Convolutional Neural Networks



Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1
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Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1
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between a row of W and the input
(a 3072-dimensional dot product)



The Cross-Correlation Operator

In a convolutional layer, an input array and a correlation kernel array output an array through a cross-correlation operation. Let’s
see how this works for two dimensions. As shown below, the input is a two-dimensional array with a height of 3 and width of 3.
We mark the shape of the array as 3 X 3 or (3, 3). The height and width of the kernel array are both 2. This array is also called a
kernel or filter in convolution computations. The shape of the kernel window (also known as the convolution window) depends
on the height and width of the kernel, which is 2 X 2.

Input Kernel Output
0 2
19|25
3|45 * —
2113 37143
6|78

Fig. 6.1 Two-dimensional cross-correlation operation. The shaded portions are the first output element and the input and
kernel array elements used in its computation: 0 X 04+1x1+4+3x2+4x3=19.

In the two-dimensional cross-correlation operation, the convolution window starts from the top-left of the input array, and slides
in the input array from left to right and top to bottom. When the convolution window slides to a certain position, the input
subarray in the window and kernel array are multiplied and summed by element to get the element at the corresponding
location in the output array. The output array has a height of 2 and width of 2, and the four elements are derived from a two-
dimensional cross-correlation operation:

O0x0+1x14+3%x2+4x3=19,
1xX0+2x14+4%x2+5%x3=25,
3x0+4x1+6%x2+T7x3=37,
4x0+5x14+7%x2+8x3=43.



Filters (kernels, convolutions)
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Edge Detect:

Inverse approach:
what-if we learned the filters weights?




Convolution Layer

32x32x3 image -> preserve spatial structure

32 height

3 depth



Convolution Layer

32x32x3 image

5x5x3 filter
32 £/
Il Convolve the filter with the image
l.e. “slide over the image spatially,

computing dot products”

32




CO nVOI UtiOn I—ayer Filters always extend the full

_——— depthofthe input volume
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5x5x3 filter
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Convolution Layer

__— 32x32x3 Image

5x5x3 filter w
=
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

: wlz+b

~~ 1 number:




Convolution Layer

activation map

__— 32x32x3 Image
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Convolution Layer
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For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

32

3

32

Convolution Layer

activation maps

28

28

We stack these up to get a “new image” of size 28x28x6!



The brain/neuron view of CONV Layer

32
/7 28 E.g. with 5 filters,
O O O O () CONV layer consists of
neurons arranged in a 3D grid
(28x28x95)

There will be 5 different
32 28 neurons all looking at the same

region in the input volume
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Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32 28

CONYV,
RelLU
e.g.6
Bxbx3
filters

32 28




Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions
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Preview

Low-level
features

[Zeiler and Fergus 2013]
Mid-level High-level
—
features features

VGG-16 Convi 1

2

Visualization of VGG-16 by Lane Mcintosh. VGG-16
architecture from [Simonyan and Zisserman 2014].
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Layers used to build ConvNets

As we described above, a simple ConvNet is a sequence of layers, and every layer of a ConvNet transforms one
volume of activations to another through a differentiable function. We use three main types of layers to build
ConvNet architectures: Convolutional Layer, Pooling Layer, and Fully-Connected Layer (exactly as seen in regular
Neural Networks). We will stack these layers to form a full ConvNet architecture.

Example Architecture: Overview. We will go into more details below, but a simple ConvNet for CIFAR-10
classification could have the architecture [INPUT - CONV - RELU - POOL - FC]. In more detail:

o INPUT [32x32x3] will hold the raw pixel values of the image, in this case an image of width 32, height 32, and
with three color channels R,G,B.

o CONV layer will compute the output of neurons that are connected to local regions in the input, each
computing a dot product between their weights and a small region they are connected to in the input volume.
This may result in volume such as [32x32x12] if we decided to use 12 filters.

e RELU layer will apply an elementwise activation function, such as the maz(0, ) thresholding at zero. This
leaves the size of the volume unchanged ([32x32x12]).

e POOL layer will perform a downsampling operation along the spatial dimensions (width, height), resulting in
volume such as [16x16x12).

e FC (i.e. fully-connected) layer will compute the class scores, resulting in volume of size [1x1x10], where each
of the 10 numbers correspond to a class score, such as among the 10 categories of CIFAR-10. As with
ordinary Neural Networks and as the name implies, each neuron in this layer will be connected to all the
numbers in the previous volume.



A closer look at spatial dimensions:
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A closer look at spatial dimensions:

/

/X7 input (spatially)
assume 3x3 filter
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A closer look at spatial dimensions:
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A closer look at spatial dimensions:

/

/X7 input (spatially)
assume 3x3 filter

=> 5x5 output




A closer look at spatial dimensions:

7
/X7 input (spatially)

assume 3x3 filter
applied with stride 2




A closer look at spatial dimensions:
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A closer look at spatial dimensions:

7
/X7 input (spatially)

assume 3x3 filter
applied with stride 2
=> 3x3 output!




A closer look at spatial dimensions:

7
/X7 input (spatially)

assume 3x3 filter
applied with stride 3?




A closer look at spatial dimensions:

/

/X7 input (spatially)
assume 3x3 filter
applied with stride 3?

doesn’t fit!
cannot apply 3x3 filter on
7x7 input with stride 3.



Output size:
(N - F) / stride + 1

eg.N=7,F=3:

stride 1=>(7-3)/[1+1=
stride2=>(7-3)12+1=
stride 3=>(7-3)/3+1=2.33:\




In practice: Common to zero pad the border

0|0

0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

(recall:)
(N - F)/ stride + 1



In practice: Common to zero pad the border
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7x7 output!



In practice: Common to zero pad the border

00

0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1

F =5 =>zero pad with 2

F =7 =>zero pad with 3



Remember back to...
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

32 28 24
CONYV, CONYV, CONYV,
RelLU RelLU RelLU
e.g. 6 e.g. 10
IXOX3 5x5x6
32 filters 28 filters 24




Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: ?

N




Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size:
(32+272-5)/1+1 = 32 spatially, so
32x32x10

N




Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

N




Examples time: / /

Input volume: 32x32x
10 5x5 filters with stride 1, pad 2 B

<
<

Number of parameters in this layer?
each filter has 5*5*5 + 1 = 76 params  (+1 for bias)
=> 7610 =760




Summary. To summarize, the Conv Layer:

e Accepts a volume of size W; x Hy x Dy
* Requires four hyperparameters:
Number of filters K,
their spatial extent F',
the stride S,
the amount of zero padding P.
» Produces a volume of size Wy x Hy x Dy where:
o Wo=(W, —F+2P)/S+1
o Hy =(Hy — F+2P)/S + 1 (i.e. width and height are computed equally by symmetry)
o D2 = )¢
« With parameter sharing, it introduces F' - F' - Dy weights per filter, for a total of (F' - F' - Dy ) - K weights
and K biases.
* In the output volume, the d-th depth slice (of size W5 x H>) is the result of performing a valid convolution
of the d-th filter over the input volume with a stride of .S, and then offset by d-th bias.

o

o

o

o



Summary. To summarize, the Conv Layer:

e Accepts a volume of size W; x Hy x Dy
* Requires four hyperparameters:

o Number of filters K,

o their spatial extent F',

o the stride S,

o the amount of zero padding P.

Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)
- F=3,S=1,P=1

- F=5,S=1,P=2
- F =5, S=2,P="7?(whatever fits)
- F=21.8S=1.P=0

H )

» Produces a volume of size Wy x Hy x Dy where:

o Wy = (W, —F+2P)/S+1

o Hy =(Hy — F+2P)/S + 1 (i.e. width and height are computed equally by symmetry)

OD2:K

« With parameter sharing, it introduces F' - F' - Dy weights per filter, for a total of (F' - F' - Dy ) - K weights

and K biases.

* In the output volume, the d-th depth slice (of size W5 x H>) is the result of performing a valid convolution
of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.



(btw, 1x1 convolution layers make perfect sense)

64

56

56

1x1 CONV
with 32 filters

>

(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

32

56

56



Example: CONV
layer in Torch

Summary. To summarize, the Conv Layer:

» Accepts a volume of size W; x H; x Dy
» Requires four hyperparameters:

o Number of filters K,

o their spatial extent F',

o the stride .S,

o the amount of zero padding P.

SpatialConvolution

module = nn.SpatialConvolution(nInputPlane, nOutputPlane, kW, kH, [dW], [dH], [padw], [padH])

Applies a 2D convolution over an input image composed of several input planes. The input tensorin forward(input) is
expected to be a 3D tensor ( nInputPlane x height x width ).

The parameters are the following:

e nInputPlane : The number of expected input planes in the image given into forward() .

¢ noutputPlane : The number of output planes the convolution layer will produce.

« «w : The kernel width of the convolution

e kH : The kernel height of the convolution

« dw : The step of the convolution in the width dimension. Defaultis 1 .

« dH : The step of the convolution in the height dimension. Default is 1 .

« padw : The additional zeros added per width to the input planes. Defaultis e , a good number is (kw-1)/2 .

« padH : The additional zeros added per height to the input planes. Default is padw , a good numberis (kH-1)/2 .

Note that depending of the size of your kernel, several (of the last) columns or rows of the input image might be lost. It is up
to the user to add proper padding in images.

If the input image is a 3D tensor nInputPlane x height x width , the output image size will be noutputPlane x oheight x

owidth where

owidth = floor((width + 2*padW - kW) / dW + 1)
oheight = floor((height + 2*padH - kH) / dH + 1)

Torch is licensed under BSD 3-clause.



Example: CONV
layer in Caffe

Summary. To summarize, the Conv Layer:

» Accepts a volume of size W; x Hy x Dy
» Requires four hyperparameters:

o Number of filters K,

o their spatial extent F',

o the stride S,

o the amount of zero padding P.

layer {

}

name: “convl”

type: "Convolution®

bottom: "data”

top: "convl"

# learning rate and decay multipliers for the filters
param { lr_mult: 1 decay mult: 1 }

# learning rate and decay multipliers for the biases
param { lr_mult: 2 decay _mult: 0 }

convolution_param {

num_output: 96 # learn 96 filters
kernel_size: 11 # each filter 1s 11x11
stride: 4 # step 4 pixels between each filter application

weight_filler {
type: “gaussian” # initialize the filters from a Gaussian
std: 0.01 # distribution with stdev 0.01 (default mean: 0)

}
bias_filler {
type: "constant" # initialize the biases to zero (0)
value: 0
}
}

Caffe is licensed under BSD 2-Clause.



two more layers to go: POOL/FC
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Pyramid (Image processing) - Subsampling

Level 4
Blurand & 1/16 resolution
subsample " Level 3
Blur and 1/8 resolution

subsample ' Level 2

1/4 resolution

Blur and
subsample
Level 1'
Blur and 1/2 resolution
subsample

Level 0
Original
image



Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64

pool

—’

112x112x64

224

224

|

T 112
downsampling

112



Single depth slice

MAX POOLING

11112 | 4
S| 6|7 |8
312110
112 ]3| 4

max pool with 2x2 filters
and stride 2 6 | 8

>

Also used: Average
Pooling



Accepts a volume of size W; x Hy x D,
Requires three hyperparameters:
o their spatial extent F,
o the stride S,
Produces a volume of size Wy x Hy x D, where:
o Wo=(W) -F)/S+1
o Hy=(H; - F)/S+1
o Dy =Dy
Introduces zero parameters since it computes a fixed function of the input
Note that it is not common to use zero-padding for Pooling layers



Accepts a volume of size W; x Hy x D,
Requires three hyperparameters:
o their spatial extent F,
o the stride S,
Produces a volume of size W5 x Hy x D, where:
o Wo=(W) -F)/S+1
o Hy=(H; - F)/S+1
o Dy =Dy
Introduces zero parameters since it computes a fixed function of the input
Note that it is not common to use zero-padding for Pooling layers

Common settings:

F
F

[
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ww
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Fully Connected Layer (FC layer)

- Contains neurons that connect to the entire input volume, as in ordinary Neural
Networks

RELU RELU RELU RELU RELU RELU
CONVlCONVl CONV CONVl CONVlCONVl
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CNN Architectures
(ImageNet)



I M n G E N ET 14,197,122 images, 21841 synsets indexed

Explore Download Challenges Publications CoolStuff About
Not logged in. Login | Signup

ImageNet is an image database organized according to the WordNet hierarchy (currently only the nouns),
in which each node of the hierarchy is depicted by hundreds and thousands of images. Currently we have
an average of over five hundred images per node. We hope ImageNet will become a useful resource for
researchers, educators, students and all of you who share our passion for pictures.

Click here to learn more about ImageNet, Click here to join the ImageNet mailing list.

http://www.image-net.org/
A very large labeled images dataset
Currently: 14.197.122 images in 21.841 categories




IMZAGENET Large Scale Visual Recognition Challenge (ILSVRC)

http://www.image-net.org/challenges/LSVRC/

Competition

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) evaluates algorithms for object detection and image classification at
large scale. One high level motivation is to allow researchers to compare progress in detection across a wider variety of objects -- taking
advantage of the quite expensive labeling effort. Another motivation is to measure the progress of computer vision for large scale image
ingexing for retrieval and annotation.

For cetails about each challenge please refer to the corresponding page.

+ ILSVRC 2017 o LeNet 1998 (the grandfather)

» ILSVRC 2016 e AlexNet 2012. The first work that popularized Convolutional Networks
» ILSVRC 2015 in Computer Vision was the AlexNet, developed by Alex Krizhevsky,

» ILSVRC 2014 llya Sutskever and Geoff Hinton. The AlexNet was submitted to the

» ILSVRC 2013 ImageNet ILSVRC challenge in 2012 and significantly outperformed the
* ILSVRC 2012 second runner-up (top 5 error of 16% compared to runner-up with 26%
*+ ILSVRC 2011 error). The Network had a very similar architecture to LeNet, but was

* ILSVRC 2010 deeper, bigger, and featured Convolutional Layers stacked on top of

each other (previously it was common to only have a single CONV
layer always immediately followed by a POOL layer).

ZF Net. ILSVRC 2013 winner

GoogLeNet. ILSVRC 2014 winner

VGGNet. The runner-up in ILSVRC 2014.

ResNet. winner of ILSVRC 2015.
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Fig. 6.10 LeNet (left) and AlexNet (right)



VGGNet in detail. Lets break down the VGGNet in more detail as a case study. The whole VGGNet is composed of
CONV layers that perform 3x3 convolutions with stride 1 and pad 1, and of POOL layers that perform 2x2 max
pooling with stride 2 (and no padding). We can write out the size of the representation at each step of the
processing and keep track of both the representation size and the total number of weights:

INPUT: [224x224x3] memory: 224%224*3=150K weights: 0@

CONV3-64: [224x224x64] memory: 224*224*%64=3.2M weights: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*%64=3.2M weights: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K weights: 0

CONV3-128: [112x112x128] memory: 112*112*128=1.6M weights: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M weights: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56%*56*128=400K weights: 0

CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28%28%*256=200K weights: 0

CONV3-512: [28x28x512] memory: 28%28*512=400K weights: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28%28%*512=400K weights: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28%28*512=400K weights: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K weights: 0

CONV3-512: [14x14x512] memory: 14%14%*512=100K weights: (3*3%512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14%14*512=100K weights: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K weights: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7%7*%512=25K weights: ©

FC: [1x1x4096] memory: 4096 weights: 7%7%512*4096 = 102,760,448

FC: [1x1x4096] memory: 4096 weights: 4096*4096 = 16,777,216

FC: [1x1x1000] memory: 1000 weights: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters



Summary

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Typical architectures look like
[([CONV-RELU)*N-POOL?1*M-(FC-RELU)*K,SOFTMAX
where N is usually up to ~5, M is large, 0 <= K <= 2.
- but recent advances such as ResNet/GooglLeNet
challenge this paradigm



Transfer Learning

“You need a lot of a data if you want to
train/fluse CNNSs”



Transfer Learning

“You need a lot of &If you want to
tramf% Ns”



Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
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Transfer Learning with CNNs

1. Train on Imagenet

FC-4096
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MaxPool

MaxPool

Conv-512

MaxPool
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MaxPool
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FC-4096

MaxPool
MaxPool
MaxPool
MaxPool

MaxPool

Conv-64 j

2. Small Dataset (C classes)

Lot

Reinitialize
this and train

> Freeze these

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “"CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014



Transfer Learning with CNNs

2. Small Dataset (C classes)

‘\\

1. Train on Imagenet

FC-4096
FC-4096

MaxPool

MaxPool

MaxPool

Conv-256

MaxPool
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Reinitialize
this and train

> Freeze these

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
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FC 1000
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top layer
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data few layers
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Transfer learning with CNNSs is pervasive...

(it's the norm, not an exception)

Object Detection
(Fast R-CNN) | mp——TT—

Prop9§al ; Bounding box
classifier ftmax EI
regressors

External proposal ——— y :7 lf

algorithm

e.g. selective search / R

ConvNet
(applied to entire

Girshick, “Fast R-CNN", ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission.

Image Captioning: CNN + RNN

“straw” “hat” END

START “straw” “hat”

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for
Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes.



Transfer learning with CNNSs is pervasive...
(it's the norm, not an exception)

Object Detection :
(Fast R-CNN) | mp——TT— CNN pretralned Image Captioning: CNN + RNN
on ImageNet
Proposal

= ; Bounding box
classifier ftmax :I
regressors

“straw” “hat” END

External proposal ' -
algorithm —
e.g. selective search

ConvNet
(applied to entire
image)

START “straw” “hat”

Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for
Generating Image Descriptions”, CVPR 2015

Girshick, “Fast R-CNN", ICCV 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes.

Figure copyright Ross Girshick, 2015. Reproduced with permission.



Transfer learning with CNNSs is pervasive...
(it's the norm, not an exception)

Object Detection :
(Fast R-CNN) | mp——TT— CNN pretralned Image Captioning: CNN + RNN
on ImageNet
Proposal

= ; Bounding box
classifier ftmax :I
regressors

“straw” “hat” END

External proposal ' -
algorithm —
e.g. selective search

ConvNet
(applied to entire
image)

START “straw” “hat”

Word vectors pretrained
Girshick, “Fast R-CNN", ICCV 2015 W I th WO rd 2veC Generating Image Descriptions”, CVPR 2015

Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for

Figure copyright Ross Girshick, 2015. Reproduced with permission.

Figure copyright IEEE, 2015. Reproduced for educational purposes.



Takeaway for your projects and beyond:
Have some dataset of interest but it has < ~1M images?

1. Find a very large dataset that has
similar data, train a big ConvNet there
2. Transfer learn to your dataset

Deep learning frameworks provide a “Model Zoo” of
pretrained models so you don’t need to train your own

Keras https://keras.io/applications/

PyTorch https://pytorch.org/docs/stable/torchvision/models.html

MXNet (Gluon) https://mxnet.apache.org/api/python/gluon/model_zo00.html
TensorFlow https://qgithub.com/tensorflow/models

Caffe https://github.com/BVLC/caffe/wiki/Model-Zoo




ETTIAEYUEVEC TTNYEC KAI TTPOKTIKA TTAPAOEIYUATO

Convolutional Neural Networks

Stanford Intro to CNNs

Dive into Deep Learning

Mepiéxouv elcaywyr) ota CNNs Kal TTapouciacn Twv d1a@opwVv apxITekToviKwy ConvNets Tou
Imagenet

‘Eva atrAd Tapadeiypa CNN o1o MNIST pe Keras. H €icodog (eiIkova) €xel éva pdvo eTTITTEOO KABWGS
eival grayscale. Keras CNN oT1o CIFAR-10 (TratioTe “Next” yia va deite 10 idlo TTpoBAnua pe data
augmentation, pye To ResNet KaBw¢ Kal Pia OTITIKOTTOINGT TWV CUVEAIKTIKWY QIATPWV.

Transfer Learning

Eicaywyn Tou Stanford

Tutorial o€ Pytorch tTou d€ixvel dUo dIa@OPETIKEG OTPATNYIKEG training peTa To transfer learning.
Eiocdyoupue To ResNet18 kal kadvoupe train TTpwTa o€ 0AOKANPO TO iKTUO Kal HETA POVO oTo TEAIKO fully
connected eTTitredo




Baaoikn 10topikr BiBAloypagia

e LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11), 2278-2324.

e Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural
networks. science, 313(5786), 504-507.

e Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets.
Neural computation, 18(7), 1527-1554.

e Krizhevsky, A., Sutskever, |., & Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems (pp. 1097-
1105).

oTov @AakeAo bibliography. Mtropeite va Bpeite TIC BIBAIOYPAPIKEC AVAPOPEC KAl TA papers yIa TIG
d1aPopEeC apxITEKTOVIKES TOU ImageNet oTig eicaywyéEg Tou Stanford kal Tou Dive (TTponyouuevo slide)



DEEP LEARNING

» ImageNet Challenge & Breakthrough Deep Neural Networks
1. ImageNet (Dataset & Challenge)
2. AlexNet (first DNN winner of ImageNet)
3.  VGGNet (Deeper DNN, runner up in ImageNet)

=  Going Deeper: Is this the solution?

= ResNet: the solution

= References



ImageNet Dataset
- large annotated photographs’ dataset for computer vision research

- goal: resource for promoting research and development of
improved methods for computer vision [1]

T
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

- annual competition held between 2010 and 2017 [2]

- challenge tasks use subsets (approximately 1.2 million
images) of the ImageNet dataset for:

i) “image classification”: assigning a class label to each image
based on the main object in the photograph (among 1,000
object classes)

ii) “object detection”: localizing the objects within each
photograph



AlexNet: First Deep Neural Network Winner of ILSVRC 2012

- In 2012, AlexNet [3] significantly
outperformed all prior competitors (error
15.3%; prior competitors’ error was 25.7% and
28.2%)

- The runner up was not a deep learning
method (error 26.2%)

AlexNet



VGG: Runner-Up of ILSVRC 2014, Deeper than AlexNet

- was the runner-up at the ILSVRC 2014
- achieved error 7.3% (vs 15.3% of AlexNet)
- has 16 or 19 layers and is deeper than AlexNet (8 layers)

- however, VGG [4] consists of 138 million parameters
(AlexNet consists of 61 million parameters)
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VGG/AlexNet: Conclusions

Should we make a Neural Network (NN) deeper and why?

more layers = more high-level features - better
understanding of data and better prediction

Neural Networks = make them deeper = problem solved?

If yes, how deep?



= |mageNet Challenge & Breakthrough Deep Neural Networks

» Going Deeper: Is this the solution?

i.  Issuesto consider

ii.  Specific Problems:
- Vanishing Gradients
(definition, cause, significance, comparison
shallow & deep NN, solutions)
- Degradation
(definition, analogy, not overfitting)

= ResNet: the solution
= References



Depends on:
* The complexity of the task at hand
* Available computational capacity during training
* Available computational capacity during inference

If the task needs a lot of parameters:

* Can we train very deep networks efficiently using
current optimisation solvers?

* Istraining a better model as simple as adding
more and more layers?



1. Vanishing Gradients



1) Vanishing Gradients: the problem

* During each iteration of standard neural network
training, all weights receive an update proportional to
the partial derivative (gradient) of the cost function with
respect to their current value

* If the gradient is very small then the weights will not
change effectively

* As aconsequence, this may completely stop the neural
network from further training

* This is called the vanishing gradient problem.



Vanishing Gradients: the causes

The Vanishing Gradient Problem is met in Neural Networks:

e with certain activation functions

* trained with gradient based methods (e.g Back
Propagation [5])

It gets worse as the number of layers in the neural network
increases.



Vanishing Gradients: caused by activation function (1)

Vanishing gradient problem depends on the choice of
the activation function:

many common activation functions (e.g., sigmoid [6],
tanh [7]) 'squash’ their input into a very small output
range in a very non-linear fashion

for example, sigmoid maps the real number line onto
a "small" range of [0, 1] - large regions of the input
space are mapped to an extremely small range

in these regions of the input space, even a large
change in the input will produce a small change in
the output - the gradient is small.



Vanishing Gradients: caused by activation function (2)

Sigmoid
— = Derivative of Sigmoid




Vanishing Gradients: caused by gradient descent training

Gradients of neural networks are usually computed using
backpropagation:

backpropagation finds the derivatives of the network by
moving layer by layer from the final to the initial one

using the chain rule, the derivatives of each layer are
multiplied down the network (from the final layer to the
initial) to compute the derivatives of the initial layers

when n hidden layers use an activation like the sigmoid
function, n small derivatives are multiplied together



Vanishing Gradients: shallow vs deep networks

* thus, the gradient decreases exponentially as we
propagate down to the initial layers

* asmall gradient means that weights & biases of initial
layers will not be updated effectively during training

* since initial layers are often crucial to recognise the
core elements of input data, this can lead to overall
network inaccuracy.

For shallow networks, with only a few layers that use
these activations, this isn’t a big problem. However, when
more layers are used, this can cause the gradient to be
too small for training to work effectively.



anishing Gradients: Solution 1: Use RelLU

Use activation functions which don't 'squash' the input
space into a small region.

A popular choice is Rectified Linear Unit (ReLU) [8] which
maps x to max(0,x).



Vanishing Gradients: Solution 2: Use Batch Normalisation (1)
Problem: when a large input space is mapped to a small one, causing the
derivatives to disappear.

sigmoid activation function; x = wu+b for a neuron anywhere in the hidden
layers of a NN; wu: layer’s input; w: weights matrix; b : bias vector

x = very big/small = gradient=0

‘Sigmoid
| = = Derivative of Sigmoia




Vanishing Gradients: Solution 2: Use Batch Normalisation (2)

Batch Normalisation: Step 1: normalise the input by
subtracting its mean and dividing by its standard deviation
(ensures zero mean and unit variance)

x doesn’t reach outer edges of sigmoid




Vanishing Gradients: Solution 2: Use Batch Normalisation (4)

Batch Normalisation [9]: Step 2: the normalized output of Step
1 is multiplied by a “standard deviation” parameter (gamma;
y) and a “mean” parameter (beta; ) is added to the product

- these two parameters are optimised during network training

- Batch Normalisation increases stability of a Neural Network
& speeds up training



Vanishing Gradients: Solution 2: Use Batch Normalisation (5)

Algorithm:

Input: Values of = over a mini-batch: B = {x, .}
Parameters to be leamed: ~, 3
Output: {yi = BN‘).B(-T:')}

m

1 ..

UB — — Z T; // mini-batch mean
m i1

of 1 i(ri — ug)? // mini-batch variance
m

~ T — 1B .

T — # // normalize
Vopte

yi + 7x; + 3 = BN, 5(x;) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation = over a mini-batch.




1. Vanishing gradients

2. Degradation problem [10]



Degradation problem: Definition (1)

Image Classification Problem
Consider a network having n layers. This network produces
some error/accuracy.

3

Now consider a deeper network with m layers (m>n).




Degradation problem: Definition (2)

s B, > g
i} : % & 3

When we train this network, we expect it to perform at least as
well as the shallower network. Why?

Replace the first n layers of the deep network with the

trained n layers of the shallower network. Now replace the
remaining n-m layers in the deeper network with an identity
mapping (these layers simply output what is fed into them).

— - cc. = X%
2




Degradation problem: Definition (3)

Thus, our deeper model can easily learn the shallower model’s
representation.

If there exists a more complex representation of data, we
expect the deep model to learn this.



Degradation problem: Definition — In Practice




Degradation problem: Definition — Overfitting?

- task is to predict if an image shows a balloon or not

- train a model using a dataset containing many blue colored
balloons (and other irrelevant objects)

- test the model on the original dataset: it gives 99% accuracy!
- test the model on a new (“unseen”) dataset containing
yellow colored balloons: it gives 20% accuracy!

Our model doesn’t generalise well from our training data to
unseen data. This is known as overfitting.

A model that has learned the noise instead of the
signal is considered “overfit” because it fits the
training dataset but has poor fit with new datasets.



Degradation problem:

o)
S

training error (%)

o

Definition — Overfitting? No

& A 56-layer
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Residual Learning

v “ - H(x) is the true mapping
function we want to learn

R H(x)

X

New representation F(x)

I

A — -

F(x):= H(x) - x Residual Learning [10]

If F(x) = 0 = identity mapping; if that is a solution
the network will be able to find it




Residual Block (1)

X (identity)
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Residual Block (2)

- with this approach, the network will decide how deep it
needs to be

- the identity connections introduce no new parameter to the
network architecture, hence it will not add any computational
burden

- this method allows us to design deeper networks in order to deal
with much complicated problems and tasks
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No Degradation for ResNet on ImageNet

CilL
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e e g o e
plain-18 ResNet-18 T AN oy

——plain-34 —ResNet-34 34-layer
< 10 20 40 50 ) 10 20 30 40 50

30
iter. (1e4) iter. (1e4)



Results on ImageNet

method top-5 err. (test)
VGG [40] (ILSVRC’14) 7.32

ResNet (ILSVRC’15) | 3.57
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