
From Perceptrons to
Deep Feed Forward
Networks

Feedforward Neural Network (I) 24

Feedforward Neural Network (I) 24

NY Times 1960 article!!

Training single-layer perceptron

Feedforward Neural Network (I) 24

How to determine MLP parameters
• MLPs can realize logical connectives

• We crafted parameters (weights and biases)
carefully to realize desired connectives

• However, crafting parameters is difficult
• We are sometimes unsure of the internal logic

associating input and output variables

• Find parameters automatically from data
• We are interested in determining parameters

from data describing pairs of inputs and outputs

Feedforward Neural Network (I) 25

Supervised learning (training)
• We have a supervision data

• 𝐷𝐷 = { 𝒙𝒙1,𝑦𝑦1 , … , 𝒙𝒙𝑁𝑁 ,𝑦𝑦𝑁𝑁 } (𝑁𝑁 instances)

• Find parameters such that they can predict
training instances as correctly as possible

• We assume generalization
• If the parameters predict training instances well,
they will work for unseen instances

Feedforward Neural Network (I) 26

Supervised learning for single-layer NNs
• For simplicity, we include a bias term 𝑏𝑏 in 𝒘𝒘 hereafter

• Redefine 𝒙𝒙(new) = 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑑𝑑 , 1 ⊺, 𝒘𝒘(new) = 𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤d, 𝑏𝑏 ⊺

• Then, 𝒘𝒘(new) ⋅ 𝒙𝒙 new = 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 + ⋯+ 𝑤𝑤𝑑𝑑𝑥𝑥𝑑𝑑 + 𝑏𝑏 (original form)

• We introduce a new notation to distinguish a computed
output �𝑦𝑦 from the gold output 𝑦𝑦 in the supervision data
• 𝐷𝐷 = { 𝒙𝒙1,𝑦𝑦1 , … , 𝒙𝒙𝑁𝑁,𝑦𝑦𝑁𝑁 } (𝑁𝑁 instances)
• We distinguish two kinds of outputs hereafter

• �𝑦𝑦: the output computed (predicted) by the model (perceptron) for the input
• 𝑦𝑦: the true (gold) output for the input in the supervision data

• Training: find 𝒘𝒘 such that,
∀𝑛𝑛 ∈ {1, … ,𝑁𝑁}:𝑔𝑔(𝒘𝒘 ⋅ 𝒙𝒙𝑛𝑛) = 𝑦𝑦𝑛𝑛

Feedforward Neural Network (I) 27

Perceptron algorithm (Rosenblatt, 1957)
1. 𝒘𝒘 = 0
2. Repeat:
3. (𝒙𝒙𝑛𝑛,𝑦𝑦𝑛𝑛) ⟵ a random sample from 𝐷𝐷
4. �𝑦𝑦 ⟵ 𝑔𝑔 𝒘𝒘 ⋅ 𝒙𝒙𝒏𝒏
5. if �𝑦𝑦 ≠ 𝑦𝑦𝑛𝑛 then:
6. if 𝑦𝑦𝑛𝑛 = 1 then:
7. 𝒘𝒘⟵ 𝒘𝒘 + 𝜂𝜂𝒙𝒙𝑛𝑛
8. else:
9. 𝒘𝒘⟵ 𝒘𝒘− 𝜂𝜂𝒙𝒙𝑛𝑛
10. Until no instance updates 𝒘𝒘

Feedforward Neural Network (I) 28

𝜂𝜂 (0 < 𝜂𝜂) is the learning rate

Exercise: Train an SLP to realize OR
• Convert the truth table into training data

• Initialize the weight vector 𝒘𝒘 = 0
• Apply the perceptron algorithm to find 𝒘𝒘

• Fix 𝜂𝜂 = 1 in the exercise

Feedforward Neural Network (I) 29

𝑥𝑥1 𝑥𝑥2 𝑦𝑦
0 0 0
0 1 1
1 0 1
1 1 1

𝐷𝐷 =

0 0 1 ⊺, 0 ,
0 1 1 ⊺, 1 ,
1 0 1 ⊺, 1 ,
1 1 1 ⊺, 1

Updating weights for OR
• Data: 𝐷𝐷 = 0 0 1 ⊺, 0 , 0 1 1 ⊺, 1 , 1 0 1 ⊺, 1 , 1 1 1 ⊺, 1
• Initialization: 𝒘𝒘 = 0 0 0 ⊺

• Iteration #1: choose (𝒙𝒙4,𝑦𝑦4) = 1 1 1 ⊺, 1
• Classification: �𝑦𝑦 = 𝑔𝑔 𝒘𝒘 ⋅ 𝒙𝒙4 = 𝑔𝑔 0 = 0 ≠ 𝑦𝑦4
• Update: 𝒘𝒘 ← 𝒘𝒘 + 𝒙𝒙4 = 1 1 1 ⊺

• Iteration #2: choose (𝒙𝒙1,𝑦𝑦1) = 0 0 1 ⊺, 0
• Classification: �𝑦𝑦 = 𝑔𝑔 𝒘𝒘 ⋅ 𝒙𝒙1 = 𝑔𝑔 1 = 1 ≠ 𝑦𝑦1
• Update: 𝒘𝒘 ← 𝒘𝒘− 𝒙𝒙1 = 1 1 0 ⊺

• Terminate (the weight 𝒘𝒘 classifies all instances correctly)
• 𝒙𝒙 = 0 0 1 ⊺: 𝑦𝑦 = 𝑔𝑔 1 1 0 0 0 1 ⊺ = 0
• 𝒙𝒙 = 0 1 1 ⊺: 𝑦𝑦 = 𝑔𝑔 1 1 0 0 1 1 ⊺ = 1
• 𝒙𝒙 = 1 0 1 ⊺: 𝑦𝑦 = 𝑔𝑔 1 1 0 1 0 1 ⊺ = 1
• 𝒙𝒙 = 1 1 1 ⊺: 𝑦𝑦 = 𝑔𝑔 1 1 0 1 1 1 ⊺ = 1

Feedforward Neural Network (I) 30

We chose the
instances in

the order that
minimizes the

required
number of
updates

Why perceptron algorithm learns
• Suppose the parameter 𝒘𝒘 misclassifies (𝒙𝒙𝑛𝑛,𝑦𝑦𝑛𝑛)

• If 𝑦𝑦𝑛𝑛 = 1 then:
• Update the weight vector 𝒘𝒘𝒘 ⟵ 𝒘𝒘 + 𝒙𝒙𝑛𝑛
• If we classify 𝒙𝒙𝑛𝑛 again with the updated weights 𝒘𝒘𝒘 :

• 𝒘𝒘′ ⋅ 𝒙𝒙𝑛𝑛 = 𝒘𝒘 + 𝒙𝒙𝑛𝑛 ⋅ 𝒙𝒙𝑛𝑛 = 𝒘𝒘 ⋅ 𝒙𝒙𝑛𝑛 + 𝒙𝒙𝑛𝑛 ⋅ 𝒙𝒙𝑛𝑛 ≥ 𝒘𝒘 ⋅ 𝒙𝒙𝑛𝑛
• The dot product was increased (more likely to be classified as 1)

• If 𝑦𝑦𝑛𝑛 = 0 then:
• Update the weight vector 𝒘𝒘′ ⟵ 𝒘𝒘− 𝒙𝒙𝑛𝑛
• If we classify 𝒙𝒙𝑛𝑛 again with the updated weights 𝒘𝒘𝒘 :

• 𝒘𝒘′ ⋅ 𝒙𝒙𝑛𝑛 = 𝒘𝒘− 𝒙𝒙𝑛𝑛 ⋅ 𝒙𝒙𝑛𝑛 = 𝒘𝒘 ⋅ 𝒙𝒙𝑛𝑛 − 𝒙𝒙𝑛𝑛 ⋅ 𝒙𝒙𝑛𝑛 ≤ 𝒘𝒘 ⋅ 𝒙𝒙𝑛𝑛
• The dot product was decreased (more likely to be classified as 0)

• The algorithm updates the parameter 𝒘𝒘 to the
direction where it will classify (𝒙𝒙𝑛𝑛,𝑦𝑦𝑛𝑛) more correctly

Feedforward Neural Network (I) 33

Extending the algorithm to MLPs
• The perceptron algorithm:

• Can find SLP parameters for linearly-separable data
• Does not terminate with linearly-inseparable data

• This is because of the limitation of SLPs
• We must force to terminate the algorithm with incomplete parameters

• Extending the algorithm to MLPs is non trivial
• We have no training data for hidden states
• The famous argument of Minsky and Papert (1969)

• Two new ideas: sigmoid and backpropagation

Feedforward Neural Network (I) 34

Single layer perceptron
with sigmoid function

Feedforward Neural Network (I) 35

Activation function: step → sigmoid

Feedforward Neural Network (I) 36

Sigmoid function: ℝ → (0,1)

𝜎𝜎(𝑎𝑎) =
1

1 + 𝑒𝑒−𝑎𝑎

Step function: ℝ → {0,1}

𝑔𝑔(𝑎𝑎) = �1 (if 𝑎𝑎 > 0)
0 (otherwise)

• Yields binary outputs
• Unusable for multi-class classification

• Indifferentiable at zero
• With zero gradients

• Yields continuous scores
• Usable for multi-class classification

• Differentiable at all points
• With mostly non-zero gradients

• Useful for gradient descent

lim
𝑎𝑎→∞

𝜎𝜎(𝑎𝑎) = 1

lim
𝑎𝑎→−∞

𝜎𝜎(𝑎𝑎) = 0

General form with sigmoid
• Single layer NN with sigmoid function

�𝑦𝑦 = 𝜎𝜎 𝒘𝒘 ⋅ 𝒙𝒙 =
1

1 + 𝑒𝑒−𝒘𝒘⋅𝒙𝒙
• Given an input 𝒙𝒙 ∈ ℝ𝑑𝑑 , it computes an output �𝑦𝑦 ∈ (0,1)

by using the parameter 𝒘𝒘 ∈ ℝ𝑑𝑑

• This is also known as logistic regression
• We can interpret �𝑦𝑦 as the conditional probability 𝑃𝑃 1 𝒙𝒙

where an input is classified to 1 (positive category)
• Rule to classify an input to 1:

�𝑦𝑦 > 0.5 ⟺ 1
1 + 𝑒𝑒−𝒘𝒘⋅𝒙𝒙 > 1

2 ⟺𝒘𝒘 ⋅ 𝒙𝒙 > 0

• The classification rule is the same as the linear models

Feedforward Neural Network (I) 37

Example: logical AND
• The same parameter in the previous example

�𝑦𝑦 = 𝜎𝜎 𝑎𝑎 ,𝑎𝑎 = 𝑥𝑥1 + 𝑥𝑥2 − 1.5

• The outputs are acceptable, but
• 𝑃𝑃 𝑥𝑥1 ∧ 𝑥𝑥2 = 1|𝑥𝑥1 = 1, 𝑥𝑥2 = 1 is not so high (62.2%)
• Room for improving 𝒘𝒘 so that it yields 𝑦𝑦 → 1 (100%) for

positives (true) and 𝑦𝑦 → 1 (0%) for negatives (false)

Feedforward Neural Network (I) 38

𝑥𝑥1 𝑥𝑥2 𝒚𝒚 = 𝑥𝑥1 ∧ 𝑥𝑥2 𝑎𝑎 �𝑦𝑦 = 𝜎𝜎(𝑎𝑎)

0 0 0 -1.5 0.182
0 1 0 -0.5 0.378
1 0 0 -0.5 0.378
1 1 1 0.5 0.622

Instance-wise likelihood
• We introduce instance-wise likelihood, to measure

how well the parameters reproduce (𝒙𝒙𝑛𝑛,𝑦𝑦𝑛𝑛)
𝑝𝑝𝑛𝑛 =

�𝑦𝑦𝑛𝑛 (if 𝑦𝑦𝑛𝑛 = 1)
1 − �𝑦𝑦𝑛𝑛 (otherwise)

• Likelihood is a probability representing the ‘fitness’ of
the parameters to the training data
• We want to increase the likelihood by changing 𝒘𝒘

Feedforward Neural Network (I) 39

𝑥𝑥1 𝑥𝑥2 𝑦𝑦 = 𝑥𝑥1 ∧ 𝑥𝑥2 𝑎𝑎 �𝑦𝑦 = 𝜎𝜎(𝑎𝑎) 𝑝𝑝

0 0 0 -1.5 0.182 1 − �𝑦𝑦 = 0.818
0 1 0 -0.5 0.378 1 − �𝑦𝑦 = 0.622
1 0 0 -0.5 0.378 1 − �𝑦𝑦 = 0.622
1 1 1 0.5 0.622 �𝑦𝑦 = 0.622

1
1
1
1

Parameters of AND: �𝑦𝑦 = 𝜎𝜎 𝑎𝑎 ,𝑎𝑎 = 𝑥𝑥1 + 𝑥𝑥2 − 1.5

Likelihood on the training data
• We assume that all instances in the training data
are i.i.d. (independent and identically distributed)

• We define likelihood as a joint probability on data,

𝐿𝐿𝐷𝐷 𝒘𝒘 = �
𝑛𝑛=1

𝑁𝑁

𝑝𝑝𝑛𝑛

• When the training data 𝐷𝐷 = { 𝒙𝒙1,𝑦𝑦1 , … , 𝒙𝒙𝑁𝑁,𝑦𝑦𝑁𝑁 } is
fixed, likelihood is a function of the parameters 𝒘𝒘

• Let us maximize 𝐿𝐿𝐷𝐷 𝒘𝒘 by changing 𝒘𝒘
• This is called Maximum Likelihood Estimation (MLE)
• The maximizer 𝒘𝒘∗ reproduces the training data well

Feedforward Neural Network (I) 40

Training as a minimization problem
• Products of (0,1) values often cause underflow
• Use log-likelihood, the logarithm of the likelihood, instead

𝐿𝐿𝐿𝐿𝐷𝐷 𝒘𝒘 = log𝐿𝐿𝐷𝐷 𝒘𝒘 = log�
𝑛𝑛=1

𝑁𝑁

𝑝𝑝𝑛𝑛 = �
𝑛𝑛=1

𝑁𝑁

log𝑝𝑝𝑛𝑛

• In mathematical optimization, we usually consider a
minimization problem instead of maximization

• We define an objective function 𝐸𝐸𝐷𝐷(𝒘𝒘) by using the
negative of the log-likelihood

𝐸𝐸𝐷𝐷 𝒘𝒘 = −𝐿𝐿𝐿𝐿𝐷𝐷 𝒘𝒘 = −�
𝑛𝑛=1

𝑁𝑁

log𝑝𝑝𝑛𝑛

• 𝐸𝐸𝐷𝐷 𝒘𝒘 is called a loss function or error function

Feedforward Neural Network (I) 41

Training as a minimization problem
• Given the training data 𝐷𝐷 = { 𝒙𝒙1,𝑦𝑦1 , … , 𝒙𝒙𝑁𝑁 ,𝑦𝑦𝑁𝑁 },
find 𝒘𝒘∗ as the minimization problem,

𝒘𝒘∗ = argmin
𝒘𝒘

𝐸𝐸𝐷𝐷 𝒘𝒘 = argmin
𝒘𝒘

�
𝑛𝑛=1

𝑁𝑁

𝑙𝑙𝑛𝑛 ,

𝑙𝑙𝑛𝑛 = − log𝑝𝑝𝑛𝑛 =
− log �𝑦𝑦𝑛𝑛 (if 𝑦𝑦𝑛𝑛 = 1)

− log 1 − �𝑦𝑦𝑛𝑛 (otherwise) = −𝑦𝑦𝑛𝑛 log �𝑦𝑦𝑛𝑛 − (1 − 𝑦𝑦𝑛𝑛) log(1 − �𝑦𝑦𝑛𝑛)

Feedforward Neural Network (I) 42

𝐸𝐸𝐷𝐷 𝒘𝒘

𝒘𝒘𝒘𝒘∗

Stochastic Gradient Descent (SGD)
• The objective function is the sum of losses of instances,

𝐸𝐸𝐷𝐷 𝒘𝒘 = �
𝑛𝑛=1

𝑁𝑁

𝑙𝑙𝑛𝑛

• We can use Stochastic Gradient Descent (SGD) and its
variants (e.g., Adam) for minimizing 𝐸𝐸𝐷𝐷 𝒘𝒘

• SGD Algorithm (𝑇𝑇 is the number of updates)
1. Initialize 𝒘𝒘 with random values
2. for 𝑡𝑡 ⟵ 1 to 𝑇𝑇:
3. 𝜂𝜂𝑡𝑡 ⟵ 1/𝑡𝑡
4. (𝒙𝒙𝑛𝑛,𝑦𝑦𝑛𝑛) ⟵ a random sample from 𝐷𝐷

5. 𝒘𝒘⟵ 𝒘𝒘− 𝜂𝜂𝑡𝑡
𝜕𝜕𝑙𝑙𝑛𝑛
𝜕𝜕𝒘𝒘

Feedforward Neural Network (I) 43

Exercise: compute the gradient
• Prove:

𝜕𝜕𝑙𝑙𝑛𝑛
𝜕𝜕𝒘𝒘

=
𝜕𝜕𝑙𝑙𝑛𝑛
𝜕𝜕 �𝑦𝑦𝑛𝑛

𝜕𝜕 �𝑦𝑦𝑛𝑛
𝜕𝜕𝑎𝑎𝑛𝑛

𝜕𝜕𝑎𝑎𝑛𝑛
𝜕𝜕𝒘𝒘

= �𝑦𝑦𝑛𝑛 − 𝑦𝑦𝑛𝑛 𝒙𝒙𝑛𝑛

by computing the gradients 𝜕𝜕𝑙𝑙𝑛𝑛
𝜕𝜕 �𝑦𝑦𝑛𝑛

, 𝜕𝜕 �𝑦𝑦𝑛𝑛
𝜕𝜕𝑎𝑎𝑛𝑛

, 𝜕𝜕𝑎𝑎𝑛𝑛
𝜕𝜕𝒘𝒘

• Here:
• 𝑙𝑙𝑛𝑛 = −𝑦𝑦𝑛𝑛 log �𝑦𝑦𝑛𝑛 − (1 − 𝑦𝑦𝑛𝑛) log(1 − �𝑦𝑦𝑛𝑛) ,

• �𝑦𝑦𝑛𝑛 = 𝜎𝜎 𝑎𝑎𝑛𝑛 = 1
1+𝑒𝑒−𝑎𝑎𝑛𝑛

,

• 𝑎𝑎𝑛𝑛 = 𝒘𝒘 ⋅ 𝒙𝒙𝑛𝑛

Feedforward Neural Network (I) 44

Answer: compute the gradients

Feedforward Neural Network (I) 45

𝜕𝜕𝑙𝑙𝑛𝑛
𝜕𝜕 �𝑦𝑦𝑛𝑛

= −
𝑦𝑦𝑛𝑛
�𝑦𝑦𝑛𝑛
−

1 − 𝑦𝑦𝑛𝑛
1 − �𝑦𝑦𝑛𝑛

⋅ −1 =
−𝑦𝑦𝑛𝑛 1 − �𝑦𝑦𝑛𝑛 + �𝑦𝑦𝑛𝑛(1 − 𝑦𝑦𝑛𝑛)

�𝑦𝑦𝑛𝑛 1 − �𝑦𝑦𝑛𝑛
=

�𝑦𝑦𝑛𝑛 − 𝑦𝑦𝑛𝑛
�𝑦𝑦𝑛𝑛(1 − �𝑦𝑦𝑛𝑛)

,

𝜕𝜕 �𝑦𝑦𝑛𝑛
𝜕𝜕𝑎𝑎𝑛𝑛

= −1 ⋅
1

1 + 𝑒𝑒−𝑎𝑎𝑛𝑛 2 ⋅ 𝑒𝑒
−𝑎𝑎𝑛𝑛 ⋅ −1 =

1
1 + 𝑒𝑒−𝑎𝑎𝑛𝑛

⋅
𝑒𝑒−𝑎𝑎𝑛𝑛

1 + 𝑒𝑒−𝑎𝑎𝑛𝑛
= �𝑦𝑦𝑛𝑛 1 − �𝑦𝑦𝑛𝑛 ,

𝜕𝜕𝑎𝑎𝑛𝑛
𝜕𝜕𝒘𝒘

= 𝒙𝒙𝑛𝑛

Therefore,

𝜕𝜕𝑙𝑙𝑛𝑛
𝜕𝜕𝒘𝒘

=
𝜕𝜕𝑙𝑙𝑛𝑛
𝜕𝜕 �𝑦𝑦𝑛𝑛

𝜕𝜕 �𝑦𝑦𝑛𝑛
𝜕𝜕𝑎𝑎𝑛𝑛

𝜕𝜕𝑎𝑎𝑛𝑛
𝜕𝜕𝒘𝒘

=
�𝑦𝑦𝑛𝑛 − 𝑦𝑦𝑛𝑛

�𝑦𝑦𝑛𝑛(1 − �𝑦𝑦𝑛𝑛)
⋅ �𝑦𝑦𝑛𝑛 1 − �𝑦𝑦𝑛𝑛 ⋅ 𝒙𝒙𝑛𝑛 = �𝑦𝑦𝑛𝑛 − 𝑦𝑦𝑛𝑛 𝒙𝒙𝑛𝑛

SGD for training SLP
1. Initialize 𝒘𝒘 with random values
2. for 𝑡𝑡 ⟵ 1 to 𝑇𝑇:
3. 𝜂𝜂𝑡𝑡 ⟵ 1/𝑡𝑡
4. (𝒙𝒙𝑛𝑛,𝑦𝑦𝑛𝑛) ⟵ a random sample from 𝐷𝐷
5. �𝑦𝑦𝑛𝑛 ⟵ 𝜎𝜎(𝒘𝒘 ⋅ 𝒙𝒙𝑛𝑛)

6. 𝒘𝒘⟵ 𝒘𝒘− 𝜂𝜂𝑡𝑡
𝜕𝜕𝑙𝑙𝑛𝑛
𝜕𝜕𝒘𝒘

= 𝒘𝒘 + 𝜂𝜂𝑡𝑡 𝑦𝑦𝑛𝑛 − �𝑦𝑦𝑛𝑛 𝒙𝒙𝑛𝑛
If 𝑦𝑦𝑛𝑛 = �𝑦𝑦𝑛𝑛, no need for updating 𝒘𝒘
If 𝑦𝑦𝑛𝑛 = 1 and �𝑦𝑦𝑛𝑛 < 1, add 𝒙𝒙𝑛𝑛 scaled by 1 − �𝑦𝑦𝑛𝑛 to 𝒘𝒘
If 𝑦𝑦𝑛𝑛 = 0 and 0 < �𝑦𝑦𝑛𝑛, subtract 𝒙𝒙𝑛𝑛 scaled by �𝑦𝑦𝑛𝑛 to 𝒘𝒘

Feedforward Neural Network (I) 46

The algorithm is the same as perceptron except for using
the error 𝑦𝑦𝑛𝑛 − �𝑦𝑦𝑛𝑛 for weighting the amount of an update

Regularization
• MLE often causes over-fitting

• When the training data is linearly separable

𝒘𝒘 → ∞ as �
𝑛𝑛=1

𝑁𝑁

𝑙𝑙𝑛𝑛 → 0

• Subject to be affected by noises in the training data

• We use regularization (MAP estimation)
• We introduce a penalty term when 𝒘𝒘 becomes large
• The loss function with an L2 regularization term:

𝐸𝐸 𝒘𝒘 = �
𝑛𝑛=1

𝑁𝑁

𝑙𝑙𝑛𝑛 + 𝐶𝐶 𝒘𝒘 2

• 𝐶𝐶 is the hyper parameter to control the trade-off between
over/under fitting

Feedforward Neural Network (I) 48

Multi-class classification

Feedforward Neural Network (II) 5

• We extend binary classification to multi-class
• Assign a weight vector 𝒘𝒘𝑦𝑦 for every category 𝑦𝑦
• Extend Perceptron algorithm to multi-class classification
• Extend sigmoid function to softmax
• Again, automatic differentiation is useful for SGD training

• Try ReLU as an activation function of internal layers

• Dropout realizes model averaging in a simple way

Feedforward Neural Network (II) 2

Handwritten recognition (MNIST; LeCun+ 1998)

Feedforward Neural Network (II) 3

4 1 0 5

6 2 8 5
We want to classify an input image into 10 categories (digits)

Image representation
• An image (28 x 28

pixels, grayscale) is
represented by a 28 x
28 matrix.

• The original dataset
represents a brightness
in an 8-bit integer ([0,
255]).

• In this lecture, a
brightness is
normalized within the
range of [0, 1].

Feedforward Neural Network (II) 4

Multi-class classification
and perceptron algorithm

Feedforward Neural Network (II) 5

General form: linear multi-class classification

�𝑦𝑦 = argmax
𝑦𝑦∈𝒴𝒴

𝒘𝒘𝑦𝑦 ⋅ 𝒙𝒙

Feedforward Neural Network (II) 6

Input: 𝒙𝒙 ∈ ℝ𝑑𝑑Output: �𝑦𝑦 ∈ 𝒴𝒴

Parameter: weight 𝒘𝒘𝑦𝑦 ∈ ℝ𝑑𝑑

(prepared for every category)

Set of possible categories
for the input

(𝑑𝑑: number of dimension)

Represent an image with a vector
• We simply use the brightness of each pixel as an input

vector by flattening a 2D matrix into a 1D vector
• A 28 × 28 matrix into a vector of 784 (= 28 × 28) dimension
• A more sophisticated method (e.g., Convolutional Neural

Network) will be presented later
• Even this simple treatment surprisingly works well

Feedforward Neural Network (II) 7

Pixel at (𝑥𝑥, 𝑦𝑦) Feature ID (row major): 28 𝑦𝑦 − 1 + 𝑥𝑥

Linear multi-class classification

Feedforward Neural Network (II) 8

𝒙𝒙 ⋅ 𝒘𝒘0 = −1.24

𝒙𝒙 ⋅ 𝒘𝒘1 = −4.30

𝒙𝒙 ⋅ 𝒘𝒘2 = −0.68

𝒙𝒙 ⋅ 𝒘𝒘3 = +3.62

𝒙𝒙 ⋅ 𝒘𝒘4 = −5.61

𝒙𝒙 ⋅ 𝒘𝒘5 = −1.94

𝒙𝒙 ⋅ 𝒘𝒘6 = −5.56

𝒙𝒙 ⋅ 𝒘𝒘7 = −6.86

𝒙𝒙 ⋅ 𝒘𝒘8 = −0.08

𝒙𝒙 ⋅ 𝒘𝒘9 = −3.69

0

1

2

3

4

5

6

7

8

9

Image

𝒙𝒙

Compute the
score (inner
product) for

each category

Choose the
category with the
maximum score

�𝑦𝑦 = 3
A model has a weight vector for every category

Pixels

Training for multi-class classifier
• A training set consists of 𝑁𝑁 instances:

• 𝐷𝐷 = { 𝒙𝒙1,𝑦𝑦1 , … , 𝒙𝒙𝑁𝑁 ,𝑦𝑦𝑁𝑁 }

• We assume generalization: if weight vectors 𝒘𝒘𝑦𝑦
predict training instances correctly, it will work
for unseen instances

• Find the weight vectors 𝒘𝒘𝑦𝑦 such that they can
predict training instances as correctly as possible
• Ideally, �𝑦𝑦𝑛𝑛 = 𝑦𝑦𝑛𝑛 for all 𝑛𝑛 ∈ 1,𝑁𝑁 in the training data

Feedforward Neural Network (II) 9

𝒙𝒙𝑛𝑛: the 𝑛𝑛-th instance in the training data
𝑦𝑦𝑛𝑛 : the category for the 𝑛𝑛-th instance

Perceptron algorithm for multi-class
(Collins, 2002)

1. 𝒘𝒘𝑦𝑦 = 0 for all 𝑦𝑦 ∈ 𝒴𝒴
2. Repeat:
3. (𝒙𝒙,𝑦𝑦) ⟵ Random sample from the training data 𝐷𝐷
4. �𝑦𝑦 ⟵ argmax

𝑦𝑦∈𝒴𝒴
𝒘𝒘𝑦𝑦 ⋅ 𝒙𝒙

5. if �𝑦𝑦 ≠ 𝑦𝑦 then: (incorrect prediction)
6. 𝒘𝒘𝑦𝑦 ⟵ 𝒘𝒘𝑦𝑦 + 𝒙𝒙 (𝒘𝒘𝑦𝑦 ⋅ 𝒙𝒙 will be larger)
7. 𝒘𝒘�𝑦𝑦 ⟵ 𝒘𝒘�𝑦𝑦 − 𝒙𝒙 (𝒘𝒘�𝑦𝑦 ⋅ 𝒙𝒙 will be smaller)
8. Until no instance updates 𝒘𝒘𝑦𝑦

Feedforward Neural Network (II) 10

Summary and notes
• Given an input 𝒙𝒙, a linear multi-class classifier compute a

score for every category 𝑦𝑦 as an inner product 𝒘𝒘𝑦𝑦 ⋅ 𝒙𝒙
• 𝒘𝒘𝑦𝑦 presents a weight vector for the category 𝑦𝑦

• It predicts a category �𝑦𝑦 for the input yielding the highest
score among the possible categories 𝒴𝒴

• Weight vectors 𝒘𝒘𝑦𝑦 can be trained by an extension of
Perceptron algorithm to multi-class (structured perceptron)
• Again, we cannot use it for multi-layer neural networks

• Let’s consider SGD for training multi-class classifiers

Feedforward Neural Network (II) 12

Multi-class classification
with softmax function

Feedforward Neural Network (II) 13

Training multi-class classifiers with SGD

• In order to train binary classifiers using SGD,
we had to change the activation function
from step to sigmoid

• What is the activation function for multi-
class classification corresponding to
sigmoid function?

• Answer: softmax function

Feedforward Neural Network (II) 14

Softmax function: Definition
• Given a vector 𝒂𝒂 ∈ ℝ𝑚𝑚, softmax 𝜎𝜎:ℝ𝑚𝑚 → ℝ𝑚𝑚 yields,

𝜎𝜎 𝒂𝒂 𝑖𝑖 =
exp(𝑎𝑎𝑖𝑖)

∑𝑘𝑘=1𝑚𝑚 exp(𝑎𝑎𝑘𝑘)
• Here 𝜎𝜎 𝒂𝒂 𝑖𝑖 denotes the 𝑖𝑖-th element of the value of 𝜎𝜎 𝒂𝒂
• We use the same notation 𝜎𝜎 (do not confuse with sigmoid)

• A result of softmax function satisfies,
∀𝑘𝑘: 𝜎𝜎 𝒂𝒂 𝑘𝑘 > 0,

�
𝑘𝑘=1

𝑚𝑚

𝜎𝜎 𝒂𝒂 𝑘𝑘 = 1

Feedforward Neural Network (II) 15

Softmax function: Interpretation
• Intuitively, softmax function converts scores for 𝑚𝑚
caetgories 𝒂𝒂 ∈ ℝ𝑚𝑚 into a probability distribution
• In binary classification, sigmoid function converts a

score to a probability

Feedforward Neural Network (II) 16

Softmax

Single-layer NNs for multi-class classification

• Given an input 𝒙𝒙 ∈ ℝ𝑑𝑑 , a single-layer NN for
multi-class classification yields a probability
distribution over 𝐾𝐾 categories �𝒚𝒚 ∈ ℝ𝐾𝐾 ,

�𝒚𝒚 = 𝜎𝜎 𝒂𝒂 ,𝒂𝒂 = 𝑊𝑊𝒙𝒙

• Here, 𝑊𝑊 ∈ ℝ𝐾𝐾×𝑑𝑑 is a weight matrix
• 𝑊𝑊 can be seen as a mapping: ℝ𝑑𝑑 → ℝ𝐾𝐾

• Let 𝒘𝒘𝑖𝑖 denote the 𝑖𝑖-th row vector of the matrix 𝑊𝑊
• The score for the category 𝑖𝑖 is computed by 𝑎𝑎𝑖𝑖 = 𝒘𝒘𝑖𝑖 ⋅ 𝒙𝒙

Feedforward Neural Network (II) 17

An example with softmax function

Feedforward Neural Network (II) 18

𝒙𝒙 ⋅ 𝒘𝒘𝟎𝟎 = −1.24

𝒙𝒙 ⋅ 𝒘𝒘𝟏𝟏 = −4.30

𝒙𝒙 ⋅ 𝒘𝒘𝟐𝟐 = −0.68

𝒙𝒙 ⋅ 𝒘𝒘𝟑𝟑 = +3.62

𝒙𝒙 ⋅ 𝒘𝒘𝟒𝟒 = −5.61

𝒙𝒙 ⋅ 𝒘𝒘𝟓𝟓 = −1.94

𝒙𝒙 ⋅ 𝒘𝒘𝟔𝟔 = −5.56

𝒙𝒙 ⋅ 𝒘𝒘𝟕𝟕 = −6.86

𝒙𝒙 ⋅ 𝒘𝒘𝟖𝟖 = −0.08

𝒙𝒙 ⋅ 𝒘𝒘𝟗𝟗 = −3.69

0

1

2

3

4

5

6

7

8

9

Image

𝒙𝒙

Pixels

(0.74%)

(0.03%)

(1.29%)

(95.1%)

(0.01%)

(0.37%)

(0.01%)

(0.00%)

(2.35%)

(0.06%)

�𝒚𝒚 = 𝜎𝜎 𝑊𝑊𝒙𝒙

𝑊𝑊𝒙𝒙

Supervision data for multi-class
• We have a supervision data

• 𝐷𝐷 = { 𝒙𝒙1,𝒚𝒚1 , … , 𝒙𝒙𝑁𝑁 ,𝒚𝒚𝑁𝑁 } (𝑁𝑁 instances)

• Input
• 𝒙𝒙𝑛𝑛 = 𝑥𝑥𝑛𝑛𝑛, 𝑥𝑥𝑛𝑛𝑛, … , 𝑥𝑥𝑛𝑛𝑑𝑑 ⊺ ∈ ℝ𝑑𝑑

• Output (changed from the previous notation)
• 𝒚𝒚𝑛𝑛 = 𝑦𝑦𝑛𝑛𝑛,𝑦𝑦𝑛𝑛𝑛, … ,𝑦𝑦𝑛𝑛𝐾𝐾 ⊺ ∈ ℝ𝐾𝐾 (one-hot vector)

Feedforward Neural Network (II) 19

𝒚𝒚 = 0,0,0,1,0,0,0,0,0,0 ⊺

0 3 9… …

Instance-wise likelihood
• We introduce instance-wise likelihood to measure
how well the parameters reproduce (𝒙𝒙𝑛𝑛,𝒚𝒚𝑛𝑛)

𝑝𝑝𝑛𝑛 = �
𝑘𝑘=1

𝐾𝐾
�𝑦𝑦𝑛𝑛𝑘𝑘 (if 𝑦𝑦𝑛𝑛𝑘𝑘 = 1)
1 (if 𝑦𝑦𝑛𝑛𝑘𝑘 = 0) = �

𝑘𝑘=1

𝐾𝐾

�𝑦𝑦𝑛𝑛𝑘𝑘
𝑦𝑦𝑛𝑛𝑘𝑘

• The probability of the true label estimated by the model

Feedforward Neural Network (II)

20

𝒙𝒙 ⋅ 𝒘𝒘𝟎𝟎 = −1.24 𝒙𝒙 ⋅ 𝒘𝒘𝟏𝟏 = −4.30 𝒙𝒙 ⋅ 𝒘𝒘𝟐𝟐 = −0.68 𝒙𝒙 ⋅ 𝒘𝒘𝟑𝟑 = +3.62

𝒙𝒙 ⋅ 𝒘𝒘𝟒𝟒 = −5.61 𝒙𝒙 ⋅ 𝒘𝒘𝟓𝟓 = −1.94 𝒙𝒙 ⋅ 𝒘𝒘𝟔𝟔 = −5.56 𝒙𝒙 ⋅ 𝒘𝒘𝟕𝟕 = −6.86

𝒙𝒙 ⋅ 𝒘𝒘𝟖𝟖 = −0.08 𝒙𝒙 ⋅ 𝒘𝒘𝟗𝟗 = −3.69

0 1 2 3

4 5 6 7

8 9

(0.74%) (0.03%) (1.29%) (95.1%)

(0.01%) (0.37%) (0.01%) (0.00%)

(2.35%) (0.06%) 𝑝𝑝𝑛𝑛 = 0.951

20

Likelihood on the training data
• We assume that all instances in the training data
are i.i.d. (independent and identically distributed)

• We define likelihood as a joint probability on data,

𝐿𝐿𝐷𝐷 𝑊𝑊 = �
𝑛𝑛=1

𝑁𝑁

𝑝𝑝𝑛𝑛

• When the training data 𝐷𝐷 = { 𝒙𝒙1,𝒚𝒚1 , … , 𝒙𝒙𝑁𝑁 ,𝒚𝒚𝑁𝑁 } is
fixed, likelihood is a function of the parameters 𝑊𝑊

• Let us maximize 𝐿𝐿𝐷𝐷 𝑊𝑊 by changing 𝑊𝑊
• This is called Maximum Likelihood Estimation (MLE)
• The maximizer 𝑊𝑊∗ reproduces the training data well

Feedforward Neural Network (II) 21

Training as a minimization problem
• Products of (0,1) values often cause underflow
• Use log-likelihood, the logarithm of the likelihood, instead

𝐿𝐿𝐿𝐿𝐷𝐷 𝑊𝑊 = log𝐿𝐿𝐷𝐷 𝑊𝑊 = log�
𝑛𝑛=1

𝑁𝑁

𝑝𝑝𝑛𝑛 = �
𝑛𝑛=1

𝑁𝑁

log𝑝𝑝𝑛𝑛

• In mathematical optimization, we usually consider a
minimization problem instead of maximization

• We define an objective function 𝐸𝐸𝐷𝐷(𝑊𝑊) by using the
negative of the log-likelihood

𝐸𝐸𝐷𝐷 𝑊𝑊 = −𝐿𝐿𝐿𝐿𝐷𝐷 𝑊𝑊 = −�
𝑛𝑛=1

𝑁𝑁

log𝑝𝑝𝑛𝑛

• 𝐸𝐸𝐷𝐷 𝑊𝑊 is called a loss function or error function

Feedforward Neural Network (II) 22

Training as a minimization problem
• Given the training data 𝐷𝐷 = { 𝒙𝒙1,𝒚𝒚1 , … , 𝒙𝒙𝑁𝑁 ,𝒚𝒚𝑁𝑁 },
find 𝑊𝑊∗ as the minimization problem,

𝑊𝑊∗ = argmin
𝑊𝑊

𝐸𝐸𝐷𝐷 𝑊𝑊 = argmin
𝑊𝑊

�
𝑛𝑛=1

𝑁𝑁

𝑙𝑙𝑛𝑛 ,

𝑙𝑙𝑛𝑛 = − log𝑝𝑝𝑛𝑛 = − log�
𝑘𝑘=1

𝐾𝐾

�𝑦𝑦𝑛𝑛𝑘𝑘
𝑦𝑦𝑛𝑛𝑛𝑛 = −�

𝑘𝑘=1

𝐾𝐾

𝑦𝑦𝑛𝑛𝑛𝑛 log �𝑦𝑦𝑛𝑛𝑛𝑛

Feedforward Neural Network (II) 23

𝐸𝐸𝐷𝐷 𝑊𝑊

𝑊𝑊𝑊𝑊∗

Stochastic Gradient Descent (SGD)
• The objective function is the sum of losses of instances,

𝐸𝐸𝐷𝐷 𝑊𝑊 = �
𝑛𝑛=1

𝑁𝑁

𝑙𝑙𝑛𝑛

• We can use Stochastic Gradient Descent (SGD) and its
variants (e.g., Adam) for minimizing 𝐸𝐸𝐷𝐷 𝑊𝑊

• SGD Algorithm (𝑇𝑇 is the number of updates)
1. For every 𝑘𝑘, initialize 𝒘𝒘𝑘𝑘 with random values
2. for 𝑡𝑡 ⟵ 1 to 𝑇𝑇:
3. 𝜂𝜂𝑡𝑡 ⟵ 1/𝑡𝑡
4. (𝒙𝒙𝑛𝑛,𝑦𝑦𝑛𝑛) ⟵ a random sample from 𝐷𝐷

5. ∀𝑘𝑘: 𝒘𝒘𝑘𝑘 ⟵ 𝒘𝒘𝑘𝑘 − 𝜂𝜂𝑡𝑡
𝜕𝜕𝑙𝑙𝑛𝑛
𝜕𝜕𝒘𝒘𝑘𝑘

Feedforward Neural Network (II) 24

Exercise: compute the gradient
• Prove (we omit the instance index 𝑛𝑛 for simplicity):

𝜕𝜕𝑙𝑙
𝜕𝜕𝒘𝒘𝑖𝑖

=
𝜕𝜕𝑙𝑙
𝜕𝜕𝑎𝑎𝑖𝑖

𝜕𝜕𝑎𝑎𝑖𝑖
𝜕𝜕𝒘𝒘𝑖𝑖

= �𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖 𝒙𝒙

by computing the gradients 𝜕𝜕𝑙𝑙
𝜕𝜕𝑎𝑎𝑖𝑖

and 𝜕𝜕𝑎𝑎𝑖𝑖
𝜕𝜕𝒘𝒘𝑖𝑖

• Here:

𝑙𝑙 = −�
𝑘𝑘=1

𝐾𝐾

𝑦𝑦𝑘𝑘 log �𝑦𝑦𝑘𝑘 ,

�𝑦𝑦𝑖𝑖 = 𝜎𝜎 𝑎𝑎𝑖𝑖 =
exp(𝑎𝑎𝑖𝑖)

∑𝑘𝑘=1𝐾𝐾 exp(𝑎𝑎𝑘𝑘)
,

𝑎𝑎𝑖𝑖 = 𝒘𝒘𝑖𝑖 ⋅ 𝒙𝒙

Feedforward Neural Network (II) 25

Answer: compute the gradients
• Because it is easy to find 𝜕𝜕𝑎𝑎𝑖𝑖

𝜕𝜕𝒘𝒘𝑖𝑖
= 𝒙𝒙, we concentrate on 𝜕𝜕𝑙𝑙

𝜕𝜕𝑎𝑎𝑖𝑖
,

𝜕𝜕𝑙𝑙
𝜕𝜕𝑎𝑎𝑖𝑖

= −�
𝑘𝑘=1

𝐾𝐾

𝑦𝑦𝑘𝑘
𝜕𝜕 log �𝑦𝑦𝑘𝑘
𝜕𝜕𝑎𝑎𝑖𝑖

= −�
𝑘𝑘=1

𝐾𝐾

𝑦𝑦𝑘𝑘
1
�𝑦𝑦𝑘𝑘
𝜕𝜕 �𝑦𝑦𝑘𝑘
𝜕𝜕𝑎𝑎𝑖𝑖

= −𝑦𝑦𝑖𝑖
1
�𝑦𝑦𝑖𝑖
𝜕𝜕 �𝑦𝑦𝑖𝑖
𝜕𝜕𝑎𝑎𝑖𝑖

−�
𝑘𝑘≠𝑖𝑖

𝑦𝑦𝑘𝑘
1
�𝑦𝑦𝑘𝑘
𝜕𝜕 �𝑦𝑦𝑘𝑘
𝜕𝜕𝑎𝑎𝑖𝑖

• The first term is,
−𝑦𝑦𝑖𝑖

1
�𝑦𝑦𝑖𝑖
𝜕𝜕 �𝑦𝑦𝑖𝑖
𝜕𝜕𝑎𝑎𝑖𝑖

= −𝑦𝑦𝑖𝑖
1
�𝑦𝑦𝑖𝑖

𝜕𝜕
𝜕𝜕𝑎𝑎𝑖𝑖

exp 𝑎𝑎𝑖𝑖
∑𝑘𝑘=1𝐾𝐾 exp 𝑎𝑎𝑘𝑘

= −𝑦𝑦𝑖𝑖
1
�𝑦𝑦𝑖𝑖

exp 𝑎𝑎𝑖𝑖 Σ − exp 𝑎𝑎𝑖𝑖 exp 𝑎𝑎𝑖𝑖
Σ2

= −𝑦𝑦𝑖𝑖
1
�𝑦𝑦𝑖𝑖

exp 𝑎𝑎𝑖𝑖
Σ

Σ − exp 𝑎𝑎𝑖𝑖
Σ

= −𝑦𝑦𝑖𝑖
1
�𝑦𝑦𝑖𝑖
�𝑦𝑦𝑖𝑖 1 − �𝑦𝑦𝑖𝑖 = −𝑦𝑦𝑖𝑖 1 − �𝑦𝑦𝑖𝑖 = −𝑦𝑦𝑖𝑖 + 𝑦𝑦𝑖𝑖 �𝑦𝑦𝑖𝑖

• The second term is,
−�

𝑘𝑘≠𝑖𝑖

𝑦𝑦𝑘𝑘
1
�𝑦𝑦𝑘𝑘
𝜕𝜕 �𝑦𝑦𝑘𝑘
𝜕𝜕𝑎𝑎𝑖𝑖

= −�
𝑘𝑘≠𝑖𝑖

𝑦𝑦𝑘𝑘
1
�𝑦𝑦𝑘𝑘

𝜕𝜕
𝜕𝜕𝑎𝑎𝑖𝑖

exp 𝑎𝑎𝑘𝑘
∑𝑘𝑘′=1
𝐾𝐾 exp 𝑎𝑎𝑘𝑘′

= −�
𝑘𝑘≠𝑖𝑖

𝑦𝑦𝑘𝑘
1
�𝑦𝑦𝑘𝑘

0 − exp 𝑎𝑎𝑘𝑘 exp 𝑎𝑎𝑖𝑖
Σ2

= �
𝑘𝑘≠𝑖𝑖

𝑦𝑦𝑘𝑘
1
�𝑦𝑦𝑘𝑘
�𝑦𝑦𝑘𝑘 �𝑦𝑦𝑖𝑖 = �

𝑘𝑘≠𝑖𝑖

𝑦𝑦𝑘𝑘 �𝑦𝑦𝑖𝑖

• Therefore,
𝜕𝜕𝑙𝑙
𝜕𝜕𝑎𝑎𝑖𝑖

= −𝑦𝑦𝑖𝑖 + 𝑦𝑦𝑖𝑖 �𝑦𝑦𝑖𝑖 + �
𝑘𝑘≠𝑖𝑖

𝑦𝑦𝑘𝑘 �𝑦𝑦𝑖𝑖 = −𝑦𝑦𝑖𝑖 + �𝑦𝑦𝑖𝑖 �
𝑘𝑘=1

𝐾𝐾

𝑦𝑦𝑘𝑘 = −𝑦𝑦𝑖𝑖 + �𝑦𝑦𝑖𝑖

Feedforward Neural Network (II) 26

Σ = �
𝑘𝑘=1

𝐾𝐾

exp 𝑎𝑎𝑘𝑘When 𝑓𝑓 𝑥𝑥 = 𝑔𝑔(𝑥𝑥)
ℎ(𝑥𝑥)

, 𝑓𝑓𝑓 𝑥𝑥 = 𝑔𝑔′ 𝑥𝑥 ℎ 𝑥𝑥 −𝑔𝑔 𝑥𝑥 ℎ′ 𝑥𝑥
ℎ 𝑥𝑥 2

SGD for training SLP
1. For every 𝑘𝑘, initialize 𝒘𝒘𝑘𝑘 with random values
2. for 𝑡𝑡 ⟵ 1 to 𝑇𝑇:
3. 𝜂𝜂𝑡𝑡 ⟵ 1/𝑡𝑡
4. (𝒙𝒙𝑛𝑛,𝑦𝑦𝑛𝑛) ⟵ a random sample from 𝐷𝐷
5. �𝑦𝑦𝑛𝑛 ⟵ 𝜎𝜎(𝒘𝒘 ⋅ 𝒙𝒙𝑛𝑛)

6. ∀𝑘𝑘: 𝒘𝒘𝑘𝑘 ⟵ 𝒘𝒘𝑘𝑘 − 𝜂𝜂𝑡𝑡
𝜕𝜕𝑙𝑙𝑛𝑛
𝜕𝜕𝒘𝒘𝑘𝑘

= 𝒘𝒘𝑘𝑘 + 𝜂𝜂𝑡𝑡 𝑦𝑦𝑛𝑛𝑛𝑛 − �𝑦𝑦𝑛𝑛𝑛𝑛 𝒙𝒙𝑛𝑛

Feedforward Neural Network (II) 27

• The algorithm is the same as that for binary classification
• For each category 𝑘𝑘, it updates a weight 𝒘𝒘𝑘𝑘 by the

amount of the error (𝑦𝑦𝑛𝑛𝑛𝑛 − �𝑦𝑦𝑛𝑛𝑛𝑛) between the true
probability 𝑦𝑦𝑛𝑛𝑛𝑛 and the estimated probability �𝑦𝑦𝑛𝑛𝑛𝑛

Intuitive example of SGD updates (𝜂𝜂𝑡𝑡 = 1)

Feedforward Neural Network (II) 28

𝒙𝒙 ⋅ 𝒘𝒘𝟎𝟎 = −1.24

𝒙𝒙 ⋅ 𝒘𝒘𝟏𝟏 = −4.30

𝒙𝒙 ⋅ 𝒘𝒘𝟐𝟐 = −0.68

𝒙𝒙 ⋅ 𝒘𝒘𝟑𝟑 = +3.62

𝒙𝒙 ⋅ 𝒘𝒘𝟒𝟒 = −5.61

𝒙𝒙 ⋅ 𝒘𝒘𝟓𝟓 = −1.94

𝒙𝒙 ⋅ 𝒘𝒘𝟔𝟔 = −5.56

𝒙𝒙 ⋅ 𝒘𝒘𝟕𝟕 = −6.86

𝒙𝒙 ⋅ 𝒘𝒘𝟖𝟖 = −0.08

𝒙𝒙 ⋅ 𝒘𝒘𝟗𝟗 = −3.69

0

1

2

3

4

5

6

7

8

9

(0.74%)

(0.03%)

(1.29%)

(95.1%)

(0.01%)

(0.37%)

(0.01%)

(0.00%)

(2.35%)

(0.06%)

−= 0.0074𝒙𝒙

−= 0.0003𝒙𝒙

−= 0.0129𝒙𝒙

+= 0.0490𝒙𝒙

−= 0.0001𝒙𝒙

−= 0.0037𝒙𝒙

−= 0.0001𝒙𝒙

−= 0.0000𝒙𝒙

−= 0.0235𝒙𝒙

−= 0.0006𝒙𝒙

Computing the loss with mini-batch
• Single-batch

• Mini-batch (parallelizable in GPU)

Feedforward Neural Network (II) 30

𝒙𝒙 𝑊𝑊 �𝒚𝒚×𝜎𝜎() =

𝑋𝑋 𝑊𝑊 �𝑌𝑌×𝜎𝜎() =

1

𝑚𝑚

𝑑𝑑

𝑑𝑑

𝐾𝐾

𝐾𝐾

𝑑𝑑

𝑑𝑑

𝐾𝐾

𝐾𝐾
1

𝑚𝑚

𝒚𝒚
𝐾𝐾

1

𝑌𝑌

𝐾𝐾

𝑚𝑚

𝑙𝑙 = −𝒚𝒚 ⋅ log �𝒚𝒚

𝑙𝑙 = −
1
𝑚𝑚�

𝑛𝑛=1

𝑚𝑚

𝒚𝒚𝑛𝑛 ⋅ log �𝒚𝒚𝑛𝑛

Mini-batch training
• Most DL frameworks implement mini-batch
training by increasing the order of tensors:
• For example, 𝑑𝑑 → (m × 𝑑𝑑)

• Increasing the batch size (𝑚𝑚) may:
• Speed up time required for an epoch with parallelization
• Decrease the number of parameter updates (1/𝑚𝑚)

• This paper (Goyal+ 2017) recommends:
• When the minibatch size is multiplied by 𝑘𝑘, multiply the

learning rate by 𝑘𝑘

Feedforward Neural Network (II) 31

Summary and notes
• 𝐾𝐾-class classification is realized by changing the
dimension of an output layer to 𝐾𝐾

• Softmax yields a probability distribution �𝒚𝒚 ∈ ℝ𝐾𝐾

• The loss function compares a model output �𝒚𝒚
with an one-hot vector of a true category 𝒚𝒚

• Again, automatic differentiation is also useful for
training multi-class NNs

• A single-layer NN with softmax activation
function is also known as multi-class logistic
regression and maximum entropy modeling

Feedforward Neural Network (II) 34

Generic form of
Feedforward Neural Networks

Feedforward Neural Network (II) 35

Designing feedforward neural networks

Feedforward Neural Network (I) 36

Σ 𝑔𝑔(1)

Σ 𝑔𝑔(1)

Σ 𝑔𝑔(1)

Σ 𝑔𝑔(2)

Σ 𝑔𝑔(2)

Σ 𝑔𝑔(3)

First layer:ℝ2 → ℝ3

𝒉𝒉(1) = 𝑔𝑔(1) 𝒂𝒂 1

𝒂𝒂(1) = 𝑊𝑊(1)𝒉𝒉(0)

𝑊𝑊(1) ∈ ℝ3×2,𝒂𝒂 1 ,𝒉𝒉 1 ∈ ℝ3

Second layer:ℝ3 → ℝ2

𝒉𝒉(2) = 𝑔𝑔(2) 𝒂𝒂 2

𝒂𝒂(2) = 𝑊𝑊(2)𝒉𝒉(1)

𝑊𝑊(2) ∈ ℝ2×3,𝒂𝒂 2 ,𝒉𝒉 2 ∈ ℝ2

Final layer:ℝ2 → ℝ2

𝒉𝒉(3) = 𝑔𝑔(3) 𝒂𝒂 3

𝒂𝒂(3) = 𝑊𝑊(3)𝒉𝒉(2)

𝑊𝑊(3) ∈ ℝ2×2,𝒂𝒂 3 ,𝒉𝒉 3 ∈ ℝ2

𝑥𝑥1 → ℎ1
(0)

𝑥𝑥2 → ℎ2
(0)

ℎ1
(1)

ℎ2
(1)

ℎ3
(1)

𝑎𝑎1
(1)

𝑎𝑎2
(1)

𝑎𝑎3
(1)

𝑎𝑎1
(2)

𝑎𝑎2
(2)

ℎ1
(2)

ℎ2
(2)

ℎ1
(3) ← 𝑦𝑦1

𝑎𝑎1
(3)

• The number of layers
• The numbers of dimensions of hidden layers
• An activation function for each layer
• A loss function

Σ 𝑔𝑔(3) ℎ2
(3) ← 𝑦𝑦2

𝑎𝑎1
(3)

Cross entropy loss
• For binary classification
𝑙𝑙(𝑎𝑎, 𝑦𝑦) = −𝑦𝑦 log𝜎𝜎(𝑎𝑎) − (1 − 𝑦𝑦) log 1 − 𝜎𝜎 𝑎𝑎

• For multi-class classification
𝑙𝑙 𝒂𝒂,𝑦𝑦 = −𝑎𝑎𝑦𝑦 + log�

𝑘𝑘

exp(𝑎𝑎𝑘𝑘)

• Cross entropy
𝐻𝐻 𝑝𝑝, 𝑞𝑞 = −�

𝑘𝑘

𝑝𝑝 𝑘𝑘 log 𝑞𝑞 𝑘𝑘

Feedforward Neural Network (II) 37

True probability distribution
(1 for true category; 0 otherwise)

Predicted probability distribution

Mean Squared Error (MSE) loss
• Used for regression

𝑙𝑙 𝒂𝒂,𝒚𝒚 =
1
2

𝒚𝒚 − 𝒂𝒂 2
2

Feedforward Neural Network (II) 38

Training multi-layer neural networks
and back propagation

Feedforward Neural Network (I) 49

Generic notation for multi-layer NNs

Feedforward Neural Network (I) 50

Σ 𝑔𝑔(1)

Σ 𝑔𝑔(1)

Σ 𝑔𝑔(1)

Σ 𝑔𝑔(2)

Σ 𝑔𝑔(2)

Σ 𝑔𝑔(3)

First layer:ℝ2 → ℝ3

𝒉𝒉(1) = 𝑔𝑔(1) 𝒂𝒂 1

𝒂𝒂(1) = 𝑊𝑊(1)𝒉𝒉(0)

𝑊𝑊(1) ∈ ℝ3×2,𝒂𝒂 1 ,𝒉𝒉 1 ∈ ℝ3

Second layer:ℝ3 → ℝ2

𝒉𝒉(2) = 𝑔𝑔(2) 𝒂𝒂 2

𝒂𝒂(2) = 𝑊𝑊(2)𝒉𝒉(1)

𝑊𝑊(2) ∈ ℝ2×3,𝒂𝒂 2 ,𝒉𝒉 2 ∈ ℝ2

Final layer:ℝ2 → ℝ
𝒉𝒉(3) = 𝑔𝑔(3) 𝒂𝒂 3

𝒂𝒂(3) = 𝑊𝑊(3)𝒉𝒉(2)

𝑊𝑊(3) ∈ ℝ1×2,𝒂𝒂 3 ,𝒉𝒉 3 ∈ ℝ

𝑥𝑥1 = ℎ1
(0)

𝑥𝑥2 = ℎ2
(0)

ℎ1
(1)

ℎ2
(1)

ℎ3
(1)

𝑎𝑎1
(1)

𝑎𝑎2
(1)

𝑎𝑎3
(1)

𝑎𝑎1
(2)

𝑎𝑎2
(2)

ℎ1
(2)

ℎ2
(2)

ℎ1
(3) = �𝒚𝒚

𝑎𝑎1
(3)

• The 𝑙𝑙–th layer (𝑙𝑙 ∈ 1, … , 𝐿𝐿) consists of:
• Input: 𝒉𝒉(𝑙𝑙−1) ∈ ℝ𝑑𝑑𝑙𝑙−1 (𝒉𝒉(0) = 𝒙𝒙)
• Output: 𝒉𝒉(𝑙𝑙) ∈ ℝ𝑑𝑑𝑙𝑙 (𝒉𝒉(𝐿𝐿) = �𝒚𝒚)
• Weight: 𝑊𝑊(𝑙𝑙) ∈ ℝ𝑑𝑑𝑙𝑙×𝑑𝑑𝑙𝑙−1

• Activation function: 𝑔𝑔(𝑙𝑙)

• Activation: 𝒂𝒂(𝑙𝑙) ∈ ℝ𝑑𝑑𝑙𝑙

𝑊𝑊(𝑙𝑙) = 𝑤𝑤𝑖𝑖𝑖𝑖
𝑙𝑙

Please accept the notational conflict between
an instance-wise loss 𝑙𝑙𝑛𝑛 and a layer number 𝑙𝑙𝒉𝒉(𝑙𝑙) = 𝑔𝑔(𝑙𝑙)(𝑊𝑊(𝑙𝑙)𝒉𝒉(𝑙𝑙−1))

𝑤𝑤𝑖𝑖𝑖𝑖
𝑙𝑙 : weight from the 𝑗𝑗-th neuron

to the 𝑖𝑖-th neuron of the 𝑙𝑙-th layer

How to train weights in MLPs
• We have no explicit supervision signals for the internal

(hidden) inputs/outputs 𝒉𝒉(2), … ,𝒉𝒉(𝐿𝐿−1)

• Having said that, SGD only needs the value of gradient
𝜕𝜕𝑙𝑙𝑛𝑛
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

(𝑙𝑙) for every weight 𝑤𝑤𝑖𝑖𝑖𝑖
(𝑙𝑙) in MLPs

• Can we compute the value of 𝜕𝜕𝑙𝑙𝑛𝑛
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

(𝑙𝑙) for every weight 𝑤𝑤𝑖𝑖𝑖𝑖
(𝑙𝑙)?

• Yes! Backpropagation can do that!!

Feedforward Neural Network (I) 51

Backpropagation
• Commonly used in deep neural networks

• Formulas for backpropagation look complicated

• However:
• We can understand backpropagation easily if we know

the concept of computation graph
• Most deep learning frameworks implement

backpropagation by using automatic differentiation

• Let’s see computation graph and automatic
differentiation first

Feedforward Neural Network (I) 52

Feedforward Neural Network (I) 56

Rules for reverse-mode AD

Feedforward Neural Network (I) 56

+

𝑥𝑥

𝑦𝑦

𝑧𝑧 = 𝑥𝑥 + 𝑦𝑦

𝛿𝛿

𝛿𝛿

𝛿𝛿

×

𝑥𝑥

𝑦𝑦

𝑧𝑧 = 𝑥𝑥𝑥𝑥

𝛿𝛿

𝑦𝑦 ⋅ 𝛿𝛿

𝑥𝑥 ⋅ 𝛿𝛿

𝑓𝑓(𝑥𝑥)
𝑧𝑧 = 𝑓𝑓(𝑥𝑥)

𝛿𝛿𝜕𝜕𝑓𝑓 𝑥𝑥
𝜕𝜕𝑥𝑥

⋅ 𝛿𝛿

𝑥𝑥

𝑥𝑥

𝛿𝛿1 + 𝛿𝛿2

𝛿𝛿1

𝛿𝛿2

𝑥𝑥

𝑥𝑥

Add

Multiply

Function application

Branch

Computation graph: 𝑓𝑓 𝑥𝑥,𝑦𝑦,𝑧𝑧 = 𝑥𝑥 + 𝑦𝑦 𝑧𝑧
http://cs231n.github.io/optimization-2/

Feedforward Neural Network (I) 53

𝑥𝑥

𝑦𝑦

𝑧𝑧

+

×
𝑓𝑓

𝛼𝛼

= −2

= 5

= −4

= 3

= −12

(𝛼𝛼 = 𝑥𝑥 + 𝑦𝑦)

(𝑓𝑓 = 𝛼𝛼𝛼𝛼)

The value of a variable (above an arrow)

Forward pass

http://cs231n.github.io/optimization-2/

Automatic Differentiation (AD): 𝑓𝑓 𝑥𝑥,𝑦𝑦,𝑧𝑧 = 𝑥𝑥 + 𝑦𝑦 𝑧𝑧
http://cs231n.github.io/optimization-2/

Feedforward Neural Network (I) 54

𝑥𝑥

𝑦𝑦

𝑧𝑧

+

×
𝑓𝑓

𝛼𝛼

= −2

= 5

= −4

= 3

= −12

(𝛼𝛼 = 𝑥𝑥 + 𝑦𝑦)

(𝑓𝑓 = 𝛼𝛼𝛼𝛼)

The value of a variable (above an arrow)
The gradient of the output 𝑓𝑓 with respect to the variable (below an arrow)

1

3

−4

−4

−4

𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧

× 1 = 𝛼𝛼 = 3

𝜕𝜕𝑓𝑓
𝜕𝜕𝛼𝛼

× 1 = 𝑧𝑧 = −4

𝜕𝜕𝛼𝛼
𝜕𝜕𝑥𝑥

× −4

𝜕𝜕𝛼𝛼
𝜕𝜕𝑦𝑦

× −4

Compare with:
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

= 𝑧𝑧 = −4
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

= 𝑧𝑧 = −4
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧

= 𝑥𝑥 + 𝑦𝑦 = 3

Backward pass
(Reverse mode AD)

http://cs231n.github.io/optimization-2/

Automatic differentiation (Baydin+ 2018)
• AD computes derivations by using the chain rule

• Function values computed in the forward pass
• Derivations computed with respect to:

• Every variable (in reverse-mode accumulation)
• A specific variable (in forward-mode accumulation)

• Do not confuse with these:
• Numerical differentiation: for example, 𝜕𝜕𝑓𝑓(𝑥𝑥)

𝜕𝜕𝑥𝑥
= 𝑓𝑓 𝑥𝑥+𝛿𝛿 −𝑓𝑓(𝑥𝑥)

𝛿𝛿

• Symbolic differentiation: e.g., Mathematica, sympy

Feedforward Neural Network (I) 55

Exercise: AD on computation graph
• Write a computation graph for 𝑙𝑙𝒙𝒙 𝑤𝑤 ,

𝑙𝑙𝒙𝒙 𝑤𝑤 = − log𝜎𝜎 𝒘𝒘 ⋅ 𝒙𝒙 = − log
1

1 + 𝑒𝑒−𝒘𝒘⋅𝒙𝒙

• Consider 𝒙𝒙 = 1,1,1 ⊺ and 𝒘𝒘 = 1,1,−1.5 ⊺

• Compute the value of 𝑙𝑙𝒙𝒙 𝒘𝒘

• Compute gradients 𝜕𝜕𝑙𝑙𝒙𝒙 𝒘𝒘
𝜕𝜕𝒘𝒘

Feedforward Neural Network (I) 57

Computing 𝜕𝜕𝑙𝑙𝒙𝒙 𝒘𝒘
𝜕𝜕𝒘𝒘

using AD

Feedforward Neural Network (I) 58

𝑤𝑤1

𝑥𝑥1

×

+

+ × −1 exp +1 1/𝜋𝜋

𝛽𝛽

𝛾𝛾

𝜁𝜁

𝜅𝜅

𝜆𝜆

𝜇𝜇 𝜈𝜈 𝜉𝜉 𝜋𝜋 𝜛𝜛

−1.5

0.62251.60650.6065−0.50.5

-1.5

log

𝑙𝑙
𝜌𝜌

𝛼𝛼

𝑤𝑤2

𝑥𝑥2

×
𝜀𝜀

𝛿𝛿

𝑤𝑤3

𝑥𝑥3

×
𝜗𝜗

𝜃𝜃

1

1

1

1

1

1

1

2

𝛾𝛾 = 𝛼𝛼𝛼𝛼

𝜁𝜁 = 𝛿𝛿𝛿𝛿

𝜅𝜅 = 𝜃𝜃𝜃𝜃

𝜆𝜆 = 𝛾𝛾 + 𝜁𝜁

𝜇𝜇 = 𝜆𝜆 + 𝜅𝜅

⁄𝜕𝜕𝛾𝛾 𝜕𝜕 𝛼𝛼 = 𝛽𝛽 ⁄𝜕𝜕𝛾𝛾 𝜕𝜕 𝛽𝛽 = 𝛼𝛼
⁄𝜕𝜕𝜁𝜁 𝜕𝜕 𝛿𝛿 = 𝜀𝜀 ⁄𝜕𝜕𝜁𝜁 𝜕𝜕 𝜀𝜀 = 𝛿𝛿
⁄𝜕𝜕𝜅𝜅 𝜕𝜕 𝜃𝜃 = 𝜗𝜗 ⁄𝜕𝜕𝜅𝜅 𝜕𝜕 𝜗𝜗 = 𝜃𝜃
⁄𝜕𝜕𝜆𝜆 𝜕𝜕 𝛾𝛾 = 1 ⁄𝜕𝜕𝜆𝜆 𝜕𝜕 𝜁𝜁 = 1
⁄𝜕𝜕𝜇𝜇 𝜕𝜕 𝜆𝜆 = 1 ⁄𝜕𝜕𝜇𝜇 𝜕𝜕 𝜅𝜅 = 1

𝑣𝑣 = −𝜇𝜇 ⁄𝜕𝜕𝑣𝑣 𝜕𝜕 𝜇𝜇 = −1

𝜉𝜉 = 𝑒𝑒𝜈𝜈 ⁄𝜕𝜕𝜉𝜉 𝜕𝜕𝜈𝜈 = 𝑒𝑒𝜈𝜈

𝜋𝜋 = 𝜉𝜉 + 1 ⁄𝜕𝜕𝜋𝜋 𝜕𝜕𝜉𝜉 = 1
𝜛𝜛 = 1/𝜋𝜋 ⁄𝜕𝜕𝜛𝜛 𝜕𝜕𝜋𝜋 = −(1/𝜋𝜋)2

𝜌𝜌 = log𝜛𝜛 ⁄𝜕𝜕𝜌𝜌 𝜕𝜕𝜛𝜛 = 1/𝜛𝜛

−0.4740

𝑙𝑙 = −𝜌𝜌 ⁄𝜕𝜕𝑙𝑙 𝜕𝜕𝜌𝜌 = −1

−1−1.60650.62240.62240.3775−0.3775

𝜕𝜕𝑙𝑙
𝜕𝜕𝜌𝜌

𝜕𝜕𝜌𝜌
𝜕𝜕𝜛𝜛

𝜕𝜕𝜛𝜛
𝜕𝜕𝜋𝜋

𝜕𝜕𝜋𝜋
𝜕𝜕𝜉𝜉

𝜕𝜕𝜉𝜉
𝜕𝜕𝜈𝜈

𝜕𝜕𝜈𝜈
𝜕𝜕𝜇𝜇

𝜕𝜕𝜇𝜇
𝜕𝜕𝜅𝜅

𝜕𝜕𝜇𝜇
𝜕𝜕𝜆𝜆

𝜕𝜕𝜆𝜆
𝜕𝜕𝜁𝜁

𝜕𝜕𝜆𝜆
𝜕𝜕𝛾𝛾

𝜕𝜕𝛾𝛾
𝜕𝜕𝛼𝛼

𝜕𝜕𝛾𝛾
𝜕𝜕𝛽𝛽

𝜕𝜕𝜁𝜁
𝜕𝜕𝛿𝛿

𝜕𝜕𝜁𝜁
𝜕𝜕𝜀𝜀

𝜕𝜕𝜅𝜅
𝜕𝜕𝜃𝜃

𝜕𝜕𝜅𝜅
𝜕𝜕𝜗𝜗

−0.3775

0.5663

−0.3775

−0.3775

−0.3775

−0.3775

−0.3775

−0.3775

−0.3775

−0.3775

0.4740

𝜕𝜕𝜌𝜌
𝜕𝜕𝜛𝜛

× −1

= − 1
𝜛𝜛

= − 1
0.6225

= −1.6065

𝜕𝜕𝜛𝜛
𝜕𝜕𝜋𝜋

× −1.6065

= − 1
1.6065

2
× −1.6065

= 0.6224

𝑤𝑤1 ⟵ 𝑤𝑤1 + 𝜂𝜂
𝜕𝜕𝑙𝑙𝒙𝒙 𝒘𝒘
𝜕𝜕𝑤𝑤1

= 𝑤𝑤1 + 0.3775𝜂𝜂

× −1

No need to derive backpropagation
• Manual derivation of gradients is tedious and error-prone

• Debugging a mistake in gradients is extremely difficult

• AD is employed in most deep learning frameworks
• We only need implement an algorithm for a forward pass, i.e., how

to compute an output from an input
• We can concentrate on designing a structure of neural network
• This boosted the speed of research and development
• The idea of AD is not new (since 1959)

• Deriving a formula for backpropagation is legacy

Feedforward Neural Network (I) 69

Summary and notes
• We design:

• A neural network model 𝑓𝑓(𝒙𝒙;𝜃𝜃) (with parameters 𝜃𝜃)
• A loss function: 𝐸𝐸𝐷𝐷 𝜃𝜃 = ∑𝑛𝑛=1𝑁𝑁 ℒ 𝑓𝑓 𝒙𝒙𝑛𝑛; 𝜃𝜃 ,𝑦𝑦𝑛𝑛

• ℒ is an instance-wise loss function
• 𝐷𝐷 presents a set of training data 𝐷𝐷 = 𝑥𝑥1,𝑦𝑦1 , … , 𝑥𝑥𝑁𝑁,𝑦𝑦𝑁𝑁

• We find a minimizer 𝜃𝜃∗ for 𝐸𝐸𝐷𝐷 𝜃𝜃 by using SGD
• An update formula for every parameter 𝑤𝑤 ∈ 𝜃𝜃 is derived in

a generic manner based on automatic differentiation

• Step function is inappropriate for backpropagation
• Gradients will not flow because 𝑔𝑔′ 𝑎𝑎 = 0 at 𝑎𝑎 ≠ 0

Feedforward Neural Network (I) 73

Activation functions

Feedforward Neural Network (II) 39

Step

Feedforward Neural Network (II) 40

• Pros
• Yields a binary output

• Cons (never use this)
• Zero gradients

• SGD cannot update parameters because 𝜕𝜕𝑙𝑙
𝜕𝜕𝑤𝑤

= 0

Step function: ℝ → {0,1}

𝑔𝑔(𝑥𝑥) = �1 (if 𝑥𝑥 > 0)
0 (otherwise)

𝑔𝑔
𝑥𝑥 𝑔𝑔(𝑥𝑥)

𝛿𝛿0

Sigmoid

Feedforward Neural Network (II) 41

• Pros
• Yields an output within (0,1)

• Cons
• Not zero-centered
• Zero (vanishing) gradients when |𝑥𝑥| is large

Sigmoid: ℝ → (0,1)

𝜎𝜎(𝑥𝑥) =
1

1 + 𝑒𝑒−𝑥𝑥

𝑔𝑔
𝑥𝑥 𝜎𝜎(𝑥𝑥)

𝛿𝛿𝜎𝜎′(𝑥𝑥)

Hyperbolic tangent (tanh)

• Pros
• Yields an output within (−1,1)
• Zero-centered

• Cons
• Zero (vanishing) gradients when |𝑥𝑥| is large

Feedforward Neural Network (II) 42

tanh: ℝ → (−1,1)

tanh 𝑥𝑥 =
𝑒𝑒𝑥𝑥 − 𝑒𝑒−𝑥𝑥

𝑒𝑒𝑥𝑥 + 𝑒𝑒−𝑥𝑥
= 2𝜎𝜎 2𝑥𝑥 − 1

Rectified Linear Unit (ReLU)

Feedforward Neural Network (II) 43

ReLU: ℝ → ℝ≥0
ReLU 𝑥𝑥 = max(0, 𝑥𝑥)

• Pros
• Gradients do not vanish when 𝑥𝑥 > 0
• Light-weight (no 𝑒𝑒𝑥𝑥) computation
• Faster convergence (e.g., 6x faster on CIFAR-10)

• Cons
• Not zero centered
• Dead neurons when 𝑥𝑥 ≤ 0

Leaky ReLU

Feedforward Neural Network (II) 44

Leaky ReLU: ℝ → ℝ
LeakyReLU𝛼𝛼 𝑥𝑥 = max(𝛼𝛼𝑥𝑥, 𝑥𝑥)

• Pros
• Gradients do not vanish
• Light-weight (no 𝑒𝑒𝑥𝑥) computation

• Cons
• Not zero centered
• Not so much improvement over ReLU in practice

Typical definition of a DNN

Feedforward Neural Network (II) 44

 What made Deep Neural Networks
possible and efficient?

Factors from the natural evolution of computation
- Better computers and software allow bigger networks with higher
capacity to solve more difficult problems
- With bigger datasets available we must use stochastic methods like
SGD

Algorithmic factors
- Cross-entropy is a better loss function than MSE for sigmoid,
softmax
- ReLU in hidden layers is a better activation function than sigmoid
and tanh for deeper networks
- Automatic differentiation is now a feature of all DL frameworks

Feedforward Neural Network (II) 44

 What is the difference between a
neural network and a deep neural
network, and why do the deep
ones work better?

Short answer: DNN simply seem to perform better! Read
the first answer in the following link:
https://stats.stackexchange.com/questions/182734/what-is-the-differe
nce-between-a-neural-network-and-a-deep-neural-network-and-w

https://stats.stackexchange.com/questions/182734/what-is-the-differe

Feedforward Neural Network (II) 44

Bibliography
- Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6), 386.
- Minsky, M.L. and Papert, S.A. (1969) Perceptrons. MIT Press, Cambridge.
- Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal representations
by error propagation (No. ICS-8506). California Univ San Diego La Jolla Inst for Cognitive
Science.
- Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with
neural networks. science, 313(5786), 504-507.
- Jarrett, K., Kavukcuoglu, K., & LeCun, Y. (2009, September). What is the best multi-stage
architecture for object recognition?. In 2009 IEEE 12th International Conference on
Computer Vision (ICCV) (pp. 2146-2153). IEEE.
- Glorot, X., Bordes, A., & Bengio, Y. (2011, June). Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence and
statistics (pp. 315-323).
- LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436.
- Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. CHAPTER 6
- Baydin, A. G., Pearlmutter, B. A., Radul, A. A., & Siskind, J. M. (2018). Automatic differentiation in machine
learning: a survey. Journal of Machine Learning Research, 18, 1-43.

All papers included in "DFFN bibliography" folder - Goodfellow book in mycourses documents root folder
DjVu viewer (if needed): https://sourceforge.net/projects/windjview/

Feedforward Neural Network (II) 44

Implementation: Comparison of MLP
and DFFN with different activation
functions (PyTorch, MNIST dataset)

- Model A: 1 Hidden Layer Feedforward Neural Network (Sigmoid Activation)
- Model B: 1 Hidden Layer Feedforward Neural Network (Tanh Activation)
- Model C: 1 Hidden Layer Feedforward Neural Network (ReLU Activation)
- Model D: 2 Hidden Layer Feedforward Neural Network (ReLU Activation)
- Model E: 3 Hidden Layer Feedforward Neural Network (ReLU Activation)

notebook: pytorch_feedforward_neuralnetwork.ipynb in mycourses folder
https://www.deeplearningwizard.com/deep_learning/practical_pytorch/pytorch_feedforward_neuralnetwork/

https://www.deeplearningwizard.com/deep_learning/practical_pytorch/pytorch_feedf
https://www.deeplearningwizard.com/deep_learning/practical_pytorch/pytorch_feedforward_neuralnetwork/

	Feedforward neural network (II):�Multi-class classification
	Highlights of this lecture
	Handwritten recognition (MNIST; LeCun+ 1998)
	Image representation
	Multi-class classification�and perceptron algorithm
	General form: linear multi-class classification
	Represent an image with a vector
	Linear multi-class classification
	Training for multi-class classifier
	Perceptron algorithm for multi-class�(Collins, 2002)
	Multi-class Perceptron implemented in numpy
	Summary and notes
	Multi-class classification�with softmax function
	Training multi-class classifiers with SGD
	Softmax function: Definition
	Softmax function: Interpretation
	Single-layer NNs for multi-class classification
	An example with softmax function
	Supervision data for multi-class
	Instance-wise likelihood
	Likelihood on the training data
	Training as a minimization problem
	Training as a minimization problem
	Stochastic Gradient Descent (SGD)
	Exercise: compute the gradient
	Answer: compute the gradients
	SGD for training SLP
	Intuitive example of SGD updates (𝜂 𝑡 =1)
	Multi-class classification in numpy
	Computing the loss with mini-batch
	Mini-batch training
	Multi-class classification in pytorch
	Regularization
	Summary and notes
	Generic form of�Feedforward Neural Networks
	Designing feedforward neural networks
	Cross entropy loss
	Mean Squared Error (MSE) loss
	Activation functions
	Step
	Sigmoid
	Hyperbolic tangent (tanh)
	Rectified Linear Unit (ReLU)
	Leaky ReLU
	Dropout
	Dropout (Srivastava+ 2014)
	Dropout at training phrase
	Dropout at inference phase
	Dropout in formulas
	Dropout in pytorch
	How was 'Dropout' conceived?
	References

