 1/2. If a hypothesis h has error at least ε/2 it is rejected with probability
at most δ/2i+1 ≤ δ/4 ≤ 1/4, therefore, it is accepted with probability at 3/4. Thus, for
s̃ ≥ s, P[hi is accepted] ≥ 1/2× 1/4 = 3/8.

(d) By the previous question, the probability that algorithm B fails to halt while s̃ ≥ s is at
most 1 − 3/8 = 5/8. Thus, the probability that it does not halt after j iterations is at

most (5/8)j ≤ (5/8)log 2
δ
/ log 8

5 = exp
(

log 2
δ
/ log 8

5
log 5

8

)
= δ/2.

(e) By definition,

s̃ ≥ s ⇐⇒ b2(i−1)/ log 2
δ c ≥ s

⇐⇒ 2(i−1)/ log 2
δ ≥ s

⇐⇒
i− 1

log 2
δ

≥ log2 s

⇐⇒ i ≥ 1 + (log2 s) log
2

δ

⇐⇒ i ≥ d1 + (log2 s) log
2

δ
e.

(f) In view of the two previous questions, with probability at least 1− δ/2, algorithm B halts
after at most j′ iterations. The probability that the hypothesis it returns be accepted
while its error is greater than ε is at most δ/2j

′+1 ≤ δ/2. Thus, with probability 1 − δ,
the algorithm halts and the hypothesis it returns has error at most ε. �
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Since concepts can be identified with indicator functions, the intersection of two concepts can
be identified with the product two such indicator functions. In view of that, by the result just
proven and after taking expectations, the following holds:

Rm(C) ≤ Rm(C1) + Rm(C2).

3.10 Rademacher complexity of prediction vector

(a) The following proves the result:

R̂S(H) =
1

m
E
σ

[
sup

f∈{h,−h}

m∑
i=1

σif(xi)

]

=
1

m
E
σ

[max{σ · u,−σ · u}]

=
1

m
E
σ

[|σ · u|]

≤
1

m

√
E
σ

[|σ · u|2] (by Jensen’s inequality)

=
1

m

√√√√√E
σ

 m∑
i,j=1

σiσjuiuj


=

1

m

√√√√ m∑
i,j=1

E
σ

[σiσj ]uiuj

=
1

m

√√√√ m∑
i=1

u2
i (E

σ
[σiσj ] = E

σ
[σi]E

σ
[σj ] = 0 for i 6= j)

=
‖u‖
m

.

Thus, R̂S(H) ≤
√
n
m

. For n = 1, R̂S(H) ≤ 1
m

while for n = m, R̂S(H) ≤ 1√
m

.

(b) The empirical Rademacher complexity of F + h can be expressed as follows:

R̂S(F + h) =
1

m
E
σ

[
sup
f∈F

m∑
i=1

σif(xi) + σih(xi)

]

=
1

m
E
σ

[
sup
f∈F

m∑
i=1

σif(xi)

]
+

1

m
E
σ

[
m∑
i=1

σih(xi)

]

= R̂S(F) +
1

m

m∑
i=1

E
σ

[σi]h(xi) = R̂S(F).

The empirical Rademacher complexity of F ± h can be upper bounded as follows using
the first question:

R̂S(F + h) =
1

m
E
σ

[
sup
f∈F

m∑
i=1

σif(xi) + sup
s∈{−1,+1}

sσih(xi)

]

=
1

m
E
σ

[
sup
f∈F

m∑
i=1

σif(xi)

]
+

1

m
E
σ

[
sup

s∈{−1,+1}
s

m∑
i=1

σih(xi)

]

≤ R̂S(F) +
‖u‖
m

.

3.11 Rademacher complexity of regularized neural networks
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(a)

R̂S(H) =
1

m
E
σ

 sup
‖w‖1≤Λ′,‖uj‖2≤Λ

m∑
i=1

σi

n2∑
j=1

wjσ(uj · xi)


=

1

m
E
σ

 sup
‖w‖1≤Λ′,‖uj‖2≤Λ

n2∑
j=1

wj

m∑
i=1

σiσ(uj · xi)


=

Λ′

m
E
σ

[
sup

‖uj‖2≤Λ
max
j∈[n2]

∣∣∣∣∣
m∑
i=1

σiσ(uj · xi)

∣∣∣∣∣
]

(all the weight put on largest term)

=
Λ′

m
E
σ

[
sup

‖uj‖2≤Λ,j∈[n2]

∣∣∣∣∣
m∑
i=1

σiσ(uj · xi)

∣∣∣∣∣
]

=
Λ′

m
E
σ

[
sup
‖u‖2≤Λ

∣∣∣∣∣
m∑
i=1

σiσ(u · xi)

∣∣∣∣∣
]
.

(b) By Talagrand’s lemma, since σ is L-Lipschitz, the following inequality holds:

R̂S(H) ≤
Λ′L

m
E
σ

[
sup
h∈H

∣∣∣∣∣
m∑
i=1

σiu · xi

∣∣∣∣∣
]

=
Λ′L

m
E
σ

[
sup
h∈H

sup
s∈{−1,+1}

s

m∑
i=1

σiu · xi

]
(def. of abs. value)

= Λ′L R̂S(H′).

(c)

R̂S(H′) =
1

m
E
σ

[
sup

‖u‖2≤Λ,s∈{−1,+1}

m∑
i=1

σisu · xi

]

=
1

m
E
σ

[
sup
‖u‖2≤Λ

∣∣∣∣∣
m∑
i=1

σiu · xi

∣∣∣∣∣
]

(def. of abs. val.)

=
1

m
E
σ

[
sup
‖u‖2≤Λ

∣∣∣∣∣u ·
m∑
i=1

σixi

∣∣∣∣∣
]

=
Λ

m
E
σ

[∥∥∥∥∥
m∑
i=1

σixi

∥∥∥∥∥
2

]
(Cauchy-Schwarz eq. case).

The last equality holds by setting u =
Λ
∑m
i=1 σixi

‖
∑m
i1=1 σixi‖

.
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(d)

R̂S(H′) =
Λ

m
E
σ

[∥∥∥∥∥
m∑
i=1

σixi

∥∥∥∥∥
2

]

≤
Λ

m

√√√√√E
σ

∥∥∥∥∥
m∑
i=1

σixi

∥∥∥∥∥
2

2

 (Jensen’s ineq.)

=
1

m

√√√√ m∑
i,j=1

E
σ

[σiσj ] (xi · xj)

=
Λ

m

√√√√ m∑
i,j=1

1i=j(xi · xj) (independence of σis)

=
Λ

m

√√√√ m∑
i=1

‖xi‖22.

(e) In view of the previous questions,

R̂S(H) ≤ Λ′L R̂S(H′) ≤
Λ′ΛL

m

√√√√ m∑
i=1

‖xi‖22 ≤
Λ′ΛL

m

√
mr2 =

Λ′ΛLr
√
m

.

3.12 Rademacher complexity

Consider the simple case where H is reduced to the constant hypothesis h1 : x 7→ 1 and
h−1 : x 7→ −1. Then, by definition of the empirical Rademacher complexity,

R̂S(H) =
1

m
E
σ

[max{
m∑
i=1

σi,
m∑
i=1

−σi}] =
1

m
E
σ

[|
m∑
i=1

σi|]

Let X =
∑m
i=1 σi. Note that E[X2] = E[

∑m
i,j=1 σiσj ]. For any i 6= j, since σi and σj are

independent, E[σiσj ] = E[σi]E[σj ] = 0. Thus,

E[X2] =

m∑
i=1

E[σiσi] =

m∑
i=1

E[σ2
i ] = m.

Now, by Hölder’s inequality,

m = E[X2] = E[|X|2/3|X|4/3] ≤ E[|X|]2/3 E[X4]1/3.

Thus,

E[|X|] ≥
m3/2

E[X4]1/2
=

m3/2√
E[
∑m
i=1 σ

4
i + 3

∑
i 6=j σ

2
i σ

2
j ]

=
m3/2√

m+ 3m(m− 1)

=
m3/2√

m(3m− 2)
≥

m3/2√
m(3m)

=

√
m
√

3
.

This shows that

R̂S(H) ≥
√
m
√

3
.

Since Rm(H) ≥ R̂S(H) +O( 1√
m

), it implies Rm(H) ≥ O( 1√
m

), which contradicts Rm(H) ≤
O( 1

m
).

Note that for the lower bound, we could have used instead a more general result (Khinchine’s
inequality) which states that for any a ∈ Rm,

E[| σ · a|] ≥
‖a‖2√

2
.



Solutions Manual 471

3.13 VC-dimension of union of k intervals

The VC-dimension of this class is 2k. It is not hard to see that any 2k distinct points on
the real line can be shattered using k intervals; it suffices to shatter each of the k pairs of
consecutive points with an interval. Assume now that 2k+ 1 distinct points x1 < · · · < x2k+1

are given. For any i ∈ [2k + 1], label xi with (−1)i+1, that is alternatively label points with
1 or −1. This leads to k + 1 points labeled positively and requires 2k + 1 intervals to shatter
the set, since no interval can contain two consecutive points. Thus, no set of 2k + 1 points
can be shattered by k intervals, and the VC-dimension of the union of k intervals is 2k.

3.14 VC-dimension of finite hypothesis sets

With a finite set H, at most 2|H| dichotomies can be defined.

3.15 VC-dimension of subsets

The set of three points {0, 3/4, 3/2} can be fully shattered as follows:

+ + + α = −2

+ +− α = 0

+−+ α = −1

+−− α = 3/2− 2 + ε

−+ + α = 3/4− 2

−+− α = ε

−−+ α = 3/2

−−− α = 3/2 + ε,

where e is a small number, e.g., ε = .1. No set of four points x1 < x2 < x3 < x4 can be
labeled by + − +−. This is because the three leftmost labels + − + imply that α + 2 ≤ x3

and thus also α + 2 < x4. Thus, the VC-dimension of the set of subsets Iα is 3. Note that
this does not coincide with the number of parameters used to describe the class.

3.16 VC-dimension of axis-aligned squares and triangles

(a) It is not hard to see that the set of 3 points with coordinates (1, 0), (0, 1), and (−1, 0)
can shattered by axis-aligned squares: e.g., to label positively two of these points, use a
square defined by the axes and with those to points as corners. Thus, the VC-dimension
is at least 3. No set of 4 points can be fully shattered. To see this, let PT be the highest
point, PB the lowest, PL the leftmost, and PR the rightmost, assuming for now that
these can be defined in a unique way (no tie) – the cases where there are ties can be
treated in a simpler fashion. Assume without loss of generality that the difference dBT
of y-coordinates between PT and PB is greater than the difference dLR of x-coordinates
between PL and PR. Then, PT and PB cannot be labeled positively while PL and PR are
labeled negatively. Thus, the VC-dimension of axis-aligned squares in the plane is 3.

(b) Check that the set of 4 points with coordinates (1, 0), (0, 1), (−1, 0), and (0,−1) can be
shattered by such triangles. This is essentially the same as the case with axis aligned
rectangles. To see that no five points can be shattered, the same example or argument
as for axis-aligned rectangles can be used: labeling all points positively except from the
one within the interior of the convex hull is not possible (for the degnerate cases where no
point is in the interior of the convex hull is simpler, this is even easier to see). Thus, the
VC-dimension of this family of triangles is 4.

3.17 VC-dimension of closed balls in Rn.

Let B(a, r) be the ball of radius r centered at a ∈ Rn. Then x ∈ B(a, r) iff
n∑
i=1

‖xi‖2 − 2
n∑
i=1

aixi +
n∑
i=1

a2
i − r ≤ 0, (E.47)
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which is equivalent to
〈W,X〉+B ≤ 0, (E.48)

with W =


1

−2a1

. . .

−2an

, X =


∑n
i=1 ‖xi‖2

x1

. . .

xn

, and B =
∑n
i=1 a

2
i − r. The VC-dimension of

closed balls in Rn is thus at most equal to the VC-dimension of hyperplanes in Rn+1, that is,
n+ 2.

3.18 VC-dimension of ellipsoids

The general equation of ellipsoids in Rn is

(X−X0)>A(X−X0) ≤ 1, (E.49)

where X,X0 ∈ Rn and A = (aij) ∈ Sn+ is a positive semidefinite symmetric matrix. This can
be rewritten as

X>AX− 2X>AX0 + X>0 AX0 ≤ 1, (E.50)
or
∑n
i,j=1 aij(xixj + xjxi)−

∑n
i=1 2(AX0)i xi +

(
X>0 AX0 − 1

)
≤ 0 using the fact that A is

symmetric. Let ai = −2(AX0)i for i ∈ [n] and let b = X>0 AX0− 1. Then this can be viewed
in terms of the following equations of hyperplanes in Rn(n+1)/2+n

W>Z + b ≤ 0, (E.51)

with

W =



a1

. . .

an

a11

. . .

aij

. . .

ann


Z =



x1

. . .

xn

x1x1 + x1x1

. . .

xixj + xjxi

. . .

xnxn + xnxn.




n(n+ 1)/2 + n (E.52)

Since the VC-dimension of hyperplanes in Rn(n+1)/2+n is n(n+1)/2+n+1 = (n+1)(n/2+1),
the VC-dimension of ellipsoids in Rn is bounded by (n+ 1)(n+ 2)/2.

3.19 VC-dimension of a vector space of real functions

Show that no set of size m = r + 1 can be shattered by H. Let x1, . . . , xm be m arbitrary
points. Define the linear mapping l : F → Rm defined by:

l(f) = (f(x1), . . . , f(xm))

Since the dimension of dim(F ) = m − 1, the rank of l is at most m − 1, and there exists
α ∈ Rm orthogonal to l(F ):

∀f ∈ F,
m∑
i=1

αif(xi) = 0

We can assume that at least one αi is negative. Then,

∀f ∈ F,
m∑

i : αi≥0

αif(xi) = −
m∑

i : αi<0

αif(xi)

Now, assume that there exists a set {x : f(x) ≥ 0} selecting exactly the xis on the left-hand
side. Then all the terms on the left-hand side are non-negative, while those on the right-hand
side are negative, which cannot be. Thus, {x1, . . . , xm} cannot be shattered.

3.20 VC-dimension of sine functions

(a) Fix x ∈ R and suppose there exists an ω that realizes the labeling −−+−. Thus sin(ωx) <
0, sin(2ωx) < 0, sin(3ωx) ≥ 0 and sin(4ωx) < 0. We will show that this implies sin2(ωx) <
1
2

and sin2(ωx) ≥ 3
4

, a contradiction.
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Using the identity sin(2θ) = 2 sin(θ) cos(θ) and the fact that sin(4ωx) < 0 we have

2 sin(2ωx) cos(2ωx) = sin(4ωx) < 0.

Since sin(2ωx) < 0 we can divide both sides of this inequality by 2 sin(2ωx) to conclude
cos(2ωx) > 0. Applying the identity cos(2θ) = 1 − 2 sin2(θ) yields 1 − 2 sin2(ωx) > 0, or
sin2(ωx) < 1

2
.

Using the identity sin(3θ) = 3 sin(θ)− 4 sin3(θ) and the fact that sin(3ωx) ≥ 0 we have

3 sin(ωx)− 4 sin3(ωx) = sin(3ωx) ≥ 0

Since sin(ωx) < 0 we can divide both sides of this inequality by sin(ωx) to conclude
3− 4 sin2(ωx) ≤ 0, or sin2(ωx) ≥ 3

4
.

(b) For any m > 0, consider the set of points (x1, . . . , xm) with arbitrary labels (y1, . . . , ym) ∈
{−1,+1}m. Now, choose the parameter ω = π(1+

∑m
i=1 2iy′i) where y′i = 1−yi

2
. We show

that this single parameter will always correctly classify the entire sample for any m > 0
and choice of labels. For any j ∈ [m] we have,

ωxj = ω2−j = π(2−j +

m∑
i=1

2i−jy′i) = π(2−j + (

j−1∑
i=1

2i−jy′i) + y′j + (

m−j∑
i=1

2iy′i)) .

The last term can be dropped from the sum, since it contributes only multiples of 2π. Since
y′i ∈ {0, 1} the remaining term π(2−j + (

∑j−1
i=1 2i−jy′i) + y′j) = π(

∑j−1
i=1 2−iy′i + 2−j + y′j)

can be upper and lower bounded as follows:

π(

j−1∑
i=1

2−iy′i + 2−j + y′j) ≤ π(

j∑
i=1

2−i + y′j) < π(1 + y′j) ,

π(

j−1∑
i=1

2−iy′i + 2−j + y′j) > πy′j .

Thus, if yj = 1 we have y′j = 0 and 0 < ωxj < π, which implies sgn(ωxj) = 1. Similarly,
for yj = −1 we have sgn(ωxj) = −1.

3.21 VC-dimension of union of halfspaces

3.22 VC-dimension of intersection of halfspaces

Let m ≥ 0. Note the general fact that for any concept class C = {c1 ∩ c2 : c1 ∈ C1, c2 ∈ C2},
ΠC(m) ≤ ΠC1

(m) ΠC2
(m). (E.53)

Indeed, fix a set X of m points. Let Y1, . . . ,Yk be the traces of C1 on X. By definition of
ΠC1

(X), k ≤ ΠC1
(X) ≤ ΠC1

(m). By definition of ΠC2
(Yi), the traces of C2 on a subset Yi are

at most ΠC2
(Yi) ≤ ΠC2

(m). Thus, the traces of C on X are at most

kΠC2
(Yi) ≤ ΠC1

(m) ΠC2
(m). (E.54)

For the particular case of Ck, using Sauer’s lemma, this implies that

ΠCk
(m) ≤ (ΠC1

(m))k ≤
(

em

n+ 1

)k(n+1)

. (E.55)

If (em/(n+ 1))k(n+1) < 2m, then the VC-dimension of Ck is less than m. If the VC-dimension

of Ck is m, then ΠCk
(m) = 2m ≤ (em/(n+ 1))k(n+1). These inequalities give an upper

bound and a lower bound on VCdim(Ck). As an example, using the inequality: ∀x ∈ N −
{3}, log2(x) ≤ x/2, one can verify that:

VCdim(Ck) ≤ 2(n+ 1)k log(3k). (E.56)

3.23 VC-dimension of intersection concepts

(a) Fix a set X of m points. Let Y1, . . . ,Yk be the set of intersections of the concepts of C1

with X. By definition of ΠC1
(X), k ≤ ΠC1

(X) ≤ ΠC1
(m). By definition of ΠC2

(Yi), the
intersection of the concepts of C2 with Yi are at most ΠC2

(Yi) ≤ ΠC2
(m). Thus, the
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number of sets intersections of concepts of C with X is at most

kΠC2
(Yi) ≤ ΠC1

(m) ΠC2
(m). (E.57)

(b) In view of the result proved in the previous question, ΠCs (m) ≤ (ΠC1
(m))s. By Sauer’s

lemma, this implies

ΠCs (m) ≤
( em
d

)sd
. (E.58)

If
(
em
d

)sd
< 2m, then the VC-dimension of Cs is less than m. Thus, it suffices to show

this inequality holds with m = 2ds log2(3s). Plugging in that value for m and taking the
log2 yield:

ds log2 (2es log2(3s)) < 2ds log2(3s) (E.59)

⇔ log2 (2es log2(3s)) < 2 log2(3s) = log2(9s2) (E.60)

⇔ 2es log2(3s) < 9s2 (E.61)

⇔ log2(3s) <
9s

2e
. (E.62)

This last inequality holds for s = 2: log2(6) ≈ 2.6 < 9/(2e) ≈ 3.3. Since the functions
corresponding to the left-hand-side grows more slowly than the one corresponding to the
right-hand-side (compare derivatives for example), this implies that the inequality holds
for all s ≥ 2.

3.24 VC-dimension of union of concepts

(a) When C = A∪B, ΠC(X) ≤ ΠA(X) + ΠB(X) for any set X, since dichotomies in ΠC(X) can
be generated by A or by B. Thus, for all m, ΠC(m) ≤ ΠA(m) + ΠB(m).

(b) For m ≥ dA + dB + 2, by Sauer’s lemma,

ΠC(m) ≤
dA∑
i=0

(m
i

)
+

dB∑
i=0

(m
i

)
=

dA∑
i=0

(m
i

)
+

dB∑
i=0

(m− i
i

)

=

dA∑
i=0

(m
i

)
+

dB∑
i=m−dB

(m
i

)
(E.63)

≤
dA∑
i=0

(m
i

)
+

dB∑
i=dA+2

(m
i

)
(E.64)

<
m∑
i=0

(m
i

)
= 2m. (E.65)

Thus, the VC-dimension of C is strictly less than dA + dB + 2:

VCdim(C) ≤ dA + dB + 1. (E.66)

3.25 VC-dimension of symmetric difference of concepts

Fix a set S. We can show that the number of classifications of S using H is the same as when
using H∆A. The set of classifications obtained using H can be identified with {S∩h : h ∈ H}
and the set of classifications using H∆A can be identified with {S∩ (h∆A) : h ∈ H}. Observe
that for any h ∈ H,

S ∩ (h∆A) = (S ∩ h)∆(S ∩A). (E.67)
Figure E.7 helps illustrate this equality in a special case. Now, in view of this inequality, if
S ∩ (h∆A) = S ∩ (h′∆A) for h, h′ ∈ H, then

(S ∩ h)∆B = (S ∩ h′)∆B, (E.68)

with B = S ∩ A. Since two sets that have the same symmetric differences with respect to a
set B must be equal, this implies

S ∩ h = S ∩ h′. (E.69)
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h

A

S

Figure E.7
Illustration of (h∆A) ∩ S = (h ∩ S)∆(A ∩ S) shown in gray.

This shows that φ defined by

φ : S ∩H→ S ∩ (H∆A)

S ∩ h 7→ S ∩ (h∆A)

is a bijection, and thus that the sets S ∩H and S ∩ (H∆A) have the same cardinality.

3.26 Symmetric functions

(a) For i = 0, . . . , n, let xi ∈ {0, 1}n be defined by xi = (1, . . . , 1︸ ︷︷ ︸
i 1’s

, 0, . . . , 0). Then, {x0, . . . , xn}

can be shattered by C. Indeed, let y0, . . . , yn ∈ 0, 1 be an arbitrary labeling of these points.
Then, the function h defined by:

h(x) = yi (E.70)
for all x with i 1’s is symmetric and h(xi) = yi. Thus, VCdim(C) ≥ n + 1. Conversely,
a set of n+ 2 points cannot be shattered by C, since at least two points would then have
the same number of 1’s and will not be distinguishable by C. Thus,

VCdim(C) = n+ 1. (E.71)

(b) Thus, in view of the theorems presented in class, a lower bound on the number of training
examples needed to learn symmetric functions with accuracy 1− ε and confidence 1− δ is

Ω(
1

ε
log

1

δ
+
n

ε
), (E.72)

and an upper bound is:

O(
1

ε
log

1

δ
+
n

ε
log

1

ε
), (E.73)

which is only within a factor 1
ε

of the lower bound.

(c) For a training data (z0, t0), . . . , (zm, tm) ∈ {0, 1}n × {0, 1} define h as the symmetric
function such that h(zi) = ti for all i = 0, . . . ,m.

3.27 VC-dimension of neural networks

(a) Let Πu(m) denote the growth function at a node u in the intermediate layer. For a fixed
set of values at the intermediate layer, using the concept class C the output node can
generate at most ΠC(m) distinct labelings. There are

∏
u Πu(m) possible sets of values

at the intermediate layer since, by definition, for a sample of size m, at most Πu(m)
distinct values are possible at each u. Thus, at most ΠC(m)×

∏
u Πu(m) labelings can be

generated by the neural network and ΠH(m) ≤ ΠC(m)
∏
u Πu(m).

(b) For any intermediate node u, Πu(m) = ΠC(m). Thus, for k̃ = k + 1, ΠH(m) ≤ ΠC(m)k̃.

By Sauer’s lemma, ΠC(m) ≤
(
em
d

)d
, thus ΠH(m) ≤

(
em
d

)dk̃
. Let m = 2k̃d log2(ek̃). In
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view of the inequality given by the hint and ek̃ > 4, this implies m > dk̃ log2

(
em
d

)
, that

is 2m >
(
em
d

)dk̃
. Thus, the VC-dimension of H is less than

2k̃d log2(ek̃) = 2(k + 1)d log2(e(k + 1)).

(c) For threshold functions, the VC-dimension of C is r, thus, the VC-dimension of H is upper
bounded by

2(k + 1)r log2(e(k + 1)).

3.28 VC-dimension of convex combinations

Following the hint, we can think of this family of functions as a one hidden layer neural
network, where the hidden layer is represented by the functions ht ∈ H, and the top layer is
a threshold function characterized by (α1, . . . , αT ). Denote this class of threshold functions
by ∆T . From the solution of exercise 3.27(a) we can bound the growth function of FT by:

ΠFT
(m) ≤ Π∆T (m) (ΠH(m))T .

From the solution to exercise 3.27(c), the VC dimension of ∆T is at most T , and we may
further denote the VC dimension of H by d. Applying Sauer’s lemma to the growth function
yields:

Π∆T (m) ≤
( em
T

)T
, ΠH(m) ≤

( em
d

)d
.

Thus, we have that

ΠFT
(m) ≤

( em
T

)T ( em
d

)Td
.

Finally, we may apply the hint in exercise 3.27(b) with m = max{4T log2(2e), 2Td log2(eT )}
to see that ( em

T

)T ( em
d

)Td
< 24T log2(2e)+2Td log2(eT ),

so that the VC Dimension of FT is bounded by:

2T (2 log2(2e) + d log2(eT )).

Note that a coarser but relatively simpler bound would be to write:( em
T

)T ( em
d

)Td
< (em)T (d+1),

and to apply the hint in exercise 3.27(b) with m = 2T (d+ 1) log2(eT (d+ 1)). Notice that this
is actually asymptotically optimal in T and d up to log terms.

3.29 Infinite VC-dimension

(a) Theorem 3.20 shows that there exists a distribution that can force an error of Ω( d
m

).
Thus, for an infinite VC-dimension, this lower bound requires an infinite number of points
to achieve a bounded error and thus implies that PAC-learning is not possible.

(b) Here is a description of the algorithm. Let M be the maximum value observed after
drawing m points and let p be the probability that a point greater than M be drawn. The
probability that all points drawn be smaller than or equal to M is

(1− p)m ≤ e−pm. (E.74)

Setting δ/2 to match the upper bound, yields δ/2 = e−pm, that is

p =
1

m
log

2

δ
. (E.75)

To bound p by ε/2, we can impose the following

1

m
log

2

δ
≤
ε

2
. (E.76)

Thus, with confidence at least 1 − δ/2, the probability that a point greater than M be
drawn is at most ε/2 if L draws m ≥ 2

ε
log 2

δ
points.

In the second stage, the problem is reduced to a finite VC-dimension M . Since PAC-
learning with (ε/2, δ/2) is possible for a finite dimension, this guarantees the (ε, δ)-PAC-
learning of the full algorithm.
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3.30 VC-dimension generalization bound – realizable case

(a) Let h0 ∈ HS , then we have the following set of inequalities:

P
[

sup
h∈HS

|R̂S(h)− R̂S′ (h)| >
ε

2

]
≥ P

[
|R̂S(h0)− R̂S′ (h0)| >

ε

2

]
= P

[
R̂S′ (h0) >

ε

2

]
≥ P

[
R̂(h0) >

ε

2
| R(h0) > ε

]
P[R(h0) > ε]

> P
[
B(m, ε) >

mε

2

]
P[R(h0) > ε] .

The second inequality follows from the fact that for any two random events A and B,
P[A] ≥ P[A∧B] = P[A|B]P[B]. The final equality follows, since the event we are concerned
with is the probability that we get at least a fraction of ε/2 errors on a sample of size m
when the true probability of error is at least ε. In the case the true error rate equals ε,
this exactly describes the probability that B(m, ε) ≥ mε/2.

(b) We apply Chebyshev’s inequality to the binomial random variable B(m, ε), which has
mean mε variance mε(1− ε).

P
[
B(m, ε) ≤

mε

2

]
= P

[
mε−B(m, ε) ≥

mε

2

]
≤
mε(1− ε)
(mε/2)2

=
4(1− ε)
mε

≤
4

mε
≤

1

2
where the last inequality uses the assumption mε ≥ 8. Thus, this shows that P[B(m, ε) >
mε/2] > 1− 1/2 = 1/2. Plugging the bound into part (a) completes the question.

(c) There are
(2m
l

)
total ways to distribute the l error over the sample T and

(m
l

)
way to

distribute the error such that the only hit S′. Thus, the probability of all error falling
only into S′ is bounded as(m

l

)(2m
l

) = Πl−1
i=0

m− i
2m− i

≤ Πl−1
i=0

m− i
2m− 2i

≤
1

2l
.

(d) This follows from

P
T∼D2m:
T→(S,S′)

[
R̂S(h) = 0 ∧ R̂S′ (h) >

ε

2

]
= P

T∼D2m:
T→(S,S′)

[
R̂S(h) = 0 ∧ R̂S′ (h) >

ε

2
∧ R̂T (h) >

ε

2

]
= P

T∼D2m:
T→(S,S′)

[
R̂S(h) = 0 ∧ R̂S′ (h) >

ε

2

∣∣ R̂T (h) >
ε

2

]
P[R̂T (h) >

ε

2
]

≤ P
T∼D2m:
T→(S,S′)

[
R̂S(h) = 0 ∧ R̂S′ (h) >

ε

2

∣∣ R̂T (h) >
ε

2

]
≤ 2−l ≤ 2−

mε
2 .

(e) Using the definition of the growth function, we can provide the following union bound
that is then in turn bounded using corollary 3.18:

P
T∼D2m:
T→(S,S′)

[
∃h ∈ H : R̂S(h) = 0 ∧ R̂S′ (h) >

ε

2

]
≤ ΠH(2m)2−

mε
2 ≤

(2em

d

)d
2−mε/2 .

Combining part (a) through (e), we finally have,

P[R(h) > ε] ≤ 2
(2em

d

)d
2−mε/2 . (E.77)
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Setting the right-hand side equal to δ and solving for ε show that with probability at least
1− δ

ε ≤
1

m

(
d log

2em

d
+ log

1

δ
+ log 2

) 2

log 2
.

3.31 Covering number generalization bound.

(a) First split the term into two separate terms:

|LS(h1)− LS(h2)| ≤ |R(h1)−R(h2)|+ |R̂S(h1)− R̂S(h2)|

=
∣∣∣ E
x,y

[(h1(x)− y)2 − (h2(x)− y)2]
∣∣∣+
∣∣∣ 1

m

m∑
i=1

(h1(xi)− yi)2 − (h2(xi)− yi)2
∣∣∣ .

Then, expanding the term

(h1(x)− y)2 − (h2(x)− y)2 = (h1(x)− h2(x))(h1 + h2 − 2y)

= (h1(x)− h2(x))
(
(h1 − y) + (h2 − y)

)
≤ ‖h1 − h2‖∞2M ,

allows us to bound both the empirical and true error, resulting in a total bound of 4M‖h1−
h2‖∞.

(b) This follows by splitting the event into the union of several smaller events and then using
the sum rule,

P
S

[
sup
h∈H

|LS(h)| ≥ ε
]

= P
S

[ k∨
i=1

sup
h∈Bi

|LS(h)| ≥ ε
]
≤

k∑
i=1

P
S

[
sup
h∈Bi

|LS(h)| ≥ ε
]
.

(c) For any i let hi be the center of ball Bi with radius ε
8M

. Note that for any h ∈ H we have
|LS(h)− LS(hi)| ≤ 4M‖h− hi‖∞ ≤ ε/2. Thus, if for any h ∈ Bi we have |LS(h)| ≥ ε it
must be the case that |LS(hi) ≥ ε2|, which shows the inequality.

To complete the bound, we use Hoeffding’s inequality applied to the random variables
(h(xi)− yi)2/m ≤M2/m, which guarantees

P
S

[
|LS(hi)| ≥

ε

2

]
≤ 2 exp

(−mε2
2M4

)
.

Chapter 5

5.1 Soft margin hyperplanes

(a) The corresponding dual problem is:

max
α,β

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyj(xi · xj)−
m∑
i=1

(αi + βi)
k/(k−1)

(kC)1/(k−1)
(1−

1

k
)

subject to:
m∑
i=1

αiyi = 0 α ≥ 0 β ≥ 0.

(b) Here we see that the objective function is more complex requiring an optimization over
both α and β and there is the additional constraint β ≥ 0.

For k = 2 the additional term of interest is −
∑m
i=1(αi + βi)

2 (to see this, note that the
Hessian is negative semidefinite), which is jointly concave in αi and βi, which allows for
convex optimization techniques.

5.2 Tighter Rademacher bound
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Proceed as in the proof of theorem 5.9, but choose ρk = 1/γk. For any ρ ∈ (0, 1), there exists
k ≥ 1 such that ρ ∈ (ρk, ρk−1], with ρ0 = 1. For that k, ρ ≤ ρk−1 = γρk, thus 1/ρk ≤ γ/ρ and

log k =
√

log logγ(1/ρk) ≤
√

log log2(γ/ρ). Furthermore, for any h ∈ H, R̂S,ρk (h) ≤ R̂S,ρ(h).

Thus,

P

∃k : R(h)− R̂S,ρ(h) >
2γ

ρ
Rm(H) +

√
log logγ(γ/ρ)

m
+ ε

 ≤ 2 exp(−2mε2),

which proves the statement.

5.3 Importance weighted SVM

The modified primal optimization problem can be written as

minimize 1
2
||w||2 + C

∑m
i=1 ξipi

subject to yi[w · xi + b] ≥ 1− ξi .
The Lagrangian holding for all w, b, αi ≥ 0, βi ≥ 0 is then

L(w, b, α) =
1

2
||w||2 + C

m∑
i=1

ξipi (E.78)

−
m∑
i=1

αi[yi(w · xi + b)− 1 + ξi]−
m∑
i=1

βiξi .

Then ∂L
∂w

and ∂L
∂b

are the same as for the regular non-separable SVM optimization problem.

We also have ∂L
∂ξi

= Cpi−αi−βi. Thus, to satisfy the KKT conditions we have for all i ∈ [m],

w =

m∑
i=1

αiyixi (E.79)

m∑
i=1

αiyi = 0 (E.80)

αi + βi = Cpi (E.81)

αi[yi(w · xi + b)− 1 + ξi] = 0 (E.82)

βiξi = 0 . (E.83)

Plugging equation E.79 into equation E.78, we get

L =
1

2
||
m∑
i=1

αiyixi||2 + C
m∑
i=1

ξipi −
m∑

i,j=1

αiαjyiyj(xi · xj) (E.84)

−
m∑
i=1

αiyib+

m∑
i=1

αi −
∑

αiξi −
m∑
i=1

βiξi .

Using equation E.81, we can simplify:

L =
m∑
i=1

αi −
1

2
||
m∑
i=1

αiyixi||2 ,

meaning that the objective function is the same as in the regular SVM problem. The difference
is in the constraints on the optimization. Recall that our dual form holds for βi ≥ 0. Using
again equation E.81, our optimization problem is to maximize L subject to the constraints:

∀i ∈ [m], 0 ≤ αi ≤ Cpi ∧
m∑
i=1

αiyi = 0.
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5.4 Sequential Minimal Optimization (SMO).

(a) Starting from equation (5.33) and removing all terms that are constant with respect to
α1 and α2 yields the desired result.

(b) Substituting into Ψ1, we have:

Ψ2 = γ − sα2 + α2 −
1

2
K11(γ − sα2)2 −

1

2
K22α

2
2 − sK12(γ − sα2)α2

− y1(γ − sα2)v1 − y2α2v2 .

We take the derivative to find the equation for the stationary point as follows:

dΨ2

dα2
= −s+1+sK11(γ−sα2)−K22α2−sK12(γ−sα2)+s2K12α2+y1sv1−y2v2 = 0 .

Noting that s2 = 1 and rearranging terms yields the statement of interest.

(c) By definition of f(·) we see that v1 = f(x1) − y1α∗1K11 − y2α∗2K12 and similarly, v2 =
f(x2)−y1α∗1K12−y2α∗2K22. Using these equations along with the identities α∗1 = γ−sα∗2
and y1 = sy2 we have

v1 − v2 = f(x1)− f(x2)− y1α
∗
1(K11 −K12)− y2α

∗
2(K12 −K22)

= f(x1)− f(x2)− y1(γ − sα∗2)(K11 −K12)− y2α
∗
2(K12 −K22)

= f(x1)− f(x2)− sy2(γ − sα∗2)(K11 −K12)− y2α
∗
2(K12 −K22)

= f(x1)− f(x2)− sy2γ(K11 −K12) + y2α
∗
2(K11 −K12)− y2α

∗
2(K12 −K22)

= f(x1)− f(x2)− sy2γ(K11 −K12) + y2α
∗
2η .

(d) Combining the results from (b) and (c), we have

ηα2 = s(K11 −K12)γ + y2

[
f(x1)− f(x2)− sy2γ(K11 −K12) + y2α

∗
2η
]
− s+ 1

= y2

[
f(x1)− f(x2) + y2α

∗
2η
]
− s+ 1

= α∗2η + y2

[
f(x1)− f(x2)− y1 + y2

]
= α∗2η + y2

[
(y2 − f(x2))− (y1 − f(x1))

]
.

Dividing both sides by η yields the desired result.

(e) Clipping is required to ensure that the new values of α1 and α2 satisfy the inequality
constraints 0 ≤ α1, α2 ≤ C. The lower bound of 0 follows directly from this inequality
constraint, as does the upper bound of C. Moreover, when s = +1, the lower bound of
γ − C ensures that αclip2 is large enough such that αclip2 + α1 = γ while respecting the

constraint α1 ≤ C. Similarly, the upper bound γ ensures that αclip2 is small enough such

that αclip2 + α1 = γ while respecting the constraint α1 ≥ 0.

5.5 SVM hands-on

(a) Download and install the libsvm software library from:

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

(b) Concatenate and scale data.

cat \

satimage/satimage.scale.t \

satimage/satimage.scale.val > data/train

libsvm-2.88/svm-scale \

data/train > data/train.scaled
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Figure E.8
Average cross-validation error plus or minus one standar deviation for different values of the
trade-off constant C and of the degree of the polinomial kernel

(c) Run 10-fold cross-validation, for different values of the degree d of the polynomial kernel
and of the trade-off constant C. We test d = 1, 2, 3, 4 and log2(C) = −8,−7.5, · · · , 5.5, 6.
We step the value of the trade-off constant logarithmically as suggested by:

http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

Which gives the cross-validation error plots shown in figure E.8.

The best values of trade-off constant C are:

d = 1 \colon C* = 2^(+5.0) = 32 cv-err = 10.4% +/- 1.4%

d = 2 \colon C* = 2^(+0.0) = 1 cv-err = 8.3% +/- 2.2%

d = 3 \colon C* = 2^(-2.0) = .25 cv-err = 7.5% +/- 2.1%

d = 4 \colon C* = 2^(-4.5) = .0442 cv-err = 6.4% +/- 1.5%

The best C measured on the validation set is C∗ = 2−4.5, with degree d∗ = 4, which gives
an average error rate of 6.4%± 1.5%.

(d) The trade-off constant is fixed to C∗ = 2−4.5, and 10-fold cross-validation is run for
degrees 1 through 4. In figure E.9 we plot the resulting cross-validation training and test
errors and the average number of support vectors (nSV is the number of support vectors,
nBSV is the number of bounded support vectors, i.e. whose dual variable is equal to the
trade-off constant).

(e) Support vectors always lie on the margin hyperplanes when their dual variable is smaller
than C. This happens for all the support vectors (SV) that are not bounded (BSV). Our
measurement gives the following averages:

d = 1 \colon nSV - nBSV = 8.5
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Figure E.9
Average cross-validation error rates and average number of support vectors (nSV) and of bounded
support vectors(nSV) as a function of the degree of the polynomial kernel.

d = 2 \colon nSV - nBSV = 41.8

d = 3 \colon nSV - nBSV = 118.9

d = 4 \colon nSV - nBSV = 223.8

(f) We can consider the more general problem of assigning a weight ki to every sample that
will multiply its misclassification penalty. The optimization problem becomes:

minimize
1

2
||w||2 +

m∑
i=1

kiξi

subject to yi(wxi + b) ≤ 1− ξi, ξi ≥ 0, ∀i ∈ 1, . . . ,m .

Moving to the dual exactly as shown in the chapter we obtain:

maximize
m∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjxi · xj

subject to 0 ≤ αi ≤ Cki, ∀i ∈ 1, . . . ,m .

Setting ki = k for yi = −1 and ki = 1 for yi = 1 gives the desired problem.

(g) If k is an integer we can repeat every negative training point in the data k times. False
positives will thus get penalized k times as much as false negatives.

(h) Repeating the training for k = 1, 2, 4, 8, 16, we find the following results:

k = 1 \colon (d*, C*) = (4, 2^(-4.5)), cv-err = 6.4% +/- 1.5%

k = 2 \colon (d*, C*) = (4, 2^(-5.0)), cv-err = 6.4% +/- 0.9%
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Figure E.10
As in figure E.8, but false positives are penalized twice as much as false negatives.

k = 4 \colon (d*, C*) = (4, 2^(-5.5)), cv-err = 6.1% +/- 1.7%

k = 8 \colon (d*, C*) = (4, 2^(-3.5)), cv-err = 6.2% +/- 1.0%

k = 16 \colon (d*, C*) = (4, 2^(-3.5)), cv-err = 6.2% +/- 1.4%

Plots equivalent to the ones in figure E.8 are given in figure E.10, figure E.11, figure E.12,
and figure E.13. We obtain the best average accuracy for k = 4.

5.6 Sparse SVM

(a) Let
x′i = (y1xi · x1, . . . , ymxi · xm) .

Then the optimization problem becomes

min
α,b,ξ

1

2
||α||2 + C

m∑
i=1

ξi

subject to yi
(
α · x′i + b

)
≥ 1− ξ

ξi, αi ≥ 0, i ∈ [m] ,

which is the standard formulation of the primal SVM optimization problem on samples
x′i, modulo the non-negativity constraints on αi.

(b) The Lagrangian of (1) for all αi ≥ 0, ξi ≥ 0, b, α′i ≥ 0, βi ≥ 0, γi ≥ 0, i ∈ [m] is

L =
1

2
||α||2 + C

m∑
i=1

ξi −
m∑
i=1

α′i(yi(α · x′i + b)− 1 + ξi)−
m∑
i=1

βiξi −
m∑
i=1

γiαi ,
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Figure E.11
As in figure E.8, but false positives are penalized four times as much as false negatives.

and the KKT conditions are

∇αL = 0 ⇔ α =

m∑
i=1

α′iyix
′
i + γ

∇bL = 0 ⇔
m∑
i=1

α′iyi = 0

∇ξiL = 0 ⇔ α′i + βi = C

and

α′i(yi(α · x′i + b)− 1− ξi) = 0

βiξi = 0

γiαi = 0.
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Figure E.12
As in figure E.8, but false positives are penalized eight times as much as false negatives.

Using the KKT conditions on L we get

L =
1

2

(
m∑
i=1

α′iyix
′
i + γ

)
·

 m∑
j=1

α′jyjx
′
j + γ

+ C

m∑
i=1

ξi

−
m∑
i=1

α′i

yi
 m∑

j=1

α′jyjx
′
j + γ

 · x′i + b

− 1 + ξi


−

�
�

��m∑
i=1

βiξi −

�
�

��m∑
i=1

γiαi

= −
1

2

m∑
i=1

α′iyix
′
i ·

 m∑
j=1

α′jyjx
′
j + γ

+
�
�
�1

2
γ ·α

+

m∑
i=1

Cξi − α′i (yib− 1 + ξi)

=

m∑
i=1

α′i −
1

2

m∑
i,j=1

α′iα
′
jyiyjx

′>
i

(
x′j + γ

)
+

��
����m∑

i=1

(C − α′i)ξi −
�
�

��
m∑
i=1

α′iyib.
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Figure E.13
As in figure E.8, but false positives are penalized sixteen times as much as false-negatives.

Thus the dual optimization problem is

max
α′,γ

m∑
i=1

α′i −
1

2

m∑
i,j=1

α′iα
′
jyiyjx

′
i ·
(
x′j + γ

)
subject to

m∑
i=1

α′iyi = 0

0 ≤ α′i ≤ C, γi ≥ 0, i ∈ [m] .

5.7 VC-dimension of canonical hyperplanes

(a) By definition of {x1, . . . ,xd}, for all y = (y1, . . . , yd) ∈ {−1,+1}d, there exists w such
that,

∀i ∈ [d], 1 ≤ yi(w · xi) .
Summing up these inequalities yields

d ≤ w ·
d∑
i=1

yixi ≤ ‖w‖

∥∥∥∥∥
d∑
i=1

yixi

∥∥∥∥∥ ≤ Λ

∥∥∥∥∥
d∑
i=1

yixi

∥∥∥∥∥ .
(b) Since this inequality holds for all y ∈ {−1,+1}d, it also holds on expectation over

y1, . . . , yd drawn i.i.d. according to a uniform distribution over {−1,+1}. In view of
the independence assumption, for i 6= j we have E[yiyj ] = E[yi]E[yj ]. Thus, since the
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distribution is uniform, E[yiyj ] = 0 if i 6= j, E[yiyj ] = 1 otherwise. This gives

d ≤ ΛE
y

[∥∥∥∥∥
d∑
i=1

yixi

∥∥∥∥∥
]

(taking expectations)

≤ Λ

E
y

∥∥∥∥∥
d∑
i=1

yixi

∥∥∥∥∥
2
 1

2

(Jensen’s inequality)

= Λ

 d∑
i,j=1

E
y

[yiyj ] (xi · xj)

 1
2

= Λ

[
d∑
i=1

(xi · xi)
] 1

2

.

Thus,
√
d ≤ Λr, which completes the proof.

(c) In view of the previous inequality, we can write d ≤ Λ
[
dr2
] 1
2 = Λr

√
d.

Chapter 6

6.1 This follows directly the Cauchy-Schwarz inequality:

|Φ(x)>Φ(y)| ≤ ‖Φ(x)‖‖Φ(y)‖, (E.85)

where Φ is a feature mapping associated to K.

6.2 (a) Since cos(x − y) = cosx cos y + sinx sin y, K(x, y) can be written as the dot product of
the vectors

Φ(x) =

[
cosx

sinx

]
and Φ(y) =

[
cos y

sin y

]
; (E.86)

thus it is PDS.

(b) This is a consequence of the fact that the kernel of the previous question is PDS since∑
ij cicj cos(x2

i − x2
j ) =

∑
ij cicj cos(x′i − x′j), with x′i = x2

i for all i.

The solution for this question is similar to that of the previous question.

(c) Since the product and sum of PDS kernels is PDS, it suffices to show that k : x 7→ cos(x2−
y2) is PDS over R× R, which was proven in part (b).

(d) For any x1, . . . , xm ∈ R, c1, . . . , cm ∈ R, and a ≥ 0, let f(a) be defined by

f(a) =
∑
i,j

cicjK(xi, xj)a
xi+xj . (E.87)

Then, f ′(a) =
∑
i,j cicja

xi+xj−1 = 1
a
‖(ciaxi )i‖2 ≥ 0. Therefore f is monotonically

increasing. Thus, f(1) ≥ f(0), that is
∑
i,j cicjK(xi, xj) ≥ 0.

(e) Rewriting the cosine in terms of the dot product, we have

K(x,x′) = cos∠(x,x′) =
x · x′

‖x‖‖x′‖
.

Thus, the cosine kernel is just a scaling of the standard dot product, which is a PDS
kernel. Hence, the cosine kernel is also PDS.

(f) For all x, x′ ∈ R,

[sin(x′ − x)]2 = 1− [cos(x′ − x)]2

= 1− [cosx′ cosx+ sinx′ sinx]2

= 1− (u(x′) · u(x))2,
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iii. Using the hint and the result of the previous question, we can write

R̂S,ρ(f) ≤
∏
t

1− 2

(
1−ρ

2
− εt

)2

1− ρ2


≤
∏
t

exp

−2

(
1−ρ

2
− εt

)2

1− ρ2




= exp

−2

(
1−ρ

2
− εt

)2

1− ρ2
T


≤ exp

(
−

2γ2T

1− ρ2

)
.

Thus, if the upper bound is less that 1/m, then R̂ρ(f) = 0 and every training point

has margin at least ρ. The inequality exp
(
− 2γ2T

1−ρ2

)
< 1/m is equivalent to T >

(logm)(1−ρ2)

2γ2
.

Chapter 8

8.1 Perceptron lower bound

Let w be the weight vector. Since each update is of the form w ← w + yixi and since the
components of the sample points are integers, the components of w are also integers.

Let n1, . . . , nN ∈ Z denote the components of w. w correctly classifies all points iff yi(w ·xi) >
0 for i = 1, . . . ,m, that is,



n1 > 0

n1 − n2 < 0

−n1 − n2 + n3 > 0

. . .

(−1)N (n1 + n2 + . . .+ nN−1 − nN ) < 0

⇔



n1 > 0

n2 > n1

n3 > n1 + n2

. . .

nN > n1 + n2 + . . .+ nN−1.

These last inequalities show that the data is linearly separable with w = (1, 2, . . . , 2N−1).
They also imply that n1 ≥ 1, n2 ≥ 2, n3 ≥ 4, . . . , nN ≥ 2N−1. Since each update can at most
increment nN by 1, the number of updates is at least 2N−1 = Ω(2N ).

8.2 Generalized mistake bound
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The bound is unaffected, as shown by the following, using the same definitions and steps as
in this chapter:

Mρ ≤
v ·
∑
t∈I ytxt

‖v‖

=
v ·
∑
t∈I(wt+1 −wt)/η

‖v‖
(definition of updates)

=
v ·wT+1

η‖v‖
≤ ‖wT+1‖/η (Cauchy-Schwarz ineq.)

= ‖wtm + ηytmxtm‖/η (tm largest t in I)

=
[
‖wtm‖2 + η2‖xtm‖2 + ηytmwtm · xtm︸ ︷︷ ︸

≤0

]
]1/2

/η

≤
[
‖wtm‖2 + η2R2]

]1/2
/η

≤
[
Mη2R2]

]1/2
/η =

√
MR. (applying the same to previous ts in I).

8.3 Sparse instances

Clearly, it takes T updates and leads to w =
∑T
t=1 ytxt. Let u ∈ RT be a vector of norm

1 defining a separating hyperplane, thus ytu · xt = ytut ≥ 0 for all t ∈ [T ]. To obtain the
maximum margin ρ, we seek a vector u maximizing the minimum of ytut with ytut ≥ 0 for
all t and ‖u‖ = 1. By symmetry, all ytuts are equal, thus ut = yt/

√
T for all t ∈ [T ] and

ρ = 1/
√
T . Thus, Novikoff’s bound gives R2/ρ2 = 1/(1/T ) = T .

8.4 Tightness of lower bound

The lower bound is tight. This follows from the tightness of the Khintchine-Kahane inequality,
which is the only inequality used in the proof.

8.5 On-line SVM algorithm

First we write the optimization in the following equivalent form:

min
w

1

2
‖w‖2 + C

m∑
i=1

max
(
0, 1− yi(w · xi)

)
.

Then, using the general update rule in equation (8.22), we get the update rule,

wt+1 ←


wt − η(wt − Cytxt) if yt(wt · xt) < 1,

wt − ηwt if yt(wt · xt) > 1,

wt otherwise,
which corresponds exactly to the update in the pseudocode.

8.6 Margin Perceptron

(a) By assumption, there exists v ∈ RN such that for all t ∈ [T ], ρ ≤ yt(v·xt)
‖v‖ , where ρ is the

maximum margin achievable on S. Summing up these inequalities gives

Mρ ≤
v ·
∑
t∈I ytxt

‖v‖
≤
∥∥∥∑
t∈I

ytxt

∥∥∥ (Cauchy-Schwarz inequality)

=
∥∥∥∑
t∈I

(wt+1 −wt)
∥∥∥ (definition of updates)

= ‖wT+1‖ (telescoping sum, w0 = 0).
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(b) For any t ∈ I, by definition of the update, wt+1 = wt + ytxt; thus,

‖wt+1‖2 = ‖wt‖2 + ‖xt‖2 + 2ytwt · xt
≤ ‖wt‖2 + ‖xt‖2 + ‖wt‖ρ (def. of update condition)

≤ ‖wt‖2 +R2 + ‖wt‖ρ+ ρ2/4

= (‖wt‖+ ρ/2)2 +R2.

(c) In view of the previous result, ‖wt+1‖2 − (‖wt‖+ ρ/2)2 ≤ R2, that is

(‖wt+1‖ − ‖wt‖ − ρ/2)(‖wt+1‖+ ‖wt‖+ ρ/2) ≤ R2

=⇒ (‖wt+1‖ − ‖wt‖ − ρ/2) ≤
R2

‖wt+1‖+ ‖wt‖+ ρ/2

=⇒ ‖wt+1‖ ≤ ‖wt‖+ ρ/2 +
R2

‖wt+1‖+ ‖wt‖+ ρ/2
.

(d) If ‖wt‖ ≥ 4R2

ρ
or ‖wt+1‖ ≥ 4R2

ρ
, then ‖wt+1‖+ ‖wt‖+ ρ/2 ≥ 4R2

ρ
, thus

R2

‖wt+1‖+ ‖wt‖+ ρ/2
≤

R2

4R2/ρ
=
ρ

4
.

In view of this, the inequality of the previous question implies

‖wt+1‖ ≤ ‖wt‖+ ρ/2 +
R2

‖wt+1‖+ ‖wt‖+ ρ/2

=⇒ ‖wt+1‖ ≤ ‖wt‖+ ρ/2 +
ρ

4
= ‖wt‖+

3

4
ρ.

(e) Since w1 = y1x1, ‖w1‖ = ‖x1‖ ≤ R. The margin ρ is at most twice the radius R, thus,
ρ ≤ 2R and 2R/ρ ≥ 1. This implies that ‖w1‖ ≤ R ≤ 2R2/ρ. Since ‖w1‖ ≤ 2R2/ρ and

‖wT+1‖ ≥ 4R2

ρ
, there must exist at least one update time t ∈ I at which ‖wt‖ ≤ 4R2

ρ
and

‖wt+1‖ ≥ 4R2

ρ
. The set of such times t is non empty and thus admits a largest element

t0.

(f) By definition of t0, for any t ≥ t0, ‖wt+1‖ ≥ 4R2

ρ
. Thus, by the inequality of part (d),

the following holds for any t ≥ t0,

‖wt+1‖ ≤ ‖wt‖+
3

4
ρ.

This implies that

‖wT+1‖ ≤ ‖wt0‖+
∣∣{t0, . . . , T} ∩ I∣∣3

4
ρ

≤ ‖wt0‖+M
3

4
ρ

≤
4R2

ρ
+M

3

4
ρ.

By the first question Mρ ≤ ‖wT+1‖; therefore,

Mρ ≤
4R2

ρ
+M

3

4
ρ ⇐⇒ Mρ/4 ≤ 4R2/ρ ⇐⇒ M ≤ 16R2/ρ2.

8.7 Generalized RWM

(a) Observe that:

Wt+1 =

N∑
i=1

(1− (1− β)lt,i)wt,i

= Wt −Wt(1− β)lt,i)wt,i/Wt = Wt(1− (1− β)Lt).
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Thus, WT+1 = N
∏T
t=1(1− (1− β)Lt) and

logWT+1 = logN +
T∑
t=1

log(1− (1− β)Lt)

≤ logN +
T∑
t=1

−(1− β)Lt

= logN − (1− β)LT .
(b) For all i ∈ [N ],

logWT+1 ≥ logwT+1,i

= log
( T∏
t=1

(1− (1− β)lt,i
)

=
T∑
t=1

log(1− (1− β)lt,i

≥
T∑
t=1

−(1− β)lt,i − (1− β)2l2t,i

= −(1− β)LT,i − (1− β)2
T∑
t=1

l2t,i.

(c) Comparing the lower and upper bounds gives:

− (1− β)LT,i − (1− β)2
T∑
t=1

l2t,i ≤ logN − (1− β)LT

=⇒ LT ≤ LT,i +
logN

(1− β)
+ (1− β)

T∑
t=1

l2t,i.

Clearly, for any i ∈ [N ],
∑T
t=1 l

2
t,i ≤ T . Thus, for all i ∈ [N ],

LT ≤ LT,i +
logN

(1− β)
+ (1− β)T,

in particular, LT ≤ Lmin
T + logN

(1−β)
+(1−β)T . Differentiating with respect to β and setting

the result to zero gives logN
(1−β)2

− T = 0, as in the case of the RWM algorithm. Thus, for

β = max{1/2, 1−
√

(logN)/T}, LT ≤ Lmin
T + 2

√
T logN , that is RT ≤ 2

√
T logN .

8.9 General inequality

(a) We analyze the function f(x) = log(1 − x) + x + x2

α
and show that it is positive for

x ∈ [0, 1− α
2

]. First note that f(0) = 0, then note that

f ′(x) ≥ 0 ⇐⇒ −1 + 1− x
2

α
x(1− x) ≥ 0

⇐⇒
2

α
x(1− x) ≥ x

⇐⇒
2

α
(1− x) ≥ 1 (for x ≥ 0)

⇐⇒ x ≤ 1−
α

2
.

Thus, the derivative is only increasing for x ∈ [1, 1− α
2

], which implies that the function
is positive for the same interval.

In order to apply the inequality, inequality the valid range of β is [ 2
α
, 1).
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(b) The bound follows directly using the same steps as in the original proof, but with the
general inequality. The optimal choice of β is max{α

2
, 1−

√
α(logN)/T}, which gives

RT ≤
√

log(N)T

α
+
√
α log(N)T .

(c) Setting α close to 2 forces β close to 1, which results in an algorithm that downweights
experts in a very conservative fashion. From the bound in part (b) we see that α = 1, as
is used in the chapter, is the optimal choice.

8.10 On-line to batch — non-convex loss

(a) We use the following series of inequalities:

min
i∈[T ]

(R(hi) + 2cδ(T − i+ 1))

≤
1

T

T∑
i=1

(R(hi) + 2cδ(T − i+ 1))

=
1

T

T∑
i=1

R(hi−1) +
2

T

T−1∑
i=0

√
1

2(T − i)
log

T (T + 1)

δ

<
1

T

T∑
i=1

R(hi−1) +
2

T

T−1∑
i=0

√
1

2(T − i)
log
( (T + 1)

δ

)2

=
1

T

T∑
i=1

R(hi−1) +
2

T

T−1∑
i=0

√
1

(T − i)
log

(T + 1)

δ

≤
1

T

T∑
i=1

R(hi−1) + 4

√
1

T
log

T + 1

δ
.

The first inequality follows, since the minimum is always less than or equal to the average
and the final inequality follows from

∑T−1
i=0

√
1/(T − i) =

∑T
i=1

√
1/i ≤ 2

√
T .

(b) Coupling the inequality of part (a) with the high probability statement of lemma 8.14 to
bound 1

T

∑T
i=1 R(hi) shows the desired bound.

(c) The square-root terms in part (b) can be bounded further by 6
√

1
T

log
2(T+1)

δ
.

Now, note that for two events A and B that each occur with probability at least 1− δ,
P[¬A ∪ ¬B] ≤ P[¬A] + P[¬B] ≤ 2δ

⇐⇒ P[A ∧B] ≥ 1− 2δ .

Thus, the probability that both bounds in (b) and (c) hold simultaneously is at least
1− 2δ; substituting δ with δ/2 everywhere completes the bound.

8.11 On-line to batch — kernel Perceptron margin bound

(a) Let u ∈ H with ‖u‖ = 1. Observe that for any t ∈ [T ], we can write

1−
(

1−
yt(u · Φ(xt))

ρ

)
+

≤
yt(u · Φ(xt))

ρ
.

Let I be the set of t ∈ [T ] at which kernel Perceptron makes an update, and let MT be the
total number of updates made, then, summing up the previous inequalities over all such
ts and using the Cauchy-Schwarz inequality yields

MT −
∑
t∈I

(
1−

yt(u · Φ(xt))

ρ

)
≤
∑
t∈I

yt(u · Φ(xt))

ρ
≤
‖
∑
t∈I ytΦ(xt)‖

ρ
.
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In view of the proof for separable case of the perceptron algorithm (theorem 8.8), the

right-hand side can be bounded by

√∑
t∈IK(xt,xt)

ρ
. Thus, for any u ∈ H with ‖u‖ = 1,

MT ≤
∑
t∈I

(
1−

yt(u · Φ(xt))

ρ

)
+

+

√∑
t∈IK(xt, xt)

ρ
.

(b) Plugging in the result from part (a) into (8.31) gives the desired bound. This bound
is with respect to expected error of best in class, while corollary 6.13 is with respect to
empirical error of selected hypothesis.

Chapter 9

9.5 Decision trees. A binary decision tree with n nodes has exactly n+1 leaves. Each node can be
labeled with an integer from {1, . . . , N} indicating which dimension is queried to make a binary
split and each leaf can be labeled with ±1 to indicate the classification made at that leaf. Fix
an ordering of the nodes and leaves and consider all possible labelings of this sequence. There
can be no more than (N + 2)2n+1 distinct binary trees and, thus, the VC-dimension of this
finite set of hypotheses can be no larger than (2n+ 1) log(N + 2) = O(n logN).

Chapter 11

11.1 Pseudo-dimension and monotonic functions

If for some m > 0, there exists (t1, . . . , tm) and a set of points (x1, . . . , xm) that H shatters,
then φ ◦H can also shatter it. To see that, note that if for some h ∈ H,

h(xi) ≥ ti ,
then by the monotonic property of φ,

φ(h(xi)) ≥ φ(ti) .

A similar argument holds for the case h(xi) < ti. Thus, φ ◦H can shatter the set of points
(x1, . . . , xm) with thresholds (φ(t1), . . . , φ(tm)), and this proves that Pdim(φ◦H) ≥ Pdim(H).

Since φ is strictly monotonic, it is invertible, and a similar argument with φ−1 can be used to
show Pdim(H) ≥ Pdim(φ ◦H).

11.2 Pseudo-dimension of linear functions

From equation (11.3) we have that

Pdim(H) = VCdim
({

(x, t) 7→ 1(w>x−t)>0 : h ∈ H
})

.

Note that 1(w>x−t)>0 =
1+sgn(w>x−t)

2
is a linear separator with fixed offset. It is easy to

show that the VC-dimension of such a hypothesis class is d (as oppose to d+ 1 in the case of
linear separators with a free offset parameter).

11.3 Linear regression

(a) In order for the matrix XX> to be invertible, we need the number of (linearly independent)
examples to outnumber the number of features used to represent each example.

(b) For any v ∈ Rm we can choose w = (XX>)†Xy + (I− (X†)>X>)v. To see this, observe
that

X>(I− (X†)>X>) = X> −X>(X†)>X>

= X> − (XX†X)>

= X> −X> = 0 ,
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and hence, we have X>w = X†Xy.

11.4 Perturbed kernels

(a) Using the closed form solutionsα = (K+λI)−1y and the fact M′−1−M−1 = −M′−1(M′−
M)M−1 (this can be verified by simply expanding the right-hand side), we have

α′ −α =
(
(K′ + λI)−1 − (K + λI)−1

)
y

=
(
(K′ + λI)−1(K′ + λI−K− λI)(K + λI)−1

)
y

=
(
(K′ + λI)−1(K′ −K)(K + λI)−1

)
y .

(b) Using the fact that for any vector v and matrix A, ‖Av‖2 = v>A>Av ≤ ‖v‖2‖A>A‖ =
‖v‖2‖A‖2 we have

‖α′ −α‖ ≤ ‖(K′ + λI)−1‖‖K′ −K‖‖(K + λI)−1‖‖y‖ .
Since |y| ≤ M , we have ‖y‖ ≤

√
mM and we can use the observation ‖(K + λI)−1‖ =

λmax((K + λI)−1) = λmin(K + λI)−1 ≤ 1/λ, where λmax(A) and λmin(A) are the maxi-
mum and minimum eigenvalues of A, respectively.

11.5 Huber loss
The primal function can be written as:

min
w,b

1

2
‖w‖2 + C

m∑
i=1

(Lc(ξi) + Lc(ξ
′
i))

s.t. w · Φ(xi) + b− yi ≤ ξi, ∀i ∈ [m]

yi −w · Φ(xi)− b ≤ ξ′i, ∀i ∈ [m]

ξi, ξ
′
i ≥ 0, ∀i ∈ [m]

The Lagrangian is written as follows,

L(w, b, ξ, ξ′,α,α′,β,β′) =
1

2
‖w‖2 + C

m∑
i=1

(Lc(ξi) + Lc(ξ
′
i))

+

m∑
i=1

(
αi(w · Φ(xi) + b− yi − ξi) + α′i(yi −w · Φ(xi)− b− ξ′i)

)
−

m∑
i=1

(βiξi + β′iξ
′
i) ,

and the associated KKT conditions are:

∂L

∂w
= w +

m∑
i=1

(αi − α′i)Φ(xi) = 0 ,

∂L

∂b
=

m∑
i=1

(αi − α′i) = 0 ,

∂L

∂ξi
= 0 ⇐⇒

{
Cξi = αi + βi, if ξi ≤ c
Cc = αi + βi, otherwise

, (E.134)

∂L

∂ξ′i
= 0 ⇐⇒

{
Cξi = α′i + β′i, if ξi ≤ c
Cc = α′i + β′i, otherwise

, (E.135)

βiξi = 0, ∀i ∈ [m] , (E.136)

β′iξ
′
i = 0, ∀i ∈ [m] . (E.137)

The first two conditions are the same as in SVR the standard ε-insensitive loss, and using
them to simplify the Lagrangian gives several familiar terms. The novel conditions involve
ξ and ξ′. Collecting all terms in the Lagrangian that depend on ξi, we have the following
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equality (regardless of which condition holds in (E.134))

CLc(ξi)− ξi(αi + βi) = −
(αi + βi)

2

2C
. (E.138)

If it is the case that ξi > 0, then βi = 0 by condition (E.136). In the case ξi = 0, then
αi + βi = 0 by the first case in condition (E.134). However, this also implies αi = βi = 0,
since both dual variables are constrained to be positive. Thus, in either case, we can simplify

(E.138) to −α
2

2C
. Similar arguments can be used to simplify the ξ′i terms, resulting in the final

dual problem:

max
α

y(α′ −α)−
1

2

(
(α′ −α)>K(α′ −α) +

1

C
α>1 +

1

C
α′>1

)
s.t. (α′ −α)>1 = 0

0 ≤ αi, α′i ≤ cC, ∀i ∈ [m] .

11.8 Optimal kernel matrix

(a) Using the closed-form solution for the inner maximization problem α = (K + λI)−1y,
simplifies the joint optimization to a simpler minimization:

min
K�0

y>(K + λI)−1y , s.t. ‖K‖2 ≤ 1 .

Note that for any invertible matrix A, y>A−1y ≥ ‖y‖2λmin(A−1) = ‖y‖2λmax(A)−1.

Thus, it is easy to see that minK�0 y>(K + λI)−1y ≥ ‖y‖
2

1+λ
since ‖K‖2 = λmax(K) ≤ 1.

We now show K = 1
‖y‖2 yy> achieves this lower bound. First, note that ( 1

‖y‖2 yy> +

λI)y = (1 + λ)y, so y is an eigenvector of the matrix with eigenvalue (1 + λ). Since the
matrix is invertible, it can be shown that y is also an eigenvector of ( 1

‖y‖2 yy> + λI)−1

with eigenvalue 1
1+λ

(for example, consider the eigen decomposition of the matrix).

(b) The kernel matrix alone is not useful for classifying future unseen points x, which requires
computing

∑m
i=1 K(xi, x) and needs access to an underlying kernel function that in con-

sistent with the kernel matrix. Finding such a kernel function may be difficult in general,
and furthermore the choice of function may not be unique.

11.9 Leave-one-out error

(a) Note that the hypothesis hSi will make zero error on the ith point of S′i and is defined as
the minimizer with respect to the remainder of the points. Thus, hSi is also the minimizer
with respect to the set S′i.

(b) Using part (a) and the definition of the KRR hypothesis with respect to the dual variables
we have hSi (xi) = hS′i

(xi) = αS′i
Kεi, where αS′i

is the optimal set of dual variable for

KRR trained with S′i. Noting that the closed-form solution is α = (K + λI)−1yi proves
the equality.

(c) Using part (b) we can write

hSi (xi)− yi = y>i (K + λI)−1Kei − yi
= (y − yiei + hSi (xi)ei)

>(K + λI)−1Kei − yi
= hS(xi)− yi + (hSi (xi)− yi)e

>
i (K + λI)−1Kei ,

which implies hSi (xi)− yi = (hS(xi)− yi)/(e>i (K + λI)−1Kei). Thus, we can write

R̂LOO(A) =
1

m

m∑
i=1

( hS(xi)− yi
e>i (K + λI)−1Kei

)2
.

(d) In this case the two losses differ only by the factor 1
γ2

. Thus, if γ =
√
m, the two

performance measures coincide.


