Optimization for Deep Learning

-vx"“rb h\

"a‘\

Agenda

Introduction

Gradient descent variants

Challenges

Gradient descent optimization algorithms
Parallelizing and distributing SGD

Additional strategies for optimizing SGD

Introduction

Empirical Risk Minimization (ERM)

Given training set {(X1,41), .-+, (Xn,Un)}

Prediction function f(x;,f) € R parameterized by 0

Empirical risk minimization: Find a paramater that minimizes the loss function
1 n
min — > €(f(xi,0),4:) = L(0)
=1

where £ (-,-) is aloss function e.g., MSE, cross entropy,

For example, neural network has f(x,60) =6/} o (6] _,0(---o(6] x)))

601 02

Next, how to solve ERM?

Introduction

e Gradient descent is a way to minimize an objective function J(8)
o 0 c RY model parameters
e 7. learning rate
o VyJ(0): gradient of the objective function with regard to the
parameters
@ Updates parameters in opposite direction of gradient.

e Update equation: 8 =0 —n - VyJ(0)

r

Vol (6) J(6)

local) minimum

0" 6

Figure: Optimization with gradient descent

Gradient descent variants

© Batch gradient descent
@ Stochastic gradient descent
© Mini-batch gradient descent

Difference: Amount of data used per update

Batch gradient descent

@ Computes gradient with the entire dataset.
o Update equation: 8 =0 —n - VyJ(0)

for i in range(nb_epochs):

params_grad = evaluate_gradient (
loss_function, data, params)
params = params - learning_rate * params_grad

Listing 1. Code for batch gradient descent update

Batch gradient descent

* Gradient descent (GD) updates parameters iteratively by taking gradient.

paraineters I(fss function ———
Or+1 =01 — YV L(6) N N —
learning rate = e ng(gt;xiayi)
i=1

* (+) Converges to global (local) minimum for convex (non-convex) problem.
* (—) Not efficient with respect to computation time and memory space for huge n.
* For example, ImageNet dataset has n =1,281,167 images for training.

1.2M of 256x256 RGB images
~ 236 GB memory

e e Next, efficient GD

@ Pros:

e Guaranteed to converge to global minimum for convex error surfaces
and to a local minimum for non-convex surfaces.

@ Cons:

o Very slow.
e Intractable for datasets that do not fit in memory.
e No online learning.

Convex functions
Afunction f: 4 C X — R defined on a convex set A is called convex if

fOz + (1= A)2') < Mf(2) + (1 = N f()

forany z, 2’ € X and) € [0, 1]

For convex function local minimum = global minimum

Convex Non-convex

Stochastic gradient descent

o Computes update for each example x{)y ().
o Update equation: 6 =60 —n - VpJ(0; x(1); ()

for i in range(nb_epochs):
np.random.shuffle(data)
for example in data:
params_grad = evaluate_gradient (
loss_function, example, params)
params = params - learning_rate * params_grad

Listing 2: Code for stochastic gradient descent update

@ Pros

e Much faster than batch gradient descent.
o Allows online learning.

@ Cons
e High variance updates.

-9_

— |

-10

1 1 1 1 | L
1} 500 1000 1500 2000 2500 3000 3500

Figure: SGD fluctuation (Source: Wikipedia)

Batch gradient descent vs. SGD fluctuation

Gradient Descent

Figure: Batch gradient descent vs. SGD fluctuation (Source: wikidocs.net)

@ SGD shows same convergence behaviour as batch gradient descent if
learning rate is slowly decreased (annealed) over time.

Stochastic gradient descent

Learning rate scheduling : decay methods
» A naive choice is the constant learning rate

* Common learning rate schedules include time-based/step/exponential decay

Time-based Exponential Step (most popular in practice)
Yo t
—_— _ exp(—k| —
Yt L+ Kt Yo exp(kt) 0 p(LTepoch J)

» “Step decay” decreases learning rate by a factor every few epochs

* Typically, itis set 70 = 0.01 and drops by half ever T, = 10 epoch

0.10 1

008

© 006

004

0.02 4

o.00

Learning rate

20 a0 &0 80 100
epoch

step decay

0.08
u 0.06
=
£ 004

0.02

0.00

Learning rate

20

40 60 80
epoch

exponential decay

100

Mini-batch gradient descent

@ Performs update for every mini-batch of n examples.
o Update equation: 6 =0 — i - VpJ(0; xU:i+n), y(iitn))

for i in range(nb_epochs):
np.random.shuffle(data)
for batch in get_batches(data, batch_size=50):
params_grad = evaluate_gradient (
loss_function, batch, params)
params = params - learning_rate * params_grad

Listing 3: Code for mini-batch gradient descent update

@ Pros

e Reduces variance of updates.
o Can exploit matrix multiplication primitives.

e Cons
e Mini-batch size is a hyperparameter. Common sizes are 50-256.

@ Typically the algorithm of choice.

@ Usually referred to as SGD even when mini-batches are used.

Update Memory Online
Method Accuracy Speed Usage Learning
Batch Good Slow High No
gradient descent
Stthasnc Good Qmwh High L ow Yes
gradient descent annealing)
Mini-batch Cood Medium Medium Yes

gradient descent

Table: Comparison of trade-offs of gradient descent variants

Challenges

@ Choosing a learning rate.
@ Defining an annealing schedule.
@ Updating features to different extent.

e Avoiding suboptimal minima.

Gradient descent optimization algorithms

© Momentum

@ Nesterov accelerated gradient
© Adagrad

© Adadelta

@ RMSprop

Q@ Adam

@ Adam extensions

Momentum

@ SGD has trouble navigating ravines.

@ Momentum [Qian, 1999] helps SGD accelerate.

@ Adds a fraction v of the update vector of the past step v; 1 to
current update vector v¢. Momentum term ~y is usually set to 0.9.

ve = Yve_ 1 + Ve d(0) 1)

0=46-— Vi
) SGD without momentum (b) SGD with momentum

Figure: Source: Genevieve B. Orr

@ Reduces updates for dimensions whose gradients change
directions.

@ Increases updates for dimensions whose gradients point in the
same directions.

Starting Point

Optimum

Solution

Figure: Optimization with momentum (Source: distill.pub)

t0 t1

A Qld—»
90x1 yp (=g0) v0 (=g0)
gix1 V1(=01) v1(=g1) Vanilla SGD
I v
t0 i1
‘ . - ‘---\-_'-\-__
Exponentially Weighted *-Ev 1
Moving Average (1 step back) E-E'“"H.L SGD with t
o0x1 (=g0) T v (=g0) with momentum
vx1 =v glx1
vix2 = v qlx2
gl 2—»
+
g igd——*
g1x1
¥

V12 = w2 + gix2 .

—
S
—
V1
_
—

Vit =vlx1 + gixi l
—

Nesterov accelerated gradient

e Momentum blindly accelerates down slopes: First computes

gradient, then makes a big jump.
@ Nesterov accelerated gradient (NAG) [Nesterov, 1983] first makes a

big jump in the direction of the previous accumulated gradient
60 — vv¢_1. Then measures where it ends up and makes a correction,
resulting in the complete update vector.

ve =y ve 1 +0VeJ(O —yve 1)

0=60—v; 2)

Figure: Nesterov update (Source: G. Hinton's lecture 6¢)

Adagrad

@ Previous methods: Same learning rate 7 for all parameters 6.
@ Adagrad [Duchi et al., 2011] adapts the learning rate to the
parameters (large updates for infrequent parameters, small updates

for frequent parameters).
@ SGD update: 0;11 =60 — 1 - gt
® gt — vgt‘j(ef)

@ Adagrad divides the learning rate by the square root of the sum of
squares of historic gradients.

x1 0 4 0 0 -5 0 -7 0

x2 0 0 0 0 0 0 10 1

X3 0 -9 0 7 0 0 3 0
x4 0 6 0 0 0 0 -2 0
%8 0 1 0 0 0 0 7 0

X8 0 -8 0 0 - 0 9 0

x1-x6 are training samples. When a feature is zero the corresponding parameter does not get updated. Hence, parameters 87 and 62
will update frequently, 85-64-868 moderately and 61-63-66 rarely. Adaptive SGD methods make smaller updates for frequently updating
parameters and bigger updates for more rarely updating parameters. For higher hidden layers the relation between 8i and inputs is not
obvious so to adjust the changing rate we rely on some form of the sum of previous squared gis (gradient values of 0i)

Adagrad

Previously, we performed an update for all parameters ! at once as every parameter 6; used the same
learning rate 7). As Adagrad uses a different learning rate for every parameter #; at every time step ¢,
we first show Adagrad’s per-parameter update, which we then vectorize. For brevity, we set g; ; to be
the gradient of the objective function w.r.t. to the parameter 6; at time step ¢:

gt.i — Vat J(Qt,z‘)

'The SGD update for every parameter 6, at each time step ¢ then becomes:

9t+1,q: = Qt,fi — 1 gt

In its update rule, Adagrad modifies the general learning rate 7; at each time step ¢ for every parameter
6; based on the past gradients that have been computed for 8;:

N

0 i 0 VR ' 1
t+1, 1 \/m gt,

(; € R%*4 here is a diagonal matrix where each diagonal element 7, 7 is the sum of the squares of the
gradients w.r.t. &; up to time step #'!, while € is a smoothing term that avoids division by zero (usually
on the order of 1e — §). Interestingly, without the square root operation, the algorithm performs much
worse.

Adagrad

@ Adagrad update:
— Og (3)

Ori1=0¢ — \/G_-l-F %
I' .

o G, ¢ R9*9: diagonal matrix where each diagonal element i,/ is the
sum of the squares of the gradients w.r.t. #; up to time step t

e €. smoothing term to avoid division by zero

e : element-wise multiplication

@ Pros

o Well-suited for dealing with sparse data.
e Significantly improves robustness of SGD.
o Lesser need to manually tune learning rate.

@ Cons

e Accumulates squared gradients in denominator. Causes the learning
rate to shrink and become infinitesimally small.

Adadelta

o Adadelta [Zeiler, 2012] restricts the window of accumulated past
gradients to a fixed size. SGD update:

Aby = —n- g (4)
Ori1 = 0 + A0,
e Defines running average of squared gradients E[g?]; at time t:
Elg®]e = vE[g®)e-1+ (1 —7)&? (5)
e ~v: fraction similarly to momentum term, around 0.9
@ Adagrad update:
NGy = —— (6)

®
(o 8t

@ Preliminary Adadelta update:
Agr = — il Bt (7)

_ 7]
Al = \/E[g2]t n egt (8)

@ Denominator is just root mean squared (RMS) error of gradient:

Ui
Alby = — 9

@ Note: Hypothetical units do not match.
@ Define running average of squared parameter updates and RMS:

EIA0%]: = yE[AG]; 1 + (1 — 7)A0?

RMS[AG]; = |/ E[A62], + ¢ (19)

e Approximate with RMS[AG]: 1, replace 1 for final Adadelta update:
RMS[AB]: 1

RMS[g]; * (11)
Orr1 = 0; + AG;

AQt:—

RMSprop

@ Developed independently from Adadelta around the same time by
Geoff Hinton.

@ Also divides learning rate by a running average of squared
gradients.

@ RMSprop update:

Elgl: = vE[g°]e-1 + (1 —7)gf
n (12)
0,1 =0, —
t4+1 t \/E[g2]r —I—Egt

e ~v: decay parameter; typically set to 0.9
e 7. learning rate; a good default value is 0.001

Adam

e Adaptive Moment Estimation (Adam) [Kingma and Ba, 2015] also
stores running average of past squared gradients v; like Adadelta

and RMSprop.

@ Like Momentum, stores running average of past gradients m;.

my = B1my_1 + (1 - 51)8’:&

13
ve = Bave_1 + (1 — 52)8}2 1)

o m;: first moment (mean) of gradients
o v;: second moment (uncentered variance) of gradients
e (31, B»: decay rates

@ m; and v; are initialized as 0-vectors. For this reason, they are biased
towards 0.

@ Compute bias-corrected first and second moment estimates:

iy = —t
r J—
15
A v, (14)
Ve —
t 1 B /85
@ Adam update rule:
Qt—l—l — Qt — AT] rﬁt (15)

Adam extensions

@ AdaMax [Kingma and Ba, 2015]

e Adam with /., norm

@ Nadam [Dozat, 2016]

e Adam with Nesterov accelerated gradient

Update equations

Method Update equation
8t = VQtJ(Qt)
SGD Al = —n - gt
91— — 91— + AQr
Momentum Af; = —y v 1 — ngs
NAG Afy = —v vt7_71 —nVeJ(0 — yvi_1)
Ad d NG = —
- | R A(/;fstAee]Q 3
Adadelt Al = — AL
ddella £ RMS g]t Bt

RMSprop Ab; = — 8t

Ui
VE[g?]: +e
_ U fﬁr

VU + €

Table: Update equations for the gradient descent optimization algorithms.

Adam Al =

Visualization of algorithms

e
Sy
et

(a) SGD optimization on loss surface

contours (b) SGD optimization

Figure: Source and full animations: Alec Radford

https://imgur.com/a/Hqgolp

ety

ORI
SR,
s

&
o

-0.5

= N [
= = =] == Momentum E - SGD
— = NAG g ~— Momentum
—— Adagrad — NAG
Adadelta —— Adagrad
RmMsprop 1l Adadelta
4 il
= a,;:,,'q Rmsprop
2 AT

g
LGN

SPRIAAEICICISAN
RN

o
o0
il

1.0

on saddle point

https://imgur.com/a/Hqolp
https://imgur.com/a/Hqolp

Which optimizer to choose?

@ Adaptive learning rate methods (Adagrad, Adadelta, RMSprop,
Adam) are particularly useful for sparse features.

@ Adagrad, Adadelta, RMSprop, and Adam work well in similar
circumstances.

e [Kingma and Ba, 2015] show that bias-correction helps Adam slightly
outperform RMSprop.

Parallelizing and distributing SGD

@ Hogwild! [Niu et al., 2011]

e Parallel SGD updates on CPU
e Shared memory access without parameter lock
e Only works for sparse input data

@ Downpour SGD [Dean et al., 2012]

e Multiple replicas of model on subsets of training data run in parallel
e Updates sent to parameter server; updates fraction of model
parameters

@ Delay-tolerant Algorithms for SGD [Mcmahan and Streeter, 2014]
e Methods also adapt to update delays
Q TensorFlow [Abadi et al., 2015]

o Computation graph is split into a subgraph for every device
o Communication takes place using Send/Receive node pairs

@ Elastic Averaging SGD [Zhang et al., 2015]

o Links parameters elastically to a center variable stored by parameter
server

Additional strategies for optimizing SGD

@ Shuffling and Curriculum Learning [Bengio et al., 2009]

e Shuffle training data after every epoch to break biases
e Order training examples to solve progressively harder problems;
infrequently used in practice

@ Batch normalization [loffe and Szegedy, 2015]

e Re-normalizes every mini-batch to zero mean, unit variance
e Must-use for computer vision

© Early stopping
o "“Early stopping (is) beautiful free lunch” (Geoff Hinton)
© Gradient noise [Neelakantan et al., 2015]

e Add Gaussian noise to gradient
e Makes model more robust to poor initializations

Bibliography

Paper: Ruder S. (2016) An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747

Blog article: An overview of gradient descent optimization algorithms
Notebook: Exploring gradient descent based optimizers.ipynb

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. CHAPTER 8

https://arxiv.org/pdf/1609.04747
https://ruder.io/optimizing-gradient-descent/
https://colab.research.google.com/drive/1sW8B0_7of5MQZXaCEbXd_pCyAto6n6dz?usp=sharing
https://www.deeplearningbook.org/contents/optimization.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

