Optimization for Deep Learning

Agenda

- 1 Introduction
- 2 Gradient descent variants
- 3 Challenges
- 4 Gradient descent optimization algorithms
- 5 Parallelizing and distributing SGD
- 6 Additional strategies for optimizing SGD

Introduction

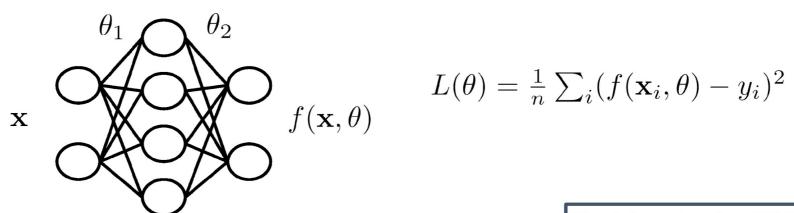
Empirical Risk Minimization (ERM)

- Given training set $\{(\mathbf{x}_1,y_1),\ldots,(\mathbf{x}_n,y_n)\}$
- Prediction function $f(\mathbf{x}_i, \theta) \in \mathbb{R}$ parameterized by θ
- Empirical risk minimization: Find a paramater that minimizes the loss function

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \ell(f(\mathbf{x}_i, \theta), y_i) := L(\theta)$$

where $\ell(\cdot,\cdot)$ is a loss function e.g., MSE, cross entropy,

• For example, neural network has $f(\mathbf{x}, \theta) = \theta_k^{\top} \sigma \left(\theta_{k-1}^{\top} \sigma(\cdots \sigma(\theta_1^{\top} \mathbf{x})) \right)$



Introduction

- Gradient descent is a way to minimize an objective function $J(\theta)$
 - $\theta \in \mathbb{R}^d$: model parameters
 - η : learning rate
 - \bullet $\nabla_{\theta} J(\theta)$: gradient of the objective function with regard to the parameters
- Updates parameters in opposite direction of gradient.
- Update equation: $\theta = \theta \eta \cdot \nabla_{\theta} J(\theta)$

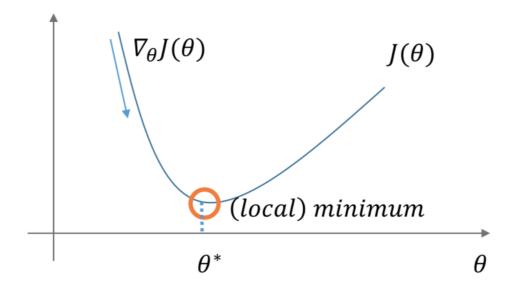


Figure: Optimization with gradient descent

Gradient descent variants

- Batch gradient descent
- Stochastic gradient descent
- Mini-batch gradient descent

Difference: Amount of data used per update

Batch gradient descent

- Computes gradient with the entire dataset.
- Update equation: $\theta = \theta \eta \cdot \nabla_{\theta} J(\theta)$

```
for i in range(nb_epochs):
   params_grad = evaluate_gradient(
       loss_function, data, params)
   params = params - learning_rate * params_grad
       Listing 1: Code for batch gradient descent update
```

Batch gradient descent

• Gradient descent (GD) updates parameters iteratively by taking gradient.



- (+) Converges to global (local) minimum for convex (non-convex) problem.
- (-) Not efficient with respect to computation time and memory space for huge n.
- For example, ImageNet dataset has n = 1,281,167 images for training.

1.2M of 256x256 RGB images ≈ 236 GB memory

Pros:

• Guaranteed to converge to **global** minimum for **convex** error surfaces and to a **local** minimum for **non-convex** surfaces.

Cons:

- Very slow.
- Intractable for datasets that do not fit in memory.
- No online learning.

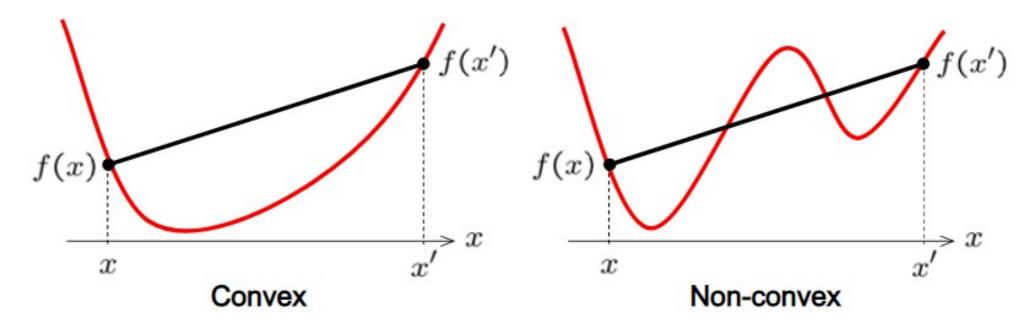
Convex functions

A function $f:A\subseteq \mathbb{X}\to \mathbb{R}$ defined on a convex set A is called **convex** if

$$f(\lambda x + (1 - \lambda)x') \le \lambda f(x) + (1 - \lambda)f(x')$$

for any $x, x' \in \mathbb{X}$ and $\lambda \in [0, 1]$

For convex function local minimum = global minimum



Stochastic gradient descent

- Computes update for **each** example $x^{(i)}y^{(i)}$.
- Update equation: $\theta = \theta \eta \cdot \nabla_{\theta} J(\theta; x^{(i)}; y^{(i)})$

```
for i in range(nb_epochs):
    np.random.shuffle(data)
    for example in data:
        params_grad = evaluate_gradient(
            loss_function, example, params)
        params = params - learning_rate * params_grad
            Listing 2: Code for stochastic gradient descent update
```

- Pros
 - Much faster than batch gradient descent.
 - Allows online learning.
- Cons
 - High variance updates.

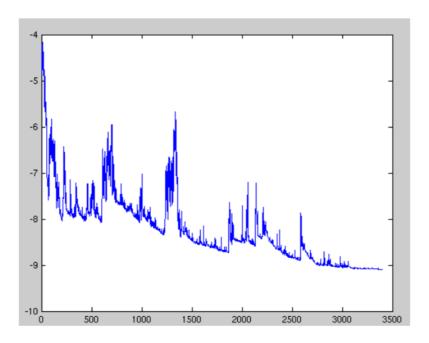


Figure: SGD fluctuation (Source: Wikipedia)

Batch gradient descent vs. SGD fluctuation

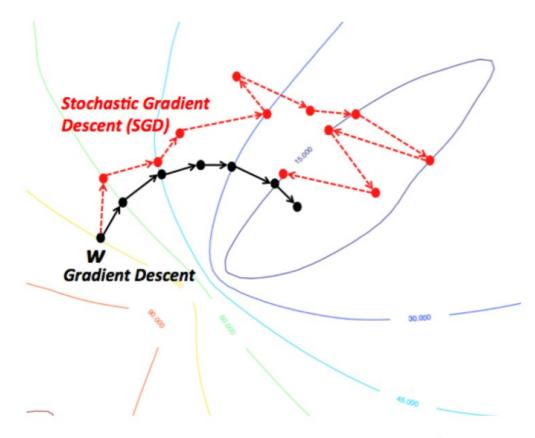


Figure: Batch gradient descent vs. SGD fluctuation (Source: wikidocs.net)

 SGD shows same convergence behaviour as batch gradient descent if learning rate is slowly decreased (annealed) over time.

Stochastic gradient descent

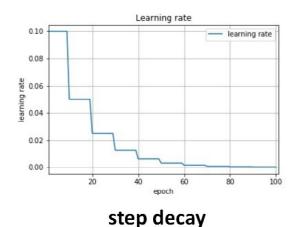
Learning rate scheduling: decay methods

- A naive choice is the **constant** learning rate
- Common learning rate schedules include time-based/step/exponential decay

	Time-based	Exponential	Step (most popular in practice)
γ_t	$\frac{\gamma_0}{1+kt}$	$\gamma_0 \exp(-kt)$	$\gamma_0 \exp(-k \lfloor \frac{t}{T_{\text{epoch}}} \rfloor)$

- learning rate

- "Step decay" decreases learning rate by a factor every few epochs
- Typically, it is set $\gamma_0=0.01$ and drops by half ever $T_{
 m epoch}$ = 10 epoch



0.08 0.06 0.02 0.00 20 40 60 80 100 epoch

exponential decay

Mini-batch gradient descent

- Performs update for every **mini-batch** of *n* examples.
- Update equation: $\theta = \theta \eta \cdot \nabla_{\theta} J(\theta; x^{(i:i+n)}; y^{(i:i+n)})$

```
for i in range(nb_epochs):
    np.random.shuffle(data)
    for batch in get_batches(data, batch_size=50):
        params_grad = evaluate_gradient(
            loss_function, batch, params)
        params = params - learning_rate * params_grad
            Listing 3: Code for mini-batch gradient descent update
```

- Pros
 - Reduces variance of updates.
 - Can exploit matrix multiplication primitives.
- Cons
 - Mini-batch size is a hyperparameter. Common sizes are 50-256.
- Typically the algorithm of choice.
- Usually referred to as SGD even when mini-batches are used.

Method	hod Accuracy		Update Memory Speed Usage	
Batch gradient descent	Good	Slow	High	No
Stochastic gradient descent	77.00.00		Low	Yes
Mini-batch gradient descent	Good	Medium	Medium	Yes

Table: Comparison of trade-offs of gradient descent variants

Challenges

- Choosing a **learning rate**.
- Defining an annealing schedule.
- Updating features to **different extent**.
- Avoiding suboptimal minima.

Gradient descent optimization algorithms

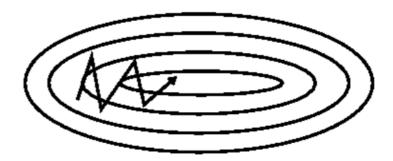
- Momentum
- Nesterov accelerated gradient
- Adagrad
- Adadelta
- 6 Adam
- Adam extensions

Momentum

- SGD has trouble navigating ravines.
- Momentum [Qian, 1999] helps SGD accelerate.
- Adds a fraction γ of the update vector of the past step v_{t-1} to current update vector v_t . Momentum term γ is usually set to 0.9.

$$\begin{aligned}
v_t &= \gamma v_{t-1} + \eta \nabla_{\theta} J(\theta) \\
\theta &= \theta - v_t
\end{aligned} \tag{1}$$

(a) SGD without momentum



(b) SGD with momentum

Figure: Source: Genevieve B. Orr

- Reduces updates for dimensions whose gradients change directions.
- Increases updates for dimensions whose gradients point in the same directions.

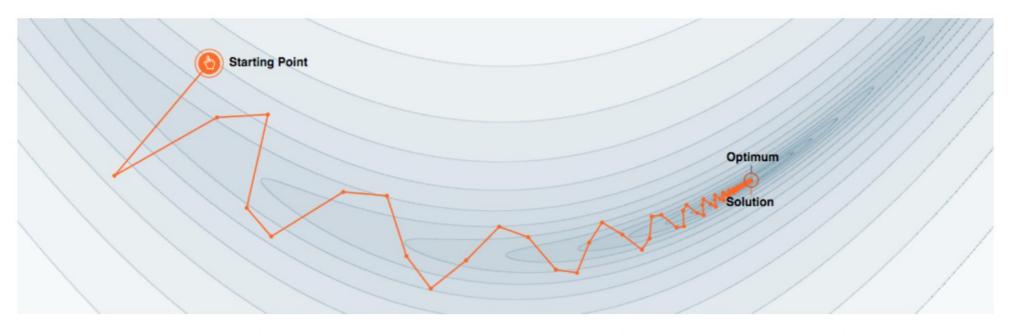
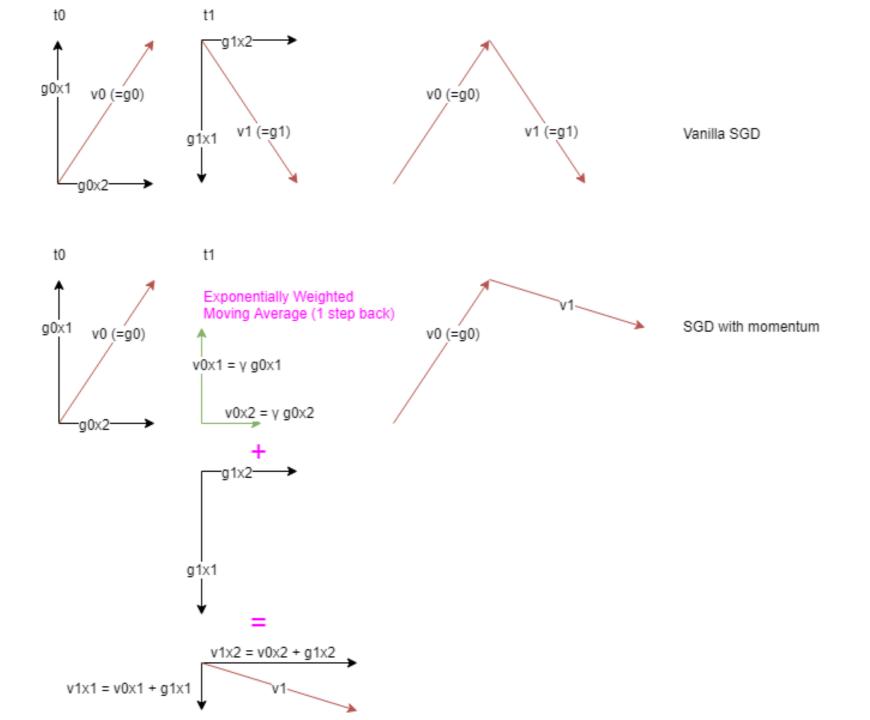


Figure: Optimization with momentum (Source: distill.pub)



Nesterov accelerated gradient

- Momentum blindly accelerates down slopes: First computes gradient, then makes a big jump.
- Nesterov accelerated gradient (NAG) [Nesterov, 1983] first makes a big jump in the direction of the previous accumulated gradient $\theta \gamma v_{t-1}$. Then measures where it ends up and makes a correction, resulting in the complete update vector.

$$v_{t} = \gamma v_{t-1} + \eta \nabla_{\theta} J(\theta - \gamma v_{t-1})$$

$$\theta = \theta - v_{t}$$
(2)

Figure: Nesterov update (Source: G. Hinton's lecture 6c)

Adagrad

- Previous methods: **Same learning rate** η for all parameters θ .
- Adagrad [Duchi et al., 2011] **adapts** the learning rate to the parameters (**large** updates for **infrequent** parameters, **small** updates for **frequent** parameters).
- SGD update: $\theta_{t+1} = \theta_t \eta \cdot g_t$ • $g_t = \nabla_{\theta_t} J(\theta_t)$
- Adagrad divides the learning rate by the square root of the sum of squares of historic gradients.

	θ1	θ2	θ3	θ4	θ5	θ6	θ7	θ8
x1	0	4	0	0	-5	0	-7	0
x2	0	0	0	0	0	0	10	1
хЗ	0	-5	0	7	0	0	3	0
x4	0	6	0	0	0	0	-2	0
х5	0	1	0	0	0	0	5	0
х6	0	-8	0	0	4	0	9	0

x1-x6 are training samples. When a feature is zero the corresponding parameter does not get updated. Hence, parameters θ 7 and θ 2 will update frequently, θ 5- θ 4- θ 8 moderately and θ 1- θ 3- θ 6 rarely. Adaptive SGD methods make smaller updates for frequently updating parameters and bigger updates for more rarely updating parameters. For higher hidden layers the relation between θ 1 and inputs is not obvious so to adjust the changing rate we rely on some form of the sum of previous squared gis (gradient values of θ 1)

Adagrad

Previously, we performed an update for all parameters θ at once as every parameter θ_i used the same learning rate η . As Adagrad uses a different learning rate for every parameter θ_i at every time step t, we first show Adagrad's per-parameter update, which we then vectorize. For brevity, we set $g_{t,i}$ to be the gradient of the objective function w.r.t. to the parameter θ_i at time step t:

$$g_{t,i} = \nabla_{\theta_t} J(\theta_{t,i})$$

The SGD update for every parameter θ_i at each time step t then becomes:

$$\theta_{t+1,i} = \theta_{t,i} - \eta \cdot g_{t,i}$$

In its update rule, Adagrad modifies the general learning rate η at each time step t for every parameter θ_i based on the past gradients that have been computed for θ_i :

$$heta_{t+1,i} = heta_{t,i} - rac{\eta}{\sqrt{G_{t,ii} + \epsilon}} \cdot g_{t,i}$$

 $G_t \in \mathbb{R}^{d \times d}$ here is a diagonal matrix where each diagonal element i, i is the sum of the squares of the gradients w.r.t. θ_i up to time step t^{11} , while ϵ is a smoothing term that avoids division by zero (usually on the order of 1e-8). Interestingly, without the square root operation, the algorithm performs much worse.

Adagrad

Adagrad update:

$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{G_t + \epsilon}} \odot g_t \tag{3}$$

- $G_t \in \mathbb{R}^{d \times d}$: diagonal matrix where each diagonal element i, i is the sum of the squares of the gradients w.r.t. θ_i up to time step t
- \bullet ϵ : smoothing term to avoid division by zero
- ⊙: element-wise multiplication

Pros

- Well-suited for dealing with sparse data.
- Significantly improves robustness of SGD.
- Lesser need to manually tune learning rate.

Cons

• Accumulates squared gradients in denominator. Causes the learning rate to shrink and become infinitesimally small.

Adadelta

 Adadelta [Zeiler, 2012] restricts the window of accumulated past gradients to a fixed size. SGD update:

$$\Delta \theta_t = -\eta \cdot g_t
\theta_{t+1} = \theta_t + \Delta \theta_t$$
(4)

• Defines running average of squared gradients $E[g^2]_t$ at time t:

$$E[g^2]_t = \gamma E[g^2]_{t-1} + (1 - \gamma)g_t^2$$
 (5)

- \bullet γ : fraction similarly to momentum term, around 0.9
- Adagrad update:

$$\Delta\theta_t = -\frac{\eta}{\sqrt{G_t + \epsilon}} \odot g_t \tag{6}$$

• Preliminary Adadelta update:

$$\Delta\theta_t = -\frac{\eta}{\sqrt{E[g^2]_t + \epsilon}} g_t \tag{7}$$

$$\Delta\theta_t = -\frac{\eta}{\sqrt{E[g^2]_t + \epsilon}} g_t \tag{8}$$

Denominator is just root mean squared (RMS) error of gradient:

$$\Delta\theta_t = -\frac{\eta}{RMS[g]_t}g_t \tag{9}$$

- Note: Hypothetical units do not match.
- Define running average of squared parameter updates and RMS:

$$E[\Delta \theta^2]_t = \gamma E[\Delta \theta^2]_{t-1} + (1 - \gamma) \Delta \theta_t^2$$

$$RMS[\Delta \theta]_t = \sqrt{E[\Delta \theta^2]_t + \epsilon}$$
(10)

• Approximate with $RMS[\Delta\theta]_{t-1}$, replace η for **final Adadelta update**:

$$\Delta \theta_t = -\frac{RMS[\Delta \theta]_{t-1}}{RMS[g]_t} g_t$$

$$\theta_{t+1} = \theta_t + \Delta \theta_t$$
(11)

RMSprop

- Developed independently from Adadelta around the same time by Geoff Hinton.
- Also divides learning rate by a running average of squared gradients.
- RMSprop update:

$$E[g^{2}]_{t} = \gamma E[g^{2}]_{t-1} + (1 - \gamma)g_{t}^{2}$$

$$\theta_{t+1} = \theta_{t} - \frac{\eta}{\sqrt{E[g^{2}]_{t} + \epsilon}}g_{t}$$
(12)

- γ : decay parameter; typically set to 0.9
- η : learning rate; a good default value is 0.001

Adam

- Adaptive Moment Estimation (Adam) [Kingma and Ba, 2015] also stores running average of past squared gradients v_t like Adadelta and RMSprop.
- Like Momentum, stores running average of past gradients m_t .

$$m_{t} = \beta_{1} m_{t-1} + (1 - \beta_{1}) g_{t}$$

$$v_{t} = \beta_{2} v_{t-1} + (1 - \beta_{2}) g_{t}^{2}$$
(13)

- m_t : first moment (mean) of gradients
- v_t : second moment (uncentered variance) of gradients
- β_1, β_2 : decay rates

- m_t and v_t are initialized as 0-vectors. For this reason, they are biased towards 0.
- Compute bias-corrected first and second moment estimates:

$$\hat{m}_{t} = \frac{m_{t}}{1 - \beta_{1}^{t}}$$

$$\hat{v}_{t} = \frac{v_{t}}{1 - \beta_{2}^{t}}$$
(14)

Adam update rule:

$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t \tag{15}$$

Adam extensions

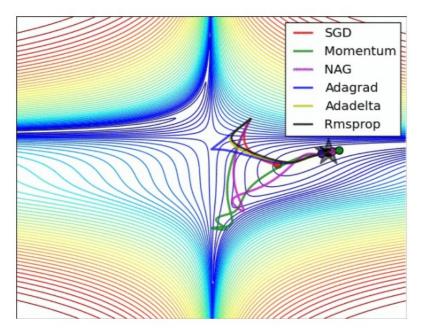
- AdaMax [Kingma and Ba, 2015]
 - Adam with ℓ_{∞} norm
- 2 Nadam [Dozat, 2016]
 - Adam with Nesterov accelerated gradient

Update equations

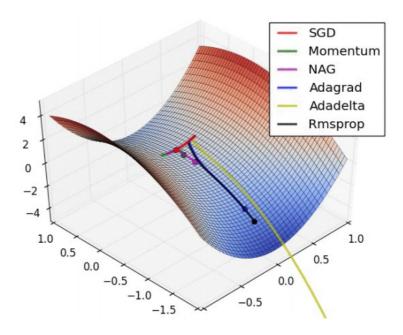
Method	Update equation
SGD	$egin{aligned} g_t &= abla_{ heta_t} J(heta_t) \ \Delta heta_t &= -\eta \cdot g_t \ heta_t &= heta_t + \Delta heta_t \end{aligned}$
Momentum NAG	$egin{aligned} \Delta heta_t &= -\gamma \ extbf{v}_{t-1} - \eta extbf{g}_t \ \Delta heta_t &= -\gamma \ extbf{v}_{t-1} - \eta \nabla_{ heta} J(heta - \gamma extbf{v}_{t-1}) \end{aligned}$
Adagrad	$\Delta heta_t = -rac{\eta}{\sqrt{G_t + \epsilon}} \odot g_t$
Adadelta	$\Delta heta_t = -rac{reve{RMS}[\Delta heta]_{t-1}}{RMS[g]_t}g_t$
RMSprop	$\Delta heta_t = -rac{\eta^{t-1}}{\sqrt{E[g^2]_t + \epsilon}} g_t$
Adam	$\Delta heta_t = -rac{\sqrt{-\eta^2}}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t$

Table: Update equations for the gradient descent optimization algorithms.

Visualization of algorithms



(a) SGD optimization on loss surface contours



(b) SGD optimization on saddle point

Figure: Source and full animations: Alec Radford

https://imgur.com/a/Hqolp

Which optimizer to choose?

- Adaptive learning rate methods (Adagrad, Adadelta, RMSprop, Adam) are particularly useful for sparse features.
- Adagrad, Adadelta, RMSprop, and Adam work well in similar circumstances.
- [Kingma and Ba, 2015] show that bias-correction helps Adam slightly outperform RMSprop.

Parallelizing and distributing SGD

- 4 Hogwild! [Niu et al., 2011]
 - Parallel SGD updates on CPU
 - Shared memory access without parameter lock
 - Only works for sparse input data
- 2 Downpour SGD [Dean et al., 2012]
 - Multiple replicas of model on subsets of training data run in parallel
 - Updates sent to parameter server; updates fraction of model parameters
- Oelay-tolerant Algorithms for SGD [Mcmahan and Streeter, 2014]
 - Methods also adapt to update delays
- TensorFlow [Abadi et al., 2015]
 - Computation graph is split into a subgraph for every device
 - Communication takes place using Send/Receive node pairs
- Elastic Averaging SGD [Zhang et al., 2015]
 - Links parameters elastically to a center variable stored by parameter server

Additional strategies for optimizing SGD

- Shuffling and Curriculum Learning [Bengio et al., 2009]
 - Shuffle training data after every epoch to break biases
 - Order training examples to solve progressively harder problems; infrequently used in practice
- Batch normalization [loffe and Szegedy, 2015]
 - Re-normalizes every mini-batch to zero mean, unit variance
 - Must-use for computer vision
- Early stopping
 - "Early stopping (is) beautiful free lunch" (Geoff Hinton)
- Gradient noise [Neelakantan et al., 2015]
 - Add Gaussian noise to gradient
 - Makes model more robust to poor initializations

Bibliography

Paper: Ruder S. (2016) An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747

Blog article: An overview of gradient descent optimization algorithms

Notebook: Exploring gradient descent based optimizers.ipynb

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. CHAPTER 8