DeepMind

Optimization for
Machine Learning

James Martens

UCL x DeepMind Lectures

O

Plan for this Lecture

1 2

Intro and motivation Gradient descent

4 5

2nd-order methods Stochastic optimization

3

Momentum methods

o

1

Intro and
motivation

O

Motivation

e Optimization algorithms are the basic engine behind deep learning methods that
enable models to learn from data by adapting their parameters

e They solve the problem of the minimization of an objective function that measures
the mistakes made by the model

o e.g. prediction error (classification), negative reward (reinforcement learning)

e Work by making a sequence of small incremental changes to model parameters
that are each guaranteed to reduce the objective by some small amount

O

Basic notation

e Parameters:

dimension
9 c Rn/ 1D example objective function

e Real-valued objective function: ")
h(6)
e Goal of optimization:

§" = argmin h(0)
0

Example: neural network training objective

e The standard neural network training objective is
given by:

1 m
mn 1=1
where:
/(y, z)is a loss function measuring
disagreement between y and z
and

f(x,0)is a neural network function taking
input 2 and outputing some prediction

2

Gradient
descent

O

Gradient descent: definition

e Basic gradient descent iteration:

Qk_|_1 — Qk — (Xth(Qk)

Learning rate: (Y[Gradient: Vh(&) —

(aka “step size”)

O

Intuition: gradient descent is “steepest descent”

9k+1 — Hk — Ckah(Qk)

High
e Gradient direction VA /(0) gives smoothness
greatest reduction in i (6) per unit of
change*in .()
E H
L
e If h(6)is “sufficiently smooth”, and S;Véothness '

learning rate small, gradient will keep
pointing down-hill over the region in
which we take our step

Intuition: gradient descent is minimizing a local
approximation

e Ist-order Taylor series for h(0) around current 0 is:
h(0+d) ~ h(8) + Vh(0)'d

e For small enough d this will be a reasonable
approximation

e Gradient update computed by minimizing this
within a sphere of radius .

—aVh(0) = argmin (h(0) + Vh(0) ' d)
d:||df| <r

where

r=afVh(9)]

\A

R

O

The problem with gradient descent visualized:
the 2D “narrow valley” example

Large learning rate (<) Small learning rate

U

No good choice !

o

Convergence theory: technical assumptions

o h(@) has Lipschitz continuous derivatives (i.e. is “Lipschitz smooth”):

HVh(@) — Vh(e/)H < LHQ — QlH (an upper bound on the curvature)

o h(@) is strongly convex (perhaps only near minimum):

h(@ - d) > h(@) + Vh(@)—rd + ngHQ (a lower bound on the curvature)

e And for now: Gradients are computed exactly (i.e. not stochastic)

O

Convergence theory: upper bounds

2

If previous conditions hold and we take & = m ;

. L (x—1*" .
6~ ") < 5 (7)1 617

K+ 1 \

where K — L/Iu minimizer

Number of iterations to achieve h(f;) — h(0") < ¢ is

1
keO (ﬁlog —)
€

O

Convergence theory: useful in practice?

e Issues with bounds such as this one:
o too pessimistic (they must cover worst-case examples)
o some assumptions too strong (e.g. convexity)
o other assumptions too weak (real problems have additional useful structure)
o rely on crude measures of objective (e.g. condition numbers)
o usually focused on asymptotic behavior

e The design/choice of an optimizer should always be informed by practice more
than anything else. But theory can help guide the way and build intuitions.

o

3 Momentum methods

O

The momentum method

e Motivation:

o the gradient has a tendency to flip back and forth as we take steps when
the learning rate is large

o e.g.the narrow valley example
e The key idea:

o accelerate movement along directions that point consistently down-hill
across many consecutive iterations (i.e. have low curvature)

e How?
o treat current solution for f like a “ball” rolling along a “surface” whose
height is given by h(6), subject the force of gravity

o

Credit: Devinsupertramp via youtube.com @

Defining equations for momentum

e C(Classical Momentum:

Vk+1 = NV — Vh(@k) Vg — 0
Learning rate: (X[
Ort1 = O + apvpq

Momentum constant: 7]k

e Nesterov's variant:
Vk+1 = NkVk — Vh(@k + ozknkvk) vo =0

Ori1 =0 + apviiq

O

Narrow 2D valley example revisited

Gradient descent with large Gradient descent with small
learning rate learning rate

%%\@

Momentum method

Upper bounds for Nesterov’s momentum
variant

Given objective h(#) satisfying same technical conditions as before, and
careful choice of (v, and 7]k, Nesterov's momentum method satisfies:

k
060~ 1) <L (Y2 -0 k=

Number of iterations to achieve h(0x) — h(6") < e

keO (\/Elog 1)
€

L
L

O

Convergence theory: 1st-order methods and
lower bounds

e A first-order method is one where updates are linear combinations of
observed gradients. i.e.:

91{:—|-1 — 0y =de¢ Span{Vh(QO)a Vh(gl)a RN Vh(gk)}

e Included:
o gradient descent
o momentum methods
o conjugate gradients (CG)

e Not included:
o preconditioned gradient descent / 2nd-order methods

o

Lower bounds (cont.)

Assume number of steps is greater than the dimension 71 (it usually is).
Then, there is example objective satisfying previous conditions for which:

2k
) b6 2 5 (Vg) Ia-0F w=L/n

Number of iterations to achieve h(f;) — h(6") < e:
1
ke (ﬂlog —>
€
o)

Comparison of iteration counts

To achieve h(0;) — h(0") < e the number of iterations k satisfies:

1
e (Worst-case) lower bound for 1st-order methods: k € () (ﬂlog —)
€
. 1
e Upper bound for gradient descent: £ € O (/4: log —)
€

1
e Upper bound for GD w/ Nesterov's momentum: k € O (\/Elog —>
€

O

4

2n
med—orde
thodsr

O

The problem with 1st-order methods

e For any Ist-order method, the number of steps needed to converge
grows with “condition number”:

L . Maxcurvature
\ .
M Min curvature

e This will be very large for some problems (e.g. certain deep
architectures)

e 2nd-order methods can improve (or even eliminate) this dependency

O

Derivation of Newton’s method

e Approximate h(f) by its 2nd-order Taylor
series around current () :

h(9 +d) ~ h(0) +Vh(0)"d+ %dTH(H)d

e Minimize this local approximation to obtain:

d = —H(6)"'Vh(b)

e Update current iterate with this:

Ori1 =0 — H(Q)_1Vh(6)k)

O

The 2D narrow valley example revisited (again)

Gradient descent Momentum method 2nd-order method

% [~
\/%%

O

Comparison to gradient descent

e Maximum allowable global learning rate for GD to avoid divergence:

o = 1/L [, is maximum curvature
aka “Lipschitz constant”

e Gradient descent implicitly minimizes a bad approximation of 2nd-order
Taylor series:

O +d) ~ h(8) + Vh(§) T d+ %dTH(O)d
~ h(0) + Vh(0)Td+ %dT(LI)d

e [] is too pessimistic / conservative an approximation of 1 (0)! Treats all
directions as having max curvature. @

Breakdown of local quadratic approximation
and how to deal with it

e Quadratic approximation of objective is only trustworthy in a
local region around current

e Gradient descent (implicitly) approximates the curvature
everywhere by its global max (and so doesn’t have this
problem)

e Newton’'s method uses H (6), which may become an
underestimate in the region we are taking our update step

Solution: Constrain update (/ to lie in a “trust region” X around,
where approximation remains “good enough”

O

Trust-regions and “damping”

If we take R = {d : ||d||]> < r} then computing

arg min (h(@) + Vh(0)"d+ 1dTH(H)d)
deR 2

is often equivalent to

—(H(O) + X)) 'Vh(9) = argclimin (h(@) + Vh(0)"d + %dT(H(Q) - /\I)d)
for some \.

e) depends on 7" in a complicated way, but we can just work with A
directly

o

Alternative curvature matrices

H (0)does not necessarily give the best quadratic approximation for
optimization. Different replacements for H () could produce:

A more global approximation A more conservative
approximation

o

Alternative curvature matrices (cont.)

e The most important family of related examples includes:
o Generalized Gauss-Newton matrix (GGN)
o Fisher information matrix

o “Empirical Fisher”

e Nice properties:
o always positive semi-definite (i.e. no negative curvature)

o give parameterization invariant updates in small learning rate limit (unlike
Newton’s method!)

o work much better in practice for neural net optimization @

Barrier to application of 2nd-order methods for
neural networks

e For neural networks,) IRn can have 10s of millions of dimensions

e We simply cannot compute and store an 71 X 7 matrix, let alone invert
it!

e To use 2nd-order methods, we must simplify the curvature matrix’s
o computation,
o storage,
o and inversion

This is typically done by approximating the matrix with a simpler form.

O

Diagonal approximations

The simplest approximation: include only the diagonal
entries of curvature matrix (setting the rest to zero)

Properties:

e Inversion and storage cost: O(n)

e Computational costs depends on form of original
matrix (ranges from easy to hard)

e Unlikely to be accurate, but can compensate for basic scaling differences
between parameters

Used (with a square root) in RMS-prop and Adam methods to approximate
Empirical Fisher matrix @

Block-diagonal approximations

Another option is to take only include certain diagonal blocks.

000000

For neural nets, a block could correspond to:
e weights on connections going into a givenunit | T7u
e weights on connections going out of a given unit ke

e all the weights for a given layer SiRE

Properties:
e Storage cost: O(bn) (assuming b X b block size)
e Inversion cost: O(b*n)
e Similar difficulty to computing diagonal
e Can only be realistically applied for small block sizes

Well-known example developed for neural nets: TONGA @

Kronecker-product approximations

e Block-diagonal approximation of GGN/Fisher where blocks correspond to
network layers

e Approximate each block as Kronecker product of two small matrices:
[Al1aC - [AheC

[AJeaC - [AesC

e Storage and computation cost: O(n)*
e Cost to apply inverse: O(bo'5n) (uses (A C) t=A"1taC™)

e Used in current most powerful neural net optimizer (K-FAC)

o

Stochastic
methods

O

Motivation for stochastic methods

e Typical objectives in machine learning are an average over training cases of

case-specific losses: m
1
h(B) = — > hi(6)
1=1
e 7771 can be very big, and so computing the gradient gets expensive:

Vh(6) = % f: Vh;(0)

o

Mini-batching

e Fortunately there is often significant statistical overlap between 5;(0)’s

e Early in learning, when “coarse” features of the data are still being learned,
most Vh;(60)" s will look similar

e Idea: randomly subsample a “mini-batch” of training cases S C {1,2,...,m}
of size b << m, and estimate gradient as:

Vh(8) = % > Vhi(0)

1eS

O

Stochastic gradient descent (SGD)

e Stochastic gradient descent (SGD) replaces V h.(#) with its mini-batch
estimate Vh(@), giving:

Hk:—H — Hk; — Oszh(@k)
e To ensure convergence, need to do one of the following:
o Decay learning rate: ap =1/k
o Use "Polyak averaging”: 0j, = k%rl Zf:o 0; or 0, = (1 —)0 + FOr_1

o Slowly increase the mini-batch size during optimization

O

Convergence of stochastic methods

e Stochastic methods converge slower than corresponding non-stochastic

versions
Gradient estimate

e Asymptotic rate for SGD with Polyak averaging: / covariance matrix
1

E[h(01)] — h(67) € % tr (H(0")"'%) + O (p)

e |terations to converge:

keO <tr (H(0")7'%) 1) vs keO (x/Elog %)

ho Lg! @

Stochastic 2nd-order and momentum methods

e Mini-batch gradients estimates can be used with 2nd-order and
momentums methods too

e Curvature matrices estimated stochastically using decayed averaging over
multiple steps

e No stochastic optimization method that sees the same amount of data can
have better asymptotic convergence speed than SGD with Polyak averaging

e But.. pre-asymptotic performance usually matters more in practice. So
stochastic 2nd-order and momentum methods can still be useful if:

o the loss surface curvature is bad enough and/or

o the mini-batch size is large enough

O

Experiments on deep convnets

1.0

0.9

0.8-

0.7

0.6-

0.5
0.4
0.3

0.2-

0.1

0.0
0

80,000

160,000

experiment

— Adam

- K-FAC + momentum
- Momentum

Details

Mini-batch size of 512
Imagenet dataset

100 layer deep
convolutional net without
skips or batch norm
Carefully initialized
parameters

O

Conclusions / Summary

e Optimization methods:
o enable learning in models by adapting parameters to minimize some objective

o main engine behind neural networks

e Ist-order methods (gradient descent):
o take steps in direction of “steepest descent”

o run into issues when curvature varies strongly in different directions

e Momentum methods:
o use principle of momentum to accelerate along directions of lower curvature

o obtain “optimal” convergence rates for Ist-order methods

O

Conclusions / Summary

e 2nd-order methods:

o improve convergence in problems with bad curvature, even more so than
momentum methods

o require use of trust-regions/damping to work well
o also require the use of curvature matrix approximations to be practical in high
dimensions (e.g. for neural networks)
e Stochastic methods:
o use “mini-batches” of data to estimate gradients
o asymptotic convergence is slower

o pre-asymptotic convergence can be sped up using 2nd-order methods and/or

momentum @

hank yo

O

u
estion

O

References and further reading

Solid introductory texts on optimization:
e Numerical Optimization (Nocedal & Wright)

e Introductory Lectures on Convex Optimization: A Basic Course (Nesterov)

Further reading for those interested in neural network optimization:
e Optimization Methods for Large-Scale Machine Learning (Bottou et al)
e The Importance of Initialization and Momentum in Deep Learning (Sutskever et al.)
e New insights and perspectives on the natural gradient method (Martens)

e Optimizing Neural Networks with Kronecker-factored Approximate Curvature (Martens &
Grosse)

e Which Algorithmic Choices Matter at Which Batch Sizes? Insights From a Noisy Quadratic
Model (Zhang et al.) G

