
Recurrent Neural Networks
Sequential modeling

Sequence order is important:

● overall it defines the meaning of the data
● each event in the sequence depends on the previous

events

Sequential modeling
Sequential data: Text, Speech, Music, Movies, Stock prices, DNA, Earthquakes, ...

Sequential modeling: prediction
prices xt≥0 at time t

For a trader to do well in the stock
market on day t he should want to
predict xt via xt∼p(xt|xt−1,…x1).

Problem: the number of inputs,
xt−1,…x1 increases with the amount of
data that we encounter

We will need an approximation to make this computationally tractable:

● Autoregressive models: autoregressive models & latent autoregressive models
● Hidden Markov Models

Sequential modeling: Autoregressive models
Two strategies:

Autoregressive (αυτοπαλινδρόμηση): use only T observations xt∼p(xt|xt−1,…xt-T).
The number of arguments is always the same. Perform regression on themselves.
For discrete objects such as words we use a classifier rather than a regressor.

Latent Autoregressive Models: keep some summary ht of the past observations
around and update that in addition to the actual prediction. Estimate xt|xt−1,ht−1
and moreover update ht=g(ht,xt) . Neural Networks with memoryful hidden layers
are LAMs. Moreover the “summary” is the hidden layer status.

Sequential modeling: Hidden Markov Models
Whenever the approximation p(xt|xt−1,…xt-T) = p(xt|xt−1,…x1) is accurate we say that
the sequence satisfies a Markov condition. For T=1 we have a first order Markov
model.

● Have a discrete one-of-N hidden state.
● Transitions between states are stochastic and

controlled by a transition matrix.
● The outputs produced by a state are stochastic.
● Memoryful models, time-cost to infer the hidden state

distribution.

Sequential modeling: Autoregressive models
Vanilla AR: the output variable depends linearly on its own previous values and on
a stochastic term

(Deep) Feed-forward NN AR extension

These generalize AR models by using one or more layers of non-linear hidden
units. Memoryless models: limited word-memory window; hidden state cannot
be used efficiently

Sequential modeling: Autoregressive FF models
prediction with embedding = 4

Poor prediction performance. Deep
architecture does not help

Reason: we use predictions instead of real
data and errors build up

Recurrent Neural Networks
Recurrent NN have hidden layers with loops

This loop “summarizes” the past (memoryful)

Recurrent -> Ανατροφοδοτούμενα ή Επαναληπτικά

Recurrent NN ≠ Recursive (Αναδρομικά) ΝΝ.

A recursive neural network is more like a hierarchical network where there is really
no time aspect to the input sequence but the input has to be processed
hierarchically in a tree fashion.

Recurrent Neural Networks
An unrolled Recurrent Neural Network

Language Modeling
Assuming the words in a text of length T are in turn w1,w2,…,wT. Given such a
sequence, the goal of a language model is to estimate the probability
p(w1,w2,…,wT).

p(Statistics,is,fun,.)=p(Statistics)p(is|Statistics)p(fun|Statistics,is)p(.|Statistics,is,fun).

Very useful

● Generate meaningful text. Draw wt∼p(wt|wt−1,…w1)
● Speech-to-text translation. Evaluate ‘to recognize speech’ vs ‘to wreck a nice

beach’
● Document summarization. Evaluate ‘dog bites man’ vs ‘man bites dog’,
● Improve the infamous autocorrector!

Language Modeling
Estimate probabilities using large corpora (e.g. Wikipedia, Project Gutenberg etc.)
and keep count of all occurrences and co-occurrences (n-grams)

Many problems

● must store all frequencies
● longer n-grams are much less frequent and probabilities tend to zero. Long

word sequences are almost certain to be novel (0 probability)
● we ignore the meaning of words: ‘cookie’ and ‘biscuit’ should occur in related

contexts
● Deep learning methods can be good at language modeling

Text preprocessing
1. Tokenization. “He left!” should be 3 tokens: “He”, “left”, “!” (NLTK tokenizer)
2. Remove infrequent words. For example keep the 7997 most frequent words

of the corpus. Reserve one special token UNKNOWN_TOKEN for the rest of
words

3. Add special start and end tokens. Prepend a special SENTENCE_START
token, and append a special SENTENCE_END token to each sentence (total
8000 tokens)

4. Use One-hot encoding for each sentence
the sky is blue

the 1 0 0 0

sky 0 1 0 0

is 0 0 1 0

blue 0 0 0 1* special tokens will be included in the encoding

Better: use Word2Vec embeddings

Κάτι πιο εκφραστικό: Word2Vec embeddings

Ο ανάστροφος πίνακας του C’
έχει διαστάσεις |V| x m

Aν πάρουμε το one-hot
διάνυσμα για τη λέξη Neymar
(διαστάσεις 1 x |V|) με άσσο
μόνο στη λέξη Neymar και τον
πολλαπλασιάσουμε με τον
προηγούμενο πίνακα θα
πάρουμε ένα διάνυσμα 1 x m
που είναι πλέον το embedding
για τη λέξη Neymar

Όταν στην είσοδο του RNN
εμφανίζεται η λέξη Neymar, Αντί
του one-hot encoding
διαστάσεων |V| με άσσο μόνο
στο Neymar, θα εισάγουμε το
πυκνό πλέον διάνυσμα 1 x m
του embedding

A concrete RNN example

sky

is blue

the

sky

is

Expected output y (supervised training at
each time step)

Task: learn a language model
e.g. predict next word

The diagram shows an unrolled
RNN. By unrolling we simply
mean that we write out the
network for the complete
sequence. For example, if the
sequence we care about is a
sentence of 5 words, the
network would be unrolled into
a 5-layer neural network, one
layer for each word.

Since the all the weights (U,V,W) are shared
for all time steps we can treat sequences
(sentences) of different length

A concrete RNN example

A concrete RNN example
● Vocabulary size C = 8000
● Hidden layer size H = 100

Total parameters (weights) = 2HC + H2. In the case of C=8000 and H=100 that’s
1,610,000

Forward pass

● We store all states st => longer sentences need more memory.
● At each step we output probabilities for all words in the vocabulary to be the

next word => use softmax to get the most probable at each step

Backpropagation Through Time

Error (or loss) e.g. cross-entropy (y: true labels)

We typically treat the full
sequence (sentence) as one
training example, so the total
error is just the sum of the errors
at each time step (word). For SGD we need to calculate the gradients

for all the weights V,U,W. Like we sum up
the errors, we also sum up the gradients at
each time step for one training example:

Backpropagation Through Time
To calculate these gradients we use the chain rule of
differentiation. We will use E3 as an example.

For V, only depends on the values at the current
time step (z3=Vs3)

For W (and U) the calculation depends on the previous
steps but

We need to apply the chain rule again . is a chain rule in
itself so we can rewrite it as

Backpropagation Through Time
BPTT is just a standard backpropagation on an unrolled
RNN with the only difference is that we sum up the
gradients for W at each time step.

Because W is used in every step up
to the output we care about, we
need to backpropagate gradients
from t=3 through the network all the
way to t=0

[Williams & Zipser 1995]

Backpropagation Through Time

● We use gradient accumulators
for V,W,U

● Bishops delta rule
● In practice many people

truncate the backpropagation
to a few steps.

Limitations of RNNs
● In principle, recurrent networks are capable of learning long distance

dependencies.
● In practice, standard gradient-based learning algorithms do not perform

very well.
○ Bengio et al. (1994) – the ‘vanishing gradient’ problem.
○ Mikolov & Bengio (2013) - the ‘exploding gradient’ problem. “Clipping” solution
○ The gradient is a product of Jacobian matrices, each associated with a step in the

forward computation. This can become very small or very large quickly.

● Nevertheless, the repeating cell structure is powerful
● Today, there are several methods available for training recurrent neural

networks that avoids these problems.
○ LSTMs, optimisation with small gradients, careful weight initialisations, …

The Vanishing Gradient problem
The tanh and sigmoid functions have derivatives of 0 at both ends.

Thus, with small values in the matrix and multiple matrix
multiplications the gradient values are shrinking exponentially fast,
eventually vanishing completely after a few time steps.

Gradient contributions from “far away” steps become zero, and the
state at those steps doesn’t contribute to what you are learning: You
end up not learning long-range dependencies.

Vanishing gradients aren’t exclusive to RNNs. They also happen in
deep Feedforward Neural Networks. It’s just that RNNs tend to be
very deep (as deep as the sentence length in our case), which
makes the problem a lot more common.

Long Short Term Memory networks (LSTM)
Hochreiter & Schmidhuber (1997)

All recurrent neural networks have the
form of a chain of repeating modules of
neural network.

In standard RNNs, this repeating module
is a single tanh layer.

In LSTMs repeating module has four
layers instead of one.

RNN

LSTM

The cell state and three gates
The key to LSTMs is the cell state, the horizontal line running through
the top of the diagram. It runs straight down the entire chain, with only
some minor linear interactions. It’s very easy for information to just flow
along it unchanged.

The LSTM does have the ability to remove or add information to the cell
state, carefully regulated by structures called gates.

Gates are a way to optionally let information through. They are
composed out of a sigmoid neural net layer and a pointwise
multiplication operation. The sigmoid layer outputs numbers between
zero and one, describing how much of each component should be let
through. A value of zero means “let nothing through,” while a value of
one means “let everything through!”

An LSTM has three of these gates, to protect and control the cell state.

The first step is to decide what information we’re going to throw away from the cell state.

This decision is made by a sigmoid layer called the “forget gate layer.”

It looks at ht−1 and xt, and outputs a number between 0 and 1 for each number in the cell state Ct−1.

A 1 represents “keep this” while a 0 represents “completely get rid of this.”

Forget gate

The next step is to decide what new information to store in the cell state. This has two parts:

First, a sigmoid layer called the “input gate layer” decides which values will be updated.

Next, a tanh layer creates a vector of new candidate values, C~t, that could be added to the state.

In the next step, we combine these two to create an update to the state.

Input gate

We now update the old cell state, Ct−1, into the new cell state Ct.

We multiply the old state by ft, forgetting the things we decided to forget earlier.

Then we add it∗C~t. This is the new candidate values, scaled by how much we decided to update each state
value.

Cell state
update

Finally, we decide what we’re going to output. This output will be based on our cell state, but will be a filtered
version.

First, we run a sigmoid layer over ht-1 which decides what parts of the cell state we’re going to output.

Then, we put the cell state through tanh (to push the values to be between −1 and 1) and multiply it by the
output of the sigmoid gate, so that we only output the parts we decided to.

Overall weights to learn: Wf, Wi, Wc, Wo

Output

We add “peephole connections.” This means that we let the gate layers look at the cell state.

[Gers & Schmidhuber (2000)]

Variants: “Peephole” LSTMs

GRUs combine the forget and input gates into a single “update gate.”

It also merges the cell state and hidden state.

The resulting model is simpler than standard LSTM models, and has been growing increasingly popular.

[Cho, et al. (2014)]

● Many more LSTM variants, many hyperparameters, empirical evaluation

Variants: Gated Recurrent Unit (GRU)

Deep RNNs and LSTMs

● Each layer learns higher level features
● For recurrent architectures the depth is usually low (2-4)

Deep LSTM

Bidirectional RNNs and LSTMs

● We split the input and train two networks in reverse order
● We concatenate the hidden layers outputs at each step to calculate outputs

[Graves 2005]

Applications of sequence modeling: Text Generation
● Input sequence is of same

type (words) as output
sequence.

● We take a sample of next
words and decide with
argmax or we take top-k
probable words and select
one at random or perform
random multinomial
experiments with the
respective probabilities

● Repeat for next word

● the RNN hidden layers learn and
store the language model

● character - level generation

Karpathy: The Unreasonable Effectiveness of
Recurrent Neural Networks

Applications of sequence modeling
Input can be different modality than the output.

Encode input in hidden state, decode in output

One to many, many to many, many to one schemes

● Image captioning
● Map unsegmented connected handwriting to strings.
● Map sequences of acoustic signals to sequences of phonemes.
● Translate sentences from one language into another one.

Mikolov - Karpathy

Director of AI at Tesla Neural Networks for the Autopilot Facebook AI Research. Previously Google Brain

Historical notice
"Simple Recurrent Networks" (SRN) are old

● Elman networks [1990]
● Jordan networks [1997]

Bibliography
● Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2), 179-211.
● Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE transactions on neural

networks, 5(2), 157-166.
● Williams, R. J., & Zipser, D. (1995). Gradient-based learning algorithms for recurrent. Backpropagation: Theory, architectures, and applications, 433.
● Jordan, M. I. (1997). Serial order: A parallel distributed processing approach. In Advances in psychology (Vol. 121, pp. 471-495). North-Holland.
● Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
● Gers, F. A., & Schmidhuber, J. (2000). Recurrent nets that time and count. In Proceedings of the IEEE-INNS-ENNS International Joint Conference

on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium (Vol. 3, pp. 189-194). IEEE.
● Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural

Networks, 18(5-6), 602-610.
● Fernández, S., Graves, A., & Schmidhuber, J. (2007, September). An application of recurrent neural networks to discriminative keyword spotting. In

International Conference on Artificial Neural Networks (pp. 220-229). Springer, Berlin, Heidelberg.
● Pascanu, R., Mikolov, T., & Bengio, Y. (2013, February). On the difficulty of training recurrent neural networks. In International conference on

machine learning (pp. 1310-1318).
● Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
● Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using

RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.
● Karpathy, A., & Fei-Fei, L. (2015). Deep visual-semantic alignments for generating image descriptions. In Proceedings of the IEEE conference on

computer vision and pattern recognition (pp. 3128-3137).

