From Perceptrons to
Deep Feed Forward
Networks

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

Electronic Brain

S. McCulloch - W. Pitts

ADALIN

A

Perceptron

F. Rosenblatt B. Widrow - M. Hoff

XOR

E
A

Golden Age

Dark Age (“Al Winter”)

Multi-layered
Perceptron

(Backpropagation)

A

XANDY XORY NOT X
1 +] <2 +1 +] -l

SN /SN
Y | \ 1 X

= Adjustable Weights
= Weights are not Learned

» Learnable Weights and Threshold

* XOR Problem

1980

Deep Neural Network

1990

(Pretraining)

A

Foward Activity ——Jp»

-

—— Backward Error

+ Solution to nonlinearly separable problems
« Big computation, local optima and overfitting + Kernel function: Human Intervention

+ Limitations of learning prior knowledge

* Hierarchical feature Learning

NEW NAVY DEVIGE

LEARNS BY DOING

Psychologist Shows Embryo!
of Computer Designed to
Read and Grow Wiser

WASHINGTON, July 7 (UPD)]
—The Navy revealed the em-
bryo of an electronic computer
today that it expects will be
able to wall, talk see, write,
reproduce itself and be con-
scious of its existence,

The embryo—the Weather
Bureau's $2,000,000 “704" com-
puter—learned to differentiate
between right and left after
fifty eftempts in the Navy's
demonstration for newsmen.,

The service said it would use
this principle to build the first
of its Perceptron thinking ma-
chines that will be able to read
and write, It is expected to be
finished in about a year at a
cost of $100,000.

Dr. Frank Rosenblatt, de-
signer of the Perceptron, con-
ducted the demonstration. He
said ‘the machine would be the
first device to think as the hu-

i
Dr. Rosenblatt, | a research
psychologist a the -Cornell

NY Times 1960 article!!

ings, Perceptron will make mis-

takes at first, but will grow
wiser as it gains experience, he

Aeronautical Laboratory, But-i
falo, said Perceptrons might be
fired to the planets as mechani-
cal space explorers,

Withont Human Controls -

-
The Navy said the perceptron
would be the. first non-living!
mechanism “capable of receiv-|
ing, recognizing and identifying
its surroundings without -any
human training or control.”

The “brain” is designed to
remember images and informa-
tion it has perceived itself. Ordi-
nary computers remember only
what ig fed into them on punch

cards or magnetic ta.ﬁ. i
Later Perceptrons be able

to recognize people and call out
‘their names and instantly trans-

late speech in one language to
speech or writing in another
language, it was predicted.

man brain. As do human be-

ciple'it would be possible to

'build brains that could repro-

duce themselves on an assembly
line and which would be con-
scious of their existence,

In today's demonstration, the
“704" was fed two cards, one
with squares marked on the left
side and the other with squares
on the right side.

Learng by Doing

In the first fifty trials, the
machine made no distinction be-
tween them. It then started
registering a “Q" for the left
squares and “O" for the right

squares. .
Dr. Rosenblatt said he could
explain why the machine

learned only in highly technical
terms, But he said the computer
had undergone a “self-induced
change in the wiring diagram.”

The first Perceptron will
have about 1,000 electronic
“association cells" recelving
electrical impulses from an eye-
like scanning device with 400
photo-cells, e human brain
has 10,000,000,000 responsive
cells, including 100,000, con-

nections with the eyes.

Training single-layer perceptron

How to determine MLP parameters

- MLPs can realize logical connectives =D
- We crafted parameters (weights and biases) 7 u!
carefully to realize desired connectives)L
- However, crafting parameters is difficult 2
- We are sometimes unsure of the internal logic A
associating input and output variables Sf Q

- Find parameters automatically from data

- We are interested in determining parameters
from data describing pairs of inputs and outputs

Supervised learning (training)

-We have a supervision data
D ={(x1,y1), ., (xn, Yn)} (N instances)

- Find parameters such that they can predict
training instances as correctly as possible

- We assume generalization

- If the parameters predict training instances well,
they will work for unseen instances

Supervised learning for single-layer NNs

- For simplicity, we include a bias term b in w hereafter
° Redeﬁne x(new) = (x]_, X2, ey Xd, 1)T, W(new) = (Wl, Wy, ..., W4, b)T

- Then, w®@eW) . x(eW) — vy x. + wyx, + -+ + wyxy + b (original form)

- We introduce a new notation to distinguish a computed
output y from the gold output y in the supervision data
D ={(x1,y1), -, (xn, Vn)} (N instances)

- We distinguish two kinds of outputs hereafter

- ¥: the output computed (predicted) by the model (perceptron) for the input
- y: the true (gold) output for the input in the supervision data

- Training: find w such that, (e
e{l,.. N}k . = @
n {) ey } g(W xTL) Yn - ’;J\r\@\?

Perceptron algorithm (Rosenblatt, 1957)

w=20
Repeat:

y — g(w ' xn)
if y =y, then:
if y, = 1 then:
wW— W +nx,
else:
W— W —1nX,

© © N o U A W=

(x,, V) <— a random sample from D

n (0 < n) is the learning rate

10. Until no instance updates w

(\
Exercise: Train an SLP to realize OR , Q

L)/.

- Convert the truth table into training data

0O 0 0 (((001)7,0),)

0 1 1 !
m) - {0100

10 1 (@on)i,1),

1 1 1 ((11D7,1))

- Initialize the weight vector w = 0

- Apply the perceptron algorithm to find w
- Fixn = 1 in the exercise

Updating weights for OR

- Data: D ={((001)",0),((01D,1),(10D,,1),(111D,1)}
- Initialization: w = (0 0 0)' _

-+ Iteration #1: choose (x4,y,) = ((111)7,1) We chose the
: Classific?ation: 9 =gw-x,) =Tg(0) =0+y, trlmrésgargce:erstrl]gt
» Updateew «w+x, =(111) _ minimizes the

. : : — T required
Iteratlgh #.2. choose (x1,y,) = ((001)7,0) reauired
- Classification: y =gw-x1) =g(1) =1 # 1y, updates

- Update:w «w—x; =(110)' |
- Terminate (the weight w classifies all instances correctly)

-x=00D"y=g((110)(001)") =0 o

cx=01D"y=g(110)(011D") =1 é\%‘f\\
cx=(10D"y=g(110)(101D)") =1 7;“5
cx=(11D"y=g(110)(11D") =1)L

Why perceptron algorithm learns

- Suppose the parameter w misclassifies (x,, y,,)
- If y,, = 1 then:

- Update the weight vector w' «— w + x,,
- If we classify x,, again with the updated weights w':
W x,=(WH+x,) Xy, =W - X+ X, Xy, =W: X,
* The dot product was increased (more likely to be classified as 1)
* If y,, = 0 then:
- Update the weight vector w' «— w — x,,
- If we classify x,, again with the updated weights w':
W X, =(W—X,) Xy =W Xy, — X" Xy S W: X,
» The dot product was decreased (more likely to be classified as 0)

- The algorithm updates the parameter w to the
direction where it will classify (x,,, y,,) more correctly

Extending the algorithm to MLPs

- The perceptron algorithm:
- Can find SLP parameters for linearly-separable data

- Does not terminate with linearly-inseparable data
- This is because of the limitation of SLPs
« We must force to terminate the algorithm with incomplete parameters

- Extending the algorithm to MLPs is non trivial
- We have no training data for hidden states
- The famous argument of Minsky and Papert (1969)

- Two new ideas: sigmoid and backpropagation

Single layer perceptron
with sigmoid function

Activation function: step — sigmoid

083
—063
=
Z043

023

Step function: R — {0,1}
(1 (ifa>0)
9(a) = {0 (otherwise)

- Yields binary outputs

- Unusable for multi-class classification
- Indifferentiable at zero
- With zero gradients

To43

limo(a) =1

a—oo

Sigmo

« Yields ¢

id function: R - (0,1)

o(a) = 1+e 4@

ontinuous scores

- Usable for multi-class classification

- Differentiable at all points

- With mostly non-zero gradients

« Useful

for gradient descent

General form with sigmoid

- Single layer NN with sigmoid function
1

1+e WX
- Given an input x € RY, it computes an output y € (0,1)
by using the parameter w € R?

P

y=ow:-x) =

- This Is also known as logistic regression

- We can interpret y as the conditional probability P(1|x)
where an input is classified to 1 (positive category)

- Rule to classify an input to 1:

o 1 1
y>0.5 <=>1+e_w,x>7 Sw-x>0

» The classification rule is the same as the linear models

Example: logical AND

- The same parameter In the previous example
y=o(a),a=x1+x,—15

I I FEETEY BCN ELION

0 0 0.182
0 1 0 -0.5 0.378
1 0 0 -0.5 0.378
1 1 1 0.5 0.622

- The outputs are acceptable, but
* P(xy ANxy = 1|x; = 1,x, = 1) is not so high (62.2%)

- Room for improving w so that it yields y = 1 (100%) for
positives (true) and y — 1 (0%) for negatives (false)

Instance-wise likelihood

- We introduce instance-wise likelihood, to measure
how well the parameters reproduce (x,,, y,,)

_{ 5, ofyn—l)} &
P (1 -y, (otherwise) U

IS AN Y N) R)

0182 1—-y=0.818 = 1

0 1 0 -05 0378 1-y=0622 = 1
1 0 0 -05 0378 1-y=0622 = 1
1 1 1 05 0622 35=0622 = 1

Parameters of AND: y = g(a),a = x; + x, — 1.5

- Likelihood is a probability representing the ‘fitness’ of
the parameters to the training data

- We want to increase the likelihood by changing w

Likelihood on the training data

- We assume that all instances in the training data
are 1.i.d. (independent and identically distributed)

- We define likelihood as a joint probability on data,
N

Lp(w) = 1_[Pn
n=1

- When the training data D = {(x, y1), ..., (Xn, Yn) } IS
fixed, likelihood is a function of the parameters w

- Let us maximize L, (w) by changing w
» This is called Maximum Likelihood Estimation (MLE)
- The maximizer w* reproduces the training data well

Training as a minimization problem

- Products of (0,1) values often cause underflow
- Use log-likelihood, the Iogarlthm of the |Ike|lh00d instead

LLp(w) = logLp(w) = log 1_[Pn = z logp,

- In mathematical optimization, we usually consider a
minimization problem instead of maximization

- We define an objective function E,(w) by using the
negative of the log-likelihood

N
Ep(w) = —LLy(W) = —) logp,
=1

- E,(w) is called a loss function or error function

Training as a minimization problem

- Given the training data D = {(x1,y1), ..., Xy, Ya) }
find w* as the minimization problem,

N
* . . .
w* = argmin Ep (W) = argmin z L,
w w
n=1
—log ¥, (ify, = 1) }

ln = ~logpn = {— log(1 —9,) (otherwise)

= —yplogyy — (1 — yu) log(1 — 3)

Ep(w) 4

"/

Stochastic Gradient Descent (SGD)

- The objective function is the sum of losses of instances,

N
Ex(w) =) Ly
n=1

« We can use Stochastic Gradient Descent (SGD) and its
variants (e.g., Adam) for minimizing E, (w)
- SGD Algorithm (T is the number of updates)
1. Initialize w with random values
2. fort«—1toT:
3. ne «— 1/t
4 (X, V) <— a random sample from D

a1
5. w<—w—nta—‘:

Exercise: compute the gradient -
&

L

’\;_4-3>—
A

* Prove:
ol, dl, 09, da,

ow 39, 0a, ow

N\

— (Yn — Yn)xn

by computing the gradients 55, 3a. ow

- Here:
y ln = —Vn logj;n — (1 — yn) log(l — yn))
A 1
*Yn = O-(an) =

1+e—an’

Answer: compute the gradients

dly R Sl _ — V(1= 3p) + In(1 —) . Yn — Yn
A~ — 0 A~ ~ (_1) - A A - A A)
P Vo 1=y In(1—3) In (L= 9p)

Vi 1 _ 1 e 9n ~ ~
_ = _1 . . an . _1 — . - 1 —_— ,
da, =1 {1+ ean}2 © =1 1+e 9 1+4+e 9n In(1=3n)
day,
ow
Therefore,

aln _ aln aj}n aan 5;71 —Yn

o = - Y. 1 — 9 . = (V. —
ow 09,0a, ow P,(1 —%,) Pn(V) Xn = (P — V) Xy,

SGD for training SLP

1. Initialize w with random values

2. forte«—1toT:

3. Ny «— 1/t

4 (X, V) <— a random sample from D
S Yn —a(w-xy)

6. W(_W_nt%zw'l'nt(yn_yn)xn
If y,, = 9, no need for updating w
#Ify,=1and y, <1, add x,, scaled by (1 — 9,) tow
If y, = 0and 0 < ¥, subtract x,, scaled by y,, tow

The algorithm is the same as perceptron except for using
the error (y,, — 9,,) for weighting the amount of an update

Regularization

- MLE often causes over-fitting
- When the training data is Iinearly separable

|w|—>ooale -0 @

- Subject to be affected by n0|ses in the training data

- We use regularization (MAP estimation)
- We introduce a penalty term when w becomes large
- The loss function with an L2 regularization term:
N

E(w) = Z L+ C|w|?

« C is the hyper parameter to control the trade-off between
over/under fitting

Multi-class classification

- We extend binary classification to multi-class
- Assign a weight vector w,, for every category y

- Extend Perceptron algorithm to multi-class classification
- Extend sigmoid function to softmax
- Again, automatic differentiation is useful for SGD training

- Try ReLU as an activation function of internal layers

- Dropout realizes model averaging in a simple way

Handwritten recognition anist: Lecun+ 1998)

| A B
613715

We want to classify an input image into 10 categories (digits)

Image representation

0 13 20

- Animage (28 x 28
pixels, grayscale) is
represented by a 28 x
28 matrix.

- The original dataset
represents a brightness
in an 8-bit integer ([0,
255]).

0.6

« In this lecture, a
brightness is
normalized within the
range of [0, 1].

Multi-class classification
and perceptron algorithm

General form: linear multi-class classification

Output: y € Y Input: x € R?

w number of dmensmV

= argmaxw,, - X

/y
Set of possible categories \

for the input
Parameter: weight w,, € R4

(prepared for every category)

Represent an image with a vector

- We simply use the brightness of each pixel as an input
vector by flattening a 2D matrix into a 1D vector

- A 28 X 28 matrix into a vector of 784 (= 28 x 28) dimension

- A more sophisticated method (e.g., Convolutional Neural
Network) will be presented later

- Even this simple treatment surprisingly works well

20@
Pixel at (x,y) Feature ID (row major): 28(y — 1) + x

Linear multi-class classification

Image

Compute the
score (inner
product) for

each category

—

Pixels ‘

Choose the
category with the
maximum score

y =3 <{e—

4 aYa
0 ‘H**WWWNMWH : rhwﬁ%mﬁ%
xowo=-124)T x-ws=-194
T}WMW’J«IP Hﬂhww i g
1 | | 6 | sl “m i
xowi =430)" .y, = 556
| ('—\
2 HHMWWJMPY 7 ----- T‘"ﬁwwkﬁ#
x-w, = —0.68 x-w, =—6.86
22— 00 JN A7 = 00D
; . Iﬁhhﬁ%wbﬁﬁmﬁrwg. 8 w‘ﬁ"«"‘rwrﬂ M oy
X w3 = +3.62 x-wg = —0.08
-~ >
—_—
) | b W‘T*’“‘H’ WPWW%i
\ xW4=_561 JAR xW9—_369)

A model has a weight vector for every category

Training for multi-class classifier

- A training set consists of N instances:

. _ X,: the n-th instance in the training data
D = {(xl’ yl)’ ") (xN’ yN)} y,,: the category for the n-th instance

- We assume generalization: if weight vectors w,,

predict training instances correctly, it will work
for unseen instances

- Find the weight vectors w,, such that they can
predict training instances as correctly as possible
- Ideally, y,, = y, for alln € [1, N] in the training data

Perceptron algorithm for multi-class
(Collins, 2002)

1. wy,=0forallyey

2. Repeat:
3. (x,y) < Random sample from the training data D
4, y «— argmaxw,, - X

y€Y
5. if y # vy then: (tncorrect prediction)
6. w, —w,+x (w,, - x will be larger)
7. Wy «— Wy — X (wy - x will be smaller)
8. Until no instance updates w,,

Summary and notes

- Given an input x, a linear multi-class classifier compute a
score for every category y as an inner product w,, - x

- w,, presents a weight vector for the category y

- It predicts a category y for the input yielding the highest
score among the possible categories Y

- Weight vectors w,, can be trained by an extension of
Perceptron algorithm to multi-class (structured perceptron)
- Again, we cannot use it for multi-layer neural networks

- Let's consider SGD for training multi-class classifiers

Multi-class classification
with softmax function

Training multi-class classifiers with SGD

- In order to train binary classifiers using SGD,
we had to change the activation function
from step to sigmoid

- What is the activation function for multi-
class classification corresponding to
sigmoid function?

- Answer: softmax function

Softmax function: Definition

- Given a vector a € R™, softmax a: R™ — R™ yields,
(@ exp(a;)

o\Q); = Gm

k=1 €Xp(ax)

- Here o(a); denotes the i-th element of the value of o(a)

- We use the same notation o (do not confuse with sigmoid)

« A result of softmax function satisfies,
Vk: O'(a)k > 0,
m

2 o(a), = 1

k=1

Softmax function: Interpretation

- Intuitively, softmax function converts scores for m
caetgories a € R™ into a probabllity distribution

- In binary classification, sigmoid function converts a
score to a probability

b 0.8
0.5 1
| l I B
.| . :
| I N
05 4 i
- 021 l
olllll ||.||
i 2 3 4 5

Single-layer NNs for multi-class classification

- Given an input x € R%, a single-layer NN for
multi-class classification yields a probability
distribution over K categories y € R,

y=0c(a),a=Wx

- Here, W € RX*4 is a weight matrix
. W can be seen as a mapping: R - RK

- Let w; denote the i-th row vector of the matrix W
- The score for the category i is computed by a; = w; - x

An example with softmax function

Image

Pixels ‘

e N/ N
x-wo=-124 (074%))\ x-wg=-194 (0.37%)
AT Y
1 }T"%W%MM%W 6 4‘?J+*H’%H~L'[ﬁ'iﬂw‘*ﬁﬁﬂhﬁﬁl'
x-wy=-430 003%)| x-wg=-556 (0.01%)
' .)
T ” L 1 \ ' ﬂ'\l
gy || b
x-wy=-068 (129%))| x-w,=-686 (0.00%)
-)
3 . 'ﬁ\ﬂ““k}ﬂ“duf‘qi’d‘*ﬁh“]”ﬁpw' 8 +&J?*M+WM#W i : iy
X+ W3 = +3.62 (95.1%) X W8 = —0.08 (2.35%)
. N\ T/
4 ety ([g T
X Wy = —5.61 (0.01%)) X Wo = —3.69 (0.06%))

Supervision data for multi-class

- We have a supervision data
D ={(x1,y1), -, xXpn, Yn)} (N instances)

* Input

*Xp = (xn11xn2' "'!xnd)T €]Rd

- Output (changed from the previous notation)
e Vo = V1, Yz -, Vi)' € RE (one-hot vector)

‘ y — (O)O)O)

0o -

1,0,0,0,0,0,0)'

Instance-wise likelihood

- We introduce instance-wise likelihood to measure
oarameters reproduce (X, Yn)

} l_[yynk

- The probability of the true label esttmated by the model

how well the

Pn =

[

(f ynre = 1)
(if Ynr = 0)

L X -Wg = —0.08 (235%))

\

X-Wwg = —3.69 (0_06%))

4 N/ - N/ . Y4 . N\

: lww.ﬂwkw.ﬁﬁ” 2 1 :]-IIPHWMQHW‘“": 4 "I"*‘-"’."H"F"I‘ W"“""‘I‘I‘l 3 Ry “-“i“““”’“:““-“-“““"“r“
L xowo=-124 (074%)) X W1= 430 (003%))| x-w,=-068 (129%))(* Ws=+362" (951%)
4 N/ N/ N/ _— : N\
4 rlrry—«mwmrrf*‘r“r*‘fpi“id‘w rtr +ﬁwﬁlidq“wﬂawh€” 6 4”“»"?-1,L1:hm»rrvj*5dﬂ.?*|—‘~mmp1 THHM%MT*"T‘

| 5 e |

X Wa =561 (001%))(x-wg=-194 (037%)J| x-we=-556 (0.01%))| x-w,=-6.86 (0.00%)
4 N\ N
g iy 9 ek e

Likelihood on the training data

- We assume that all instances in the training data
are 1.i.d. (independent and identically distributed)

- We define likelihood as a joint probability on data,
N

Ly(W) = 1_[Pn
n=1

- When the training data D = {(x{, 1), ..., (Xn, Yn)} IS
fixed, likelihood is a function of the parameters W

- Let us maximize L, (W) by changing W
» This is called Maximum Likelihood Estimation (MLE)
- The maximizer W* reproduces the training data well

Training as a minimization problem

- Products of (0,1) values often cause underflow
- Use log-likelihood, the Iogarlthm of the |Ike|lh00d instead

LLp(W) = logLp(W) = log 1—[Pn = z log py,

- In mathematical optimization, we usually consider a
minimization problem instead of maximization

- We define an objective function E, (W) by using the
negative of the log-likelihood

Ey(W) = —LLy(W) = =) logpy

n=1
- E5(W) is called a loss function or error function

Training as a minimization problem

- Given the training data D = {(x1,¥1), ..., (xn, Yn) 1},
find W™ as the minimization problem,

W* = argmin E, (W) = argmin Z L,
w wo

K
- - Z Yk 108 Yk

Stochastic Gradient Descent (SGD)

- The objective function is the sum of losses of instances,

N
Ex(W) =) I
n=1

« We can use Stochastic Gradient Descent (SGD) and its
variants (e.g., Adam) for minimizing E, (W)
- SGD Algorithm (T is the number of updates)
1. For every k, initialize wy, with random values
2. fort—1toT:
3. ne «— 1/t
4 (X, V) <— a random sample from D

G
5. Vk: wy <—wk—nta—u;';

Exercise: compute the gradient QQ

—Q:*K_D\

- Prove (we omit the instance index n for simplicity):
ol al da

ow; 0da; Ow;

= —yi)x

aai

by computing the gradlents 2L and

aal awi

- Here:

K
= = z Vi log Vi,
k=1

N
l l II§=1 exp(ay)’
a =w; X

Answer: compute the gradients

aai dl
. = x, we concentrate on —,
awi aai
Z dlogd _ N\, 1 9% 109, 1 09,
aal P Toa;, T L5 00T 50a L7 0
« The first term is,
1 99, 1 0 (exp(q;) > 1 exp(a;) = — exp(a;) exp(q;)
~Viga = Vi = Vi
‘9, 0a; Yi0a; \Yjy—, exp(ay) i 2
1 exp(a;) X — exp(a) 1 ~ _ ~
Vi s = 5 91 =90 = =yl =90 = ~yi + i,
l l

The second term is,
1 ayk 1 0 < exp(ag)) 10- exp(ay) exp(a;)
500 \ 3K, explasn) i x?

k#i

Z}’k — VY = Z)’k}’l e I Koo |
| gx) 4 g)h(x)—gh' (x) 1] !
- k:tlf k+i When f(x) = f (X) = [h(0)]? i E X = Z exp(ay) i

erefore, Frommmmommemneed

dl
e _Yi+3’i3’i+z3’k3’i = _Yi‘l'inYk =—YitYi
l —

k=i

SGD for training SLP

1. For every k, initialize w;, with random values
2. fort<—1toT:

3. Ny «— 1/t

4 (X, V) <— a random sample from D

> Yo oW - xy)

ol .
6. Vik: wy «— wy — nta_u:; =Wy + 1tk — Vi) Xn

- The algorithm is the same as that for binary classification

- For each category k, it updates a weight wy, by the
amount of the error (y,,, — V.,) between the true
probability y,,; and the estimated probability y,,;

Intuitive example of SGD updates ¢, = 1)

()

Lyttt M‘*‘!h

x-wo=-124 (0.74%)

AETT T

X -Wq = —4.30 (003%)

5 "'H“W%'HWWWN

x-wy, =—068 (1.29%)

0

3 'ﬁ\‘(hﬂh}wqmﬂuqu%:MﬁrWP#'

X W3 = +3.62 (951%)
)
4 ey

. x-wy =-561 (0.01%),

—= 0.0074x

—= 0.0003x

—= 0.0129x

+= 0.0490x

—= 0.0001x

4 ' N\
|
.rq,[

e

5 | ..
. x-wg=-194 (0.37%),
.)
6 WM%H"%'MWFMW‘” |

x-Wwg=—-556 (0.01%)
G TR)

w
.er

x-wy;=-—686 (0.00%),
)

3 A p Py
x-wg=—0.08 350
——

g

. x-we=-3.69 (0.06%),

—= 0.0037x

—= 0.0001x

—= 0.0000x

—= 0.0235x

—= 0.0006x

Computing the loss with mini-batch

- Single-batch

o(1 x X diw)=[3 |1 ¢zmmp [y
K K

d

l=~—y-logy

» Mini-batch (paralle?izable (n GPU)

o(m X XdW)ZYm#Y

Mini-batch training

- Most DL frameworks implement mini-batch
training by increasing the order of tensors:
- For example, (d) - (m X d)

- Increasing the batch size (m) may:
- Speed up time required for an epoch with parallelization
- Decrease the number of parameter updates (1/m)

- This paper (Goyal+ 2017) recommends:

- When the minibatch size is multiplied by k, multiply the
learning rate by k

Summary and notes

- K-class classification is realized by changing the
dimension of an output layer to K

- Softmax yields a probability distribution y € RX

- The loss function compares a model output y
with an one-hot vector of a true category y

- Again, automatic differentiation is also useful for
training multi-class NNs

- A single-layer NN with softmax activation
function is also known as multi-class logistic
regression and maximum entropy modeling

Generic form of
Feedforward Neural Networks

Designing feedforward neural networks

First layer: R? > R3 Second layer: R3 - R? Final layer: R - R?
h® = g (a®) h® = g@(a@) h® = g®(a®)
a® = W@ RO a® = Ww@pW a® = WO
w® e R3%2 g D ¢ R3 W@ e R2%3 @ p@ ¢ R2 Ww® e R2¥2 q3) p3) ¢ R2

- The number of layers

- The numbers of dimensions of hidden layers
- An activation function for each layer

- A loss function

Cross entropy loss

- For binary classification
[(a,y) = —yloga(a) — (1 —y)log(1—o(a))
« For multi-class classification

l(a,y) = —a, + logz exp(az)
K

True probability distribution
° CrOSS entro py / (1 for true category; 0 otherwise)

H(p,q) =—) p(k)logq(k)
2 .

Predicted probability distribution

Mean Squared Error (MSE) loss

- Used for regression

1
l(a,y) = lly - all2

Training multi-layer neural networks
and back propagation

Generic notation for multi-layer NNs

First layer: R? > R3 Second layer: R3 - R? Final layer: R - R
h®D = g (a®) h® = g@(a®) h® = g®(a®)
a® = WwORO) a® = WA a® = wORE
w® e R¥>*2, aM, pW € R3 w® e R?3,a®, h? € R? w® e RY2,a® h® e R
- The I-th layer (I € {1, ..., L}) consists of: wO = (Wi(jl))
. - p(=1) di— 0) — : .
Input: h " €]Rd ' (h(L) X) wi(jl): weight from the j-th neuron
- Output: R € R™ (R =) to the i-th neuron of the I-th layer
- Weight: W € R%xdi-1
. Activation function: g® ' Please accept the notational conflict between |

Activati O e & h® = g(l) (W(Z)h(l_l)) | an instance-wise loss 1, and a layer number | !
ctivation: a'¥ e R% T e

How to train weights in MLPs

- We have no explicit supervision signals for the internal
(hidden) inputs/outputs h(?), ..., R(:=1)

- Having said that, SGD only needs the value of gradient
aa (l) for every weight w() in MLPs

- Can we compute the value of 2n_ - (l) for every weight w(])?
Wij

b

- Yes! Backpropagation can do that!! = ?

Backpropagation

- Commonly used in deep neural networks

- Formulas for backpropagation look complicated

- However:

- We can understand backpropagation easily if we know
the concept of computation graph

- Most deep learning frameworks implement
backpropagation by using automatic differentiation

- Let's see computation graph and automatic
differentiation first

General Back-Propagation

The back-propagation algorithm is very simple. To compute the gradient of some
scalar z with respect to one of its ancestors & in the graph, we begin by observing
that the gradient with respect to z is given by % = 1. We can then compute
the gradient with respect to each parent of z in the graph by multiplying the
current gradient by the Jacobian of the operation that produced z. We continue
multiplying by Jacobians traveling backwards through the graph in this way until
we reach . For any node that may be reached by going backwards from z through

two or more paths, we simply sum the gradients arriving from different paths at
that node.

Rules for reverse-mode AD

Add

Multiply

x 2= f()
> >
ofF®) ICO) g

0x

Function application

Branch

Computation graph: f(x,y,z) = (x + y)z

http://cs231n.github.io/optimization-2/

X =-—2
(@=x+y)
A 4 a = 3
[+
y =5
(f = az)
— f =-12
T
Z = —4
Forward pass

The value of a variable (above an arrow)

http://cs231n.github.io/optimization-2/

Automatic Differentiation (AD): f(x,y,z) = (x + y)z
http://cs231n.github.io/optimization-2/

. Compare with: |
X =—2 . Of '

. — =7 = -4
— —4 (@=x+y) g 3_}“22:_4 i
Ja Y a = E oy E
(@X(—AL)) C_]_j — _4 EZ_]Zcz(x+y)=3 i
y = of . N\| o T '
pa— (Gex=2=4) (f = az)
Jda L f = —12
—— X (—4) o
(a ") CX_J —1
Z = —4
— 3
(g S 3> Backward pass
0z (Reverse mode AD)

The value of a variable (above an arrow)
The gradient of the output f with respect to the variable (below an arrow)

http://cs231n.github.io/optimization-2/

Automatic differentiation (Baydin+ 2018)

- AD computes derivations by using the chain rule
- Function values computed in the forward pass

- Derivations computed with respect to:
- Every variable (in reverse-mode accumulation)
- A specific variable (in forward-mode accumulation)

- Do not confuse with these:

0f(x) _ fx+8)—f(x)
0x o

- Symbolic differentiation: e.g., Mathematica, sympy

- Numerical differentiation: for example,

Exercise: AD on computation graph

- Write a computation graph for [, (w),
1

1+e WX

L,(w)=—logo(w-x) =—log

- Consider x = (1,1,1)" and w = (1,1, —1.5)'
- Compute the value of [, (w)
dlx(w)

ow QQ

- Compute gradients

Computing

dlx(w)

using AD

ow
Ly Yy =ap dy/0a = dy/0B =«
W1 =03775 Joa (=5€ a(/a(g:g 6(/0£=6
Q K = 69 0K/69=19 6K/619=9
X1 03775 B v /21 A=y+¢ or/oy =1 oA/0C =1
1 Etj—osws Uu=2A1+k ou/oA=1 du/ok =1
5 o oA 0.4740
W2 203775 Yoo ; o¢ = —Uu dv/ou=-1
ou
"ﬁ 0.5 —-0.5 0.6065 1.6065 0.6225 —0.4740 L
X2 —0::775 E G X1 exp ol 11 T
-1.5 Er e v 0¢ on
W 0 Ok e —0.3775 0.3775 0.6224 0.6224 —1.6065 -1
3-0.3775 T
K E=¢eV dé/ov = eV Yt R :
1 _ bt ___ 1 !
y p 7 0.3775 T=¢&+1 aﬂ/af =1 E ;—36(;65 0.6225 E
3 05663 09 w=1/m dw /0 = —(1/m)? ::-_-:-_-_-:-_-_-:-_-_-:-_-_-:-_-_-:-_-_-.:
0w 1
oLw) p=logw 0p/0w = 1/w TS
Wy —w; +1 EIS wy + 0.37757 =— (1 61)65) X (—1.6065) !
1 l=—p ol/dp = —1 | = 0.6224 i

No need to derive backpropagation

- Manual derivation of gradients is tedious and error-prone
- Debugging a mistake in gradients is extremely difficult

» AD is employed in most deep learning frameworks

- We only need implement an algorithm for a forward pass, i.e., how
to compute an output from an input

- We can concentrate on designing a structure of neural network
- This boosted the speed of research and development
« The idea of AD is not new (since 1959)

- Deriving a formula for backpropagation is legacy

Summary and notes

- We design:
- A neural network model f(x; 8) (with parameters 9)
» A loss function: Ep(0) = XN_. L(f(x,; 0),v,)

« L Is an instance-wise loss function
- D presents a set of training data D = ((x1, 1), -, ey, yv))

- We find a minimizer 8* for E,(6) by using SGD

- An update formula for every parameter w € 0 is derived in
a generic manner based on automatic differentiation

- Step function is inappropriate for backpropagation
- Gradients will not flow because g'(a) = 0ata # 0

Activation functions

Step

Step function: R — {0,1} 21

(1 (ifx>0) o
9(x) = {0 (otherwise) 2
* Pros
: : X g(x)
- Yields a binary output HO— : >—'T
- Cons (never use this) _
- Zero gradients A
« SGD cannot update parameters because aa—vlv =0 f
J

Sigmoid

Sigmoid: R = (0,1)

| | |
o i 5] 1= ra e =
| . . \ . .

o(x) = 1+e™*
* Pros) .
- Yields an output within (0,1) BT <: >T'
- Cons .
- Not zero-centered |
- Zero (vanishing) gradients when |x| is large f

¢

Hyperbolic tangent (tanh)

tanh: R — (—1,1)

X —X

tanh(x) = Zx ; e 20(2x) — 1 =
* Pros
- Yields an output within (—1,1)
- Zero-centered
- Cons PN
- Zero (vanishing) gradients when |x| is large Z’g\;{}
51

Rectified Linear Unit (ReLU

—— Gradient
Function value

ReLU: R - R,
ReLU(x) = max(0, x)

| | |
o i 5] 1= ra e =
| . . \ . .

* Pros

- Gradients do not vanish when x > 0

- Light-weight (no e*) computation

- Faster convergence (e.g., 6x faster on CIFAR-10)
- Cons

- Not zero centered

- Dead neurons when x < 0

Leaky RelLU

Leaky ReLU. R - R
LeakyReLU,(x) = max(ax, x)

= L P (=]

|
%]

* Pros

- Gradients do not vanish

- Light-weight (no e*) computation
- Cons

- Not zero centered
- Not so much improvement over ReLU in practice

Typical definition of a DNN

Typical example of a (pseudo) definition for a Deep Neural Network of depth L (L-1 hidden layers and
1 output layer) for (almost) all modern DL frameworks and libraries:

initialize dnnmodel
dataset consists of D inputs x of dimensions d each

set hidden Layer 1 as a fully connected (fc) layer to inputs x containing n1 neurons (n1 x d
connections):

dnnmodel.fc1(n1)
fc1.activation-function=relu

set hidden Layer 2 as a fully connected layer to Layer 1 containing n2 neurons (n2 x n1 connections):

dnnmodel.fc2(n2)
fc2.activation-function=relu

... more hidden layers ...

set hidden Layer L-1 as a fully connected layer to Layer L-2 containing nL neurons (nL-1 x nL-2
connections):

dnnmodel.fclL-1(nL-1)
fcL-1.activation-function=relu

set fcL (output layer) in a binary classification problem (1 x nL-1 connections)

dnnmodel.fclL(1)
fcL.activation-function=sigmoid

OR set fcL (output layer) in a K-class multiclass classification problem with one-hot encoding (K x
nL-1 connections)

dnnmodel. fcL(K)
fcL.activation-function=softmax

Set Loss function to Cross Entropy (based on Maximum Likelihood Estimation). Use C for L2 weight
regularization.

dnnmodel.loss=crossentropy(C)

Set the solver to mini batch SGD (or variations) with learning rate Ir that by default will use automatic
differentiation for the backprop gradient computation. Also set maximum number of epochs (e) and
batch size (m) and use of dropout for further regularization. (one epoch equals D examples used for

training)

dnnmodel.solver=minibatchSGD(1r,m, e, dropout=yes)

What made Deep Neural Networks
possible and efficient?

Factors from the natural evolution of computation

- Better computers and software allow bigger networks with higher
capacity to solve more difficult problems

- With bigger datasets available we must use stochastic methods like
SGD

Algorithmic factors

- Cross-entropy is a better loss function than MSE for sigmoid,
softmax

- ReLU in hidden layers is a better activation function than sigmoid
and tanh for deeper networks

- Automatic differentiation is now a feature of all DL frameworks

What is the difference between a
neural network and a deep neural
network, and why do the deep
ones work better?

Short answer: DNN simply seem to perform better! Read

the first answer in the following link:
https.//stats.stackexchange.com/questions/182734/what-is-the-differe
nce-between-a-neural-network-and-a-deep-neural-network-and-w

https://stats.stackexchange.com/questions/182734/what-is-the-differe

Bibliography

- Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6), 386.

- Minsky, M.L. and Papert, S.A. (1969) Perceptrons. MIT Press, Cambridge.

- Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal representations
by error propagation (No. ICS-8506). California Univ San Diego La Jolla Inst for Cognitive
Science.

- Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with
neural networks. science, 313(5786), 504-507.

- Jarrett, K., Kavukcuoglu, K., & LeCun, Y. (2009, September). What is the best multi-stage
architecture for object recognition?. In 2009 IEEE 12th International Conference on
Computer Vision (ICCV) (pp. 2146-2153). IEEE.

- Glorot, X., Bordes, A., & Bengio, Y. (2011, June). Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence and
statistics (pp. 315-323).

- LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436.

- Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. CHAPTER 6

- Baydin, A. G, Pearlmutter, B. A, Radul, A. A, & Siskind, J. M. (2018). Automatic differentiation in machine
learning: a survey. Journal of Machine Learning Research, 18, 1-43.

All papers included in "DFFN bibliography" folder - Goodfellow book in mycourses documents root folder
DjVu viewer (if needed): https://sourceforge.net/projects/windjview/

Implementation: Comparison of MLP
and DFFN with different activation
functions (PyTorch, MNIST dataset)

- Model A: 1 Hidden Layer Feedforward Neural Network (Sigmoid Activation)
- Model B: 1 Hidden Layer Feedforward Neural Network (Tanh Activation)
- Model C: 1 Hidden Layer Feedforward Neural Network (ReLU Activation)
- Model D: 2 Hidden Layer Feedforward Neural Network (ReLU Activation)
- Model E: 3 Hidden Layer Feedforward Neural Network (ReLU Activation)

notebook: pytorch_feedforward_neuralnetwork.ipynb in mycourses folder

https://www.deeplearningwizard.com/deep_learning/practical_pytorch/pytorch_feedforward_neuralnetwork/

https://www.deeplearningwizard.com/deep_learning/practical_pytorch/pytorch_feedf
https://www.deeplearningwizard.com/deep_learning/practical_pytorch/pytorch_feedforward_neuralnetwork/

	Feedforward neural network (II):�Multi-class classification
	Highlights of this lecture
	Handwritten recognition (MNIST; LeCun+ 1998)
	Image representation
	Multi-class classification�and perceptron algorithm
	General form: linear multi-class classification
	Represent an image with a vector
	Linear multi-class classification
	Training for multi-class classifier
	Perceptron algorithm for multi-class�(Collins, 2002)
	Multi-class Perceptron implemented in numpy
	Summary and notes
	Multi-class classification�with softmax function
	Training multi-class classifiers with SGD
	Softmax function: Definition
	Softmax function: Interpretation
	Single-layer NNs for multi-class classification
	An example with softmax function
	Supervision data for multi-class
	Instance-wise likelihood
	Likelihood on the training data
	Training as a minimization problem
	Training as a minimization problem
	Stochastic Gradient Descent (SGD)
	Exercise: compute the gradient
	Answer: compute the gradients
	SGD for training SLP
	Intuitive example of SGD updates (𝜂 𝑡 =1)
	Multi-class classification in numpy
	Computing the loss with mini-batch
	Mini-batch training
	Multi-class classification in pytorch
	Regularization
	Summary and notes
	Generic form of�Feedforward Neural Networks
	Designing feedforward neural networks
	Cross entropy loss
	Mean Squared Error (MSE) loss
	Activation functions
	Step
	Sigmoid
	Hyperbolic tangent (tanh)
	Rectified Linear Unit (ReLU)
	Leaky ReLU
	Dropout
	Dropout (Srivastava+ 2014)
	Dropout at training phrase
	Dropout at inference phase
	Dropout in formulas
	Dropout in pytorch
	How was 'Dropout' conceived?
	References

