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Main question:

How do we take advantage of 
relational structure for better 

prediction?
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Complex domains have a rich relational 
structure, which can be represented as a

relational graph

By explicitly modeling relationships we 
achieve better performance!
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Images

Text/Speech

Modern deep learning toolbox is designed 
for simple sequences & grids
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Modern 
deep learning toolbox 

is designed for 
sequences & grids
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Not everything 
can be represented as 
a sequence or a grid

How can we develop neural 
networks that are much more 

broadly applicable?

New frontiers beyond classic neural 
networks that only learn on images 

and sequences
9/22/2021
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Networks are complex.
� Arbitrary size and complex topological 

structure (i.e., no spatial locality like grids)

� No fixed node ordering or reference point
� Often dynamic and have multimodal features
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(Supervised) Machine Learning Lifecycle: 
This feature, that feature. Every single time!

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 36

Raw 
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Graph 
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Learning 
Algorithm Model

Downstream 
prediction task

Feature 
Engineering

Representation 
Learning --

Automatically 
learn the features
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Map nodes to d-dimensional 
embeddings such that similar nodes in 

the network are embedded close 
together
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representationnode

Feature representation, 
embedding

u
Learn a neural network
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Node level

Edge-level

Community 
(subgraph)
level

Graph-level 
prediction,
Graph 
generation



� Node classification: Predict a property of a node
� Example: Categorize online users / items

� Link prediction: Predict whether there are missing 
links between two nodes
� Example: Knowledge graph completion

� Graph classification: Categorize different graphs
� Example: Molecule property prediction

� Clustering: Detect if nodes form a community
� Example: Social circle detection

� Other tasks:
� Graph generation: Drug discovery
� Graph evolution: Physical simulation
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These Graph ML tasks lead to 
high-impact applications!





A protein chain acquires its native 3D structure
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CompƵƚaƚionallǇ predicƚ a proƚein͛s 3D structure 
based solely on its amino acid sequence
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Image credit: DeepMind
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Items

Users

� Users interacts with items
� Watch movies, buy merchandise, listen to music

� Nodes: Users and items

� Edges: User-item interactions
� Goal: Recommend items users might like

9/22/2021

Interactions

“You might also like”



Task: Recommend related pins to users

Query pin

8

Predict whether two nodes in a graph are related

Task: Learn node 
embeddings such that

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Ying et al., Graph Convolutional Neural Networks for Web-Scale Recommender Systems, KDD 2018
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Many patients take multiple drugs to treat 
complex or co-existing diseases:

� 46% of people ages 70-79 take more than 5 drugs
� Many patients take more than 20 drugs to treat 

heart disease, depression, insomnia, etc.

Task: Given a pair of drugs predict 
adverse side effects

,

Prescribed 
drugs

Drug
side effect

30% 
prob.

65% 
prob.
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� Nodes: Road segments
� Edges: Connectivity between road segments
� Prediction: Time of Arrival (ETA)
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Predicting Time of Arrival with Graph Neural 
Networks

� Used in Google Maps
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� Antibiotics are small molecular graphs
� Nodes: Atoms

� Edges: Chemical bonds
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Konaklieva, Monika I. "Molecular targets of Ⱦ-lactam-based antimicrobials: 
beyond the usual suspects." Antibiotics 3.2 (2014): 128-142.

Image credit: CNN
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Stokes, Jonathan M., et al. "A deep learning approach to antibiotic discovery." 
Cell 180.4 (2020): 688-702.

� A Graph Neural Network graph classification model
� Predict promising molecules from a pool of candidates

Stokes et al., A Deep Learning Approach to Antibiotic Discovery, Cell 2020
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� Objects: nodes, vertices N
� Interactions: links, edges E
� System: network, graph G(N,E)
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Undirected
� Links: undirected 

(symmetrical, reciprocal)

� Examples:
� Collaborations
� Friendship on Facebook

Directed
� Links: directed 

(arcs)

� Examples:
� Phone calls
� Following on Twitter
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� A heterogeneous graph is defined as 

� Nodes with node types 

� Edges with relation types 

� Node type
� Relation type

9/22/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 71
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In directed networks we define 
an in-degree and out-degree.
The (total) degree of a node is the 
sum of in- and out-degrees.
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� Bipartite graph is a graph whose nodes can 
be divided into two disjoint sets U and V such that 
every link connects a node in U to one in V; that is, 
U and V are independent sets

� Examples:
� Authors-to-Papers (they authored)
� Actors-to-Movies (they appeared in)
� Users-to-Movies (they rated)
� Recipes-to-Ingredients (they contain)

� ͞Folded͟ neƚǁorks͗
� Author collaboration networks
� Movie co-rating networks
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Aij = 1 if there is a link from node i to node j
Aij = 0 otherwise
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� Adjacency list:
� Easier to work with if network is

� Large
� Sparse

� Allows us to quickly retrieve all 
neighbors of a given node
� 1:
� 2: 3, 4
� 3: 2, 4

� 4: 5
� 5: 1, 2

9/22/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 81
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� Machine learning with Graphs
� Applications and use cases

� Different types of tasks:
� Node level
� Edge level

� Graph level

� Choice of a graph representation:
� Directed, undirected, bipartite, weighted, 

adjacency matrix
9/22/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 89
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� Design features for nodes/links/graphs
� Obtain features for all training data

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 8
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� Train an ML model:
� Random forest

� SVM

� Neural network, etc.

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 9
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� Apply the model:
� Given a new 

node/link/graph, obtain 
its features and make a 
prediction
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Node classification

ML needs features.
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Goal: Characterize the structure and position of 
a node in the network:

� Node degree

� Node centrality

� Clustering coefficient

� Graphlets

9/27/2021 15Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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� The degree ݇௩ of node ݒ is the number of 
edges (neighboring nodes) the node has.

� Treats all neighboring nodes equally.

9/27/2021 16Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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� Node degree counts the neighboring nodes 
without capturing their importance.

� Node centrality ܿ௩ takes the node importance 
in a graph into account

� Different ways to model importance:
� Engienvector centrality

� Betweenness centrality

� Closeness centrality

� aŶd ŵaŶǇ ŽƚŚeƌƐ͙

9/27/2021 17Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Eigenvector centrality



� Betweenness centrality:
� A node is important if it lies on many shortest 

paths between other nodes.

� Example:
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� Closeness centrality:
� A node is important if it has small shortest path 

lengths to all other nodes.

� Example:
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� Measures how connected ݒᇱݏ neighboring 
nodes are:

� Examples:
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ݒ
ݒ ݒ

݁௩ ൌ 1 ݁௩ ൌ 0.5 ݁௩ ൌ 0

#(node pairs among ݇௩ neighboring nodes)
In our examples below the denominator is 6 (4 choose 2).



� Observation: Clustering coefficient counts the 
#(triangles) in the ego-network

� We can generalize the above by counting 
#(pre-specified subgraphs, i.e., graphlets).

9/27/2021 23Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

ݒ ݒ

3 triangles (out of 6 node triplets)
݁௩ ൌ 0.5

ݒ ݒ



� We have introduced different ways to obtain 
node features.

� They can be categorized as:
� Importance-based features:

� Node degree

� Different node centrality measures

� Structure-based features:
� Node degree

� Clustering coefficient

� Graphlet count vector

9/27/2021 29Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



� Importance-based features: capture the 
importance of a node in a graph
� Node degree:

� Simply counts the number of neighboring nodes

� Node centrality:
� Models importance of neighboring nodes in a graph

� Different modeling choices: eigenvector centrality, 
betweenness centrality, closeness centrality

� Useful for predicting influential nodes in a graph
� Example: predicting celebrity users in a social 

network
9/27/2021 30Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



� Structure-based features: Capture topological 
properties of local neighborhood around a node.
� Node degree:

� Counts the number of neighboring nodes

� Clustering coefficient:
� Measures how connected neighboring nodes are

� Graphlet degree vector:
� Counts the occurrences of different graphlets

� Useful for predicting a particular role a node 
plays in a graph:
� Example: Predicting protein functionality in a 

protein-protein interaction network.
9/27/2021 31Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu



� The task is to predict new links based on the 
existing links.

� At test time, node pairs (with no existing links) 
are ranked, and top ܭ node pairs are predicted.

� The key is to design features for a pair of nodes.

9/27/2021 34Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Two formulations of the link prediction task:
� 1) Links missing at random:

� Remove a random set of links and then 
aim to predict them

� 2) Links over time:
� Given ܩሾݐ, ᇱݐ ሿ a graph defined by edges 

up to time ݐᇱ , output a ranked list L
of edges (not in ܩሾݐ, ᇱݐ ሿ) that are 
predicted to appear in time ܩሾݐଵ, ଵᇱݐ ሿ

� Evaluation:
� n = |Enew|: # new edges that appear during 

the test period ሾݐଵ, ଵᇱሿݐ
� Take top n elements of L and count correct edges

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 35
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� Methodology:
� For each pair of nodes (x,y) compute score c(x,y)

� For example, c(x,y) could be the # of common neighbors 
of x and y

� Sort pairs (x,y) by the decreasing score c(x,y)
� Predict top n pairs as new links
� See which of these links actually

appear in ܩሾݐଵ, ଵᇱݐ ሿ
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� Distance-based feature
� Local neighborhood overlap
� Global neighborhood overlap
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Shortest-path distance between two nodes
� Example:

� However, this does not capture the degree of 
neighborhood overlap:
� Node pair (B, H) has 2 shared neighboring nodes, 

while pairs (B, E) and (A, B) only have 1 such node.

9/27/2021 38Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Captures # neighboring nodes shared between 
two nodes ࢜ and :࢜
� Common neighbors: |ܰ ଵݒ ∩ܰ ଶݒ |

� Example:  ܰ 𝐴 ∩ܰ ܤ ൌ ܥ ൌ 1

� Jaccaƌd͛Ɛ cŽefficieŶƚ͗ |ே ௩భ ∩ே ௩మ |
|ே ௩భ ∪ே ௩మ |

� Example: 
ே  ∩ே 
ே  ∪ே 

ൌ ሼሽ
ሼ,ሽ

ൌ ଵ
ଶ

� Adamic-Adar index:
σ௨∈ே ௩భ ∩ே ௩మ

ଵ
୪୭ሺೠሻ

� Example: 
ଵ

୪୭ሺሻ
ൌ ଵ

୪୭ ସ
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� Limitation of local neighborhood features:
� Metric is always zero if the two nodes do not have 

any neighbors in common.

� However, the two nodes may still potentially be 
connected in the future.

� Global neighborhood overlap metrics resolve 
the limitation by considering the entire graph.

9/27/2021 40Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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� Katz index: count the number of walks of all 
lengths between a given pair of nodes.

� Q: How to compute #walks between two 
nodes?

� Use powers of the graph adjacency matrix!

9/27/2021 41Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



� Distance-based features:
� Uses the shortest path length between two nodes 

but does not capture how neighborhood overlaps.
� Local neighborhood overlap:

� Captures how many neighboring nodes are shared 
by two nodes.

� Becomes zero when no neighbor nodes are shared.
� Global neighborhood overlap:

� Uses global graph structure to score two nodes.

� Katz index counts #walks of all lengths between two 
nodes.

9/27/2021 46Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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� Goal: We want features that characterize the 
structure of an entire graph.

� For example:

9/27/2021 48Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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� Graph Kernels: Measure similarity between 
two graphs:
� Graphlet Kernel [1]

� Weisfeiler-Lehman Kernel [2]

� Other kernels are also proposed in the literature 
(beyond the scope of this lecture)

� Random-walk kernel

� Shortest-path graph kernel

� AŶd ŵaŶǇ ŵŽƌe͙

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 50

[1] Shervashidze, Nino, et al. "Efficient graphlet kernels for large graph comparison." Artificial Intelligence and Statistics. 2009.
[2] Shervashidze, Nino, et al. "Weisfeiler-lehman graph kernels." Journal of Machine Learning Research 12.9 (2011).



� Goal: Design graph feature vector ߶ ܩ
� Key idea: Bag-of-Words (BoW) for a graph

� Recall: BoW simply uses the word counts as 
features for documents (no ordering considered).

� Naïve extension to a graph: Regard nodes as words.

� Since both graphs have 4 red nodes, we get the 
Ɛaŵe feaƚƵƌe ǀecƚŽƌ fŽƌ ƚǁŽ dŝffeƌeŶƚ gƌaƉŚƐ͙
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What if we use Bag of node degrees?
Deg1:      Deg2:     Deg3: 

� Both Graphlet Kernel and Weisfeiler-Lehman 
(WL) Kernel use Bag-of-* representation of 
graph, where * is more sophisticated than 
node degrees!

9/27/2021 52Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

߶ሺ ሻ = count(        ) = [1, 2, 1] 

߶ሺ ሻ = count(        ) = [0, 2, 2] 

Obtains different features 
for different graphs!



� Traditional ML Pipeline
� Hand-crafted feature + ML model

� Hand-crafted features for graph data
� Node-level:

� Node degree, centrality, clustering coefficient, graphlets

� Link-level:
� Distance-based feature

� local/global neighborhood overlap

� Graph-level:
� Graphlet kernel, WL kernel

9/27/2021 69Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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2

Input 
Graph

Structured 
Features

Learning 
Algorithm  

Downstream 
prediction task

Feature engineering
(node-level, edge-level, graph-

level features)

Given an input graph, extract node, link 
and graph-level features, learn a model 
(SVM, neural network, etc.) that maps 
features to labels.

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu9/28/2021
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3

Input 
Graph

Structured 
Features

Learning 
Algorithm  Prediction

Downstream 
prediction task

Feature 
Engineering

Representation Learning --
Automatically

learn the features

Graph Representation Learning alleviates 

the need to do feature engineering every 

single time.

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu9/28/2021



Goal: Efficient task-independent feature 
learning for machine learning with graphs!

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 4
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� Task: Map nodes into an embedding space

� Similarity of embeddings between nodes indicates 
their similarity in the network. For example:
� Both nodes are close to each other (connected by an edge)

� Encode network information
� Potentially used for many downstream predictions

9/28/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5

Vec

ℝௗembeddings

� Node classification
� Link prediction
� Graph classification
� Anomalous node detection
� Clustering
� «.

Tasks
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� Assume we have a graph G:

� V is the vertex set.
� A is the adjacency matrix (assume binary).
� For simplicity: No node features or extra 

information is used

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 89/28/2021
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� Goal is to encode nodes so that similarity in 
the embedding space (e.g., dot product) 
approximates similarity in the graph
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Goal:

Need to define!

9/28/2021

in the original network Similarity of the embedding
similarity ,ݑ ݒ ൎ 𝐳௩𝐳௨



1. Encoder maps from nodes to embeddings
2. Define a node similarity function (i.e., a 

measure of similarity in the original network)
3. Decoder𝐃𝐄𝐂 maps from embeddings to the 

similarity score
4. Optimize the parameters of the encoder so 

that:

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 119/28/2021

in the original network Similarity of the embedding

similarity ,ݑ ݒ ൎ 𝐳௩𝐳௨
𝐃𝐄𝐂ሺ𝐳௩𝐳௨ሻ



� Encoder: maps each node to a low-dimensional 
vector

� Similarity function: specifies how the 
relationships in vector space map to the 
relationships in the original network

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 12

Similarity of ݑ and ݒ in 
the original network

dot product between node 
embeddings

9/28/2021

Decoder

ENC ݒ ൌ 𝐳௩

similarity ,ݑ ݒ ൎ 𝐳௩𝐳௨

node in the input graph

d-dimensional 
embedding



Simplest encoding approach: Encoder is just an 

embedding-lookup
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matrix, each column is a node 
embedding [what we learn / 
optimize]

indicator vector, all zeroes 
except a one in column 
indicating node v

9/28/2021

ENC ݒ ൌ 𝐳࢜ ൌ 𝐙 ⋅ ݒ



Simplest encoding approach: encoder is just an 

embedding-lookup

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 14

Dimension/size 
of embeddings

one column per node 

embedding 
matrix

embedding vector for a 
specific node

9/28/2021



Simplest encoding approach: Encoder is just an 

embedding-lookup

Each node is assigned a unique 

embedding vector

(i.e., we directly optimize 
the embedding of each node)

Many methods: DeepWalk, node2vec

9/28/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 15



� Encoder + Decoder Framework

� Shallow encoder: embedding lookup
� Parameters to optimize: 𝐙 which contains node 

embeddings 𝐳௨ for all nodes ݑ ∈ ܸ
� We will cover deep encoders (GNNs) in Lecture 6

� Decoder: based on node similarity.
� Objective: maximize 𝐳௩𝐳௨ for node pairs ሺݑ, ሻݒ

that are similar

9/28/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 16



� Key choice of methods is how they define node 

similarity.

� Should two nodes have a similar embedding if 
they͙
� are linked?
� share neighbors?
� haǀe Ɛimilaƌ ͞ƐƚƌƵcƚƵƌal ƌŽleƐ͍͟

� We will now learn node similarity definition that uses 
random walks, and how to optimize embeddings for 
such a similarity measure.

9/28/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 17



� This is unsupervised/self-supervised way of 
learning node embeddings.
� We are not utilizing node labels
� We are not utilizing node features
� The goal is to directly estimate a set of coordinates 

(i.e., the embedding) of a node so that some aspect 
of the network structure (captured by DEC) is 
preserved.

� These embeddings are task independent

� They are not trained for a specific task but can be 
used for any task.

9/28/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 18
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� Vector 𝐳௨:
� The embedding of node ݑ (what we aim to find).

� Probabilityܲ ݒ 𝐳௨ሻ :
� The (predicted) probability of visiting node ݒ on 

random walks starting from node ݑ.

� Softmax function:
� Turns vector of ܭ real values (model predictions) into 
ܭ probabilities that sum to 1: ሻሾ݅ሿࢠሺߪ ൌ ࢠሾሿ

σೕసభ
಼ ࢠሾೕሿ

� Sigmoid function:
� S-shaped function that turns real values into the range of (0, 1). 

Written as ܵ ݔ ൌ ଵ
ଵାషೣ

.
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Non-linear functions used to produce predicted probabilities

Our model prediction based on 𝐳௨
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Given a graph and a starting 
point, we select a neighbor of 
it at random, and move to this 
neighbor; then we select a 
neighbor of this point at 
random, and move to it, etc. 
The (random) sequence of 
points visited this way is a 
random walk on the graph.

Step 1 Step 2

Step 3 Step 4

Step 5
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probability that u
and v co-occur on a 
random walk over 

the graph

9/28/2021



1. Estimate probability of visiting node ࢜ on a 

random walk starting from node ࢛ using 

some random walk strategy ࡾ

2. Optimize embeddings to encode these 

random walk statistics:

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 239/28/2021

Similarity in embedding space (Here: 
dot product=cosሺߠሻ) eQcRdeV UaQdRP ZaON ³ViPiOaUiW\´



1. Expressivity: Flexible stochastic definition of 
node similarity that incorporates both local 
and higher-order neighborhood information
Idea: if random walk starting from node ݑ
visits ݒ with high probability, ݑ and ݒ are 
similar (high-order multi-hop information)

2. Efficiency: Do not need to consider all node 
pairs when training; only need to consider 
pairs that co-occur on random walks
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� Given ܩ ൌ ሺܸ,  ,ሻܧ
� Our goal is to learn a mapping ݂: ݑ → ℝௗ:
݂ ݑ ൌ 𝐳௨

� Log-likelihood objective: 

� ோܰሺݑሻ is the neighborhood of node ݑ by strategy ܴ

� Given node ݑ, we want to learn feature 
representations that are predictive of the nodes 
in its random walk neighborhood ோܰሺݑሻ.
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1. Run short fixed-length random walks 

starting from each node ݑ in the graph using 
some random walk strategy R.

2. For each node ݑ collect ோܰሺݑሻ, the multiset*

of nodes visited on random walks starting 
from ݑ.

3. Optimize embeddings according to: Given 
node ݑ, predict its neighbors ୖܰሺݑሻ.

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 27
* ோܰ ሺݑሻ can have repeat elements since nodes can be visited multiple times on random walks

9/28/2021

Maximum likelihood objective
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� Intuition: Optimize embeddings ࢠ௨ to maximize 
the likelihood of random walk co-occurrences.

� Parameterize ܲሺݒ|𝐳ݑሻ using softmax:

9/28/2021

Why softmax?
We want node ݒ to be 
most similar to node ݑ
(out of all nodes ݊).
Intuition: σ exp ݔ ൎ
max


expሺݔሻ

Equivalently,
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Putting it all together:

sum over all 
nodes ݑ

sum over nodes ݒ
seen on random 

walks starting from ݑ

predicted probability of ݑ
and ݒ co-occuring on 

random walk

Optimizing random walk embeddings =

Finding embeddings 𝐳࢛ that minimize L
9/28/2021
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But doing this naively is too expensive!

Nested sum over nodes gives 
O(|V|2) complexity!

9/28/2021
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� After we obtained the objective function, how do 
we optimize (minimize) it?

� Gradient Descent: a simple way to minimize ࣦ :

� Initialize ݖ௨ at some randomized value for all nodes ݑ.

� Iterate until convergence:

� For all ݑ, compute the derivative డࣦ
డ௭ೠ

.

� For all ݑ, make a step in reverse direction of derivative: ݖ௨ ← ௨ݖ െ ߟ డࣦ
డ௭ೠ

.
9/28/2021

ࣦ ൌ 
௨∈


௩∈ேೃሺ௨ሻ

െlogሺܲሺݒ|𝐳௨ሻሻ

learning rate :ߟ
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� Stochastic Gradient Descent: Instead of evaluating 
gradients over all examples, evaluate it for each 
individual training example.

� Initialize ݖ௨ at some randomized value for all nodes ݑ.

� Iterate until convergence:

� Sample a node ݑ, for all ݒ calculate the derivative డࣦ
ሺೠሻ

డ௭ೡ
.

� For all ௩ݖ:update ,ݒ ← ௩ݖ െ ߟ డࣦሺೠሻ

డ௭ೡ
.

9/28/2021

ࣦሺ௨ሻ ൌ 
௩∈ேೃሺ௨ሻ

െlogሺܲሺݒ|𝐳௨ሻሻ



1. Run short fixed-length random walks starting 
from each node on the graph

2. For each node ݑ collect ோܰሺݑሻ, the multiset of 
nodes visited on random walks starting from ݑ.

3. Optimize embeddings using Stochastic 
Gradient Descent:
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We can efficiently approximate this using 
negative sampling!

9/28/2021



� So far we have described how to optimize 
embeddings given a random walk strategy R

� What strategies should we use to run these 

random walks?

� Simplest idea: Just run fixed-length, unbiased 

random walks starting from each node (i.e., 
DeepWalk from Perozzi et al., 2013)
� The issue is that such notion of similarity is too constrained

� How can we generalize this?

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 379/28/2021

Reference: Perozzi et al. 2014. DeepWalk: Online Learning of Social Representations. KDD.



� Core idea: Embed nodes so that distances in 
embedding space reflect node similarities in 
the original network.

� Different notions of node similarity:

� Naïve: similar if two nodes are connected
� Neighborhood overlap (covered in Lecture 2)
� Random walk approaches (covered today)

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 489/28/2021



� How to use embeddings ࢠ of nodes:

� Clustering/community detection: Cluster points ࢠ
� Node classification: Predict label of node ݅ based on ࢠ
� Link prediction: Predict edge ሺ݅, ݆ሻ based on ሺࢠ, ሻࢠ

� Where we can: concatenate, avg, product, or take a difference 
between the embeddings:
� Concatenate: ݂ሺࢠ, ,ࢠሻ= ݃ሺሾࢠ ሿሻࢠ
� Hadamard: ݂ሺࢠ, ࢠሻ= ݃ሺࢠ ∗ ሻࢠ (per coordinate product)
� Sum/Avg: ݂ሺࢠ, ࢠሻ= ݃ሺࢠ  ሻࢠ
� Distance: ݂ሺࢠ , ࢠ||ሻ= ݃ሺࢠ െ ଶሻ||ࢠ

� Graph classification: Graph embedding ࡳࢠ via aggregating 
node embeddings or anonymous random walks. 
Predict label based on graph embedding ீࢠ.
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¡ Intuition: Map nodes to !-dimensional 
embeddings such that similar nodes in the 
graph are embedded close together 

3

f (    )=
Input graph 2D node embeddings

How to learn mapping function "?
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



¡ Today: We will now discuss deep learnig
methods based on graph neural networks 
(GNNs):

¡ Note: All these deep encoders can be 
combined with node similarity functions 
defined in the Lecture 3.

8

multiple layers of 
non-linear transformations 
based on graph structure

ENC $ =

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Tasks we will be able to solve:
¡ Node classification
§ Predict a type of a given node

¡ Link prediction
§ Predict whether two nodes are linked

¡ Community detection
§ Identify densely linked clusters of nodes

¡ Network similarity
§ How similar are two (sub)networks

1010/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



But networks are far more complex!
§ Arbitrary size and complex topological structure (i.e., 

no spatial locality like grids)

§ No fixed node ordering or reference point
§ Often dynamic and have multimodal features

12

vs.

Networks Images

Text
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¡ Assume we have a graph <:
§ B is the vertex set
§ C is the adjacency matrix (assume binary)
§ D ∈ ℝ<×|?| is a matrix of node features
§ G: a node in B; H G : the set of neighbors of G.
§ Node features:

§ Social networks: User profile, User image
§ Biological networks: Gene expression profiles, gene 

functional information
§ When there is no node feature in the graph dataset:

§ Indicator vectors (one-hot encoding of a node)
§ Vector of constant 1: [1, 1, …, 1]

3310/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



¡ Join adjacency matrix and features
¡ Feed them into a deep neural net:

¡ Issues with this idea:
¡ Issues with this idea:
§ I(|B|) parameters
§ Not applicable to graphs of different sizes
§ Sensitive to node ordering

34
End-to-end learning on graphs with GCNs Thomas Kipf

A    B    C    D    E
A
B
C
D
E

0     1     1     1     0          1     0
1     0     0     1     1          0     0
1     0     0     1     0          0     1
1     1     1     0     1          1     1
0     1     0     1     0          1     0

Feat

A naïve approach

8

• Take adjacency matrix     and feature matrix   

• Concatenate them  

• Feed them into deep (fully connected) neural net 

• Done?

Problems:

• Huge number of parameters 
• No inductive learning possible

?A

C

B

D

E

[A,X]
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CNN on an image:

35

Goal is to generalize convolutions beyond simple lattices
Leverage node features/attributes (e.g., text, images)
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But our graphs look like this:

36

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

What if our data looks like this?

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

What if our data looks like this?

or this:

§ There is no fixed notion of locality or sliding 
window on the graph

§ Graph is permutation invariant
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



¡ Graph does not have a canonical order of the nodes!
¡ We can have many different order plans.
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¡ Graph does not have a canonical order of the nodes!

38

A
C

B

E
F

D

A

B

C

D

E

F

Node features )$ Adjacency matrix *$

A
B
C
D
E
F

A B C D E FOrder plan 1
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¡ Graph does not have a canonical order of the nodes!

39

A
C

B

E
F

D

A

B

C

D

E

F

Node features )$ Adjacency matrix *$

A
B
C
D
E
F

A B C D E FOrder plan 1

E
D

F

B
A

C

A

B

C

D

E

F

Node features )# Adjacency matrix *#

A
B
C
D
E
F

A B C D E FOrder plan 2
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¡ Graph does not have a canonical order of the nodes!

40

A
C

B

E
F

D

A

B

C

D

E

F

Node feature )$ Adjacency matrix *$

A
B
C
D
E
F

A B C D E FOrder plan 1

E
D

F

B
A

C

A

B

C

D

E

F

Node feature )# Adjacency matrix *#

A
B
C
D
E
F

A B C D E FOrder plan 2

Graph and node representations 
should be the same for Order plan 1

and Order plan 2
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Are other neural network architectures, e.g., 
MLPs, permutation invariant / equivariant?
¡ No.
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Switching the order of the 
input leads to different 

outputs!



Are other neural network architectures, e.g., 
MLPs, permutation invariant / equivariant?
¡ No.
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This explains why the naïve MLP approach 
fails for graphs!

End-to-end learning on graphs with GCNs Thomas Kipf

A    B    C    D    E
A
B
C
D
E

0     1     1     1     0          1     0
1     0     0     1     1          0     0
1     0     0     1     0          0     1
1     1     1     0     1          1     1
0     1     0     1     0          1     0

Feat

A naïve approach

8

• Take adjacency matrix     and feature matrix   

• Concatenate them  

• Feed them into deep (fully connected) neural net 

• Done?

Problems:

• Huge number of parameters 
• No inductive learning possible

?A

C

B

D

E

[A,X]



¡ Are any neural network architecture, e.g., 
MLPs, permutation invariant / equivariant?
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This explains why the naïve MLP approach is bad!

End-to-end learning on graphs with GCNs Thomas Kipf

A    B    C    D    E
A
B
C
D
E

0     1     1     1     0          1     0
1     0     0     1     1          0     0
1     0     0     1     0          0     1
1     1     1     0     1          1     1
0     1     0     1     0          1     0

Feat

A naïve approach

8

• Take adjacency matrix     and feature matrix   

• Concatenate them  

• Feed them into deep (fully connected) neural net 

• Done?

Problems:

• Huge number of parameters 
• No inductive learning possible

?A

C

B

D

E

[A,X]

Next: Design graph neural 
networks that are permutation 

invariant / equivariant by 
passing and aggregating 

information from neighbors!



Idea: Node’s neighborhood defines a 
computation graph

53

Determine node 
computation graph

1

Propagate and
transform information

1

Learn how to propagate information across the 
graph to compute node features

[Kipf and Welling, ICLR 2017]
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¡ Key idea: Generate node embeddings based 
on local network neighborhoods 

54

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A
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¡ Intuition: Nodes aggregate information from 
their neighbors using neural networks

55

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Neural networks
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¡ Intuition: Network neighborhood defines a 
computation graph

56

Every node defines a computation 
graph based on its neighborhood!
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¡ Model can be of arbitrary depth:
§ Nodes have embeddings at each layer
§ Layer-0 embedding of node " is its input feature, $+
§ Layer-% embedding gets information from nodes that 

are % hops away

57

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

xA

xB

xC

xE
xF

xA

xA

Layer-2

Layer-1
Layer-0
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¡ Neighborhood aggregation: Key distinctions 
are in how different approaches aggregate 
information across the layers

58

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

?

?

?

?

What is in the box?
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¡ Basic approach: Average information from 
neighbors and apply a neural network

59

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(1) average messages 
from neighbors 

(2) apply neural network
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¡ Basic approach: Average neighbor messages 
and apply a neural network

60

Average of neighbor’s 
previous layer embeddings

Total number 
of layers

Initial 0-th layer embeddings are 
equal to node features

Embedding after L 
layers of neighborhood 

aggregation 

Non-linearity 
(e.g., ReLU)

embedding of 
$ at layer (hBC = xB

zB = hB
(D)

hB
(E;0) = >(WE N

F∈H(B)

hF
(E)

N(G)
+ BEhB

(E)), ∀R ∈ {0, … , T − 1}
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Notice summation is a permutation 
invariant pooling/aggregation.



&I

How do we train the GCN to 
generate embeddings?

Need to define a loss function on the embeddings.
6310/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



We can feed these embeddings into any loss function
and run SGD to train the weight parameters

ℎ!": the hidden representation of node " at layer #
¡ $": weight matrix for neighborhood aggregation
¡ %": weight matrix for transforming hidden vector of 

self
64

Trainable weight matrices 
(i.e., what we learn) 

Final node embedding

h6(8) = x6

z6 = h6(:)
h6(;<0) = :(W; <

=∈?(6)

h=(;)
N(>) + B;h6

(;)), ∀B ∈ {0. . G − 1}
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¡ Many aggregations can be performed 
efficiently by (sparse) matrix operations

¡ Let 
¡ Then: ∑,∈.& ℎ,

(/) = A!,:H(/)
¡ Let - be diagonal matrix where
-!,! = Deg $ = |2 $ |
§ The inverse of J: J!" is also diagonal:
J#,#!" = 1/|L M |

¡ Therefore,

65

Matrix of hidden embeddings 2(&'!)

3)
(&'!)

3(/) = [ℎ4(/)…ℎ|6|
(/)]7

W(E;0) = X20YW(E)@
2∈3(4)

ℎ2(56/)
|C(D)|
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¡ Re-writing update function in matrix form:

§ Red: neighborhood aggregation
§ Blue:  self transformation

¡ In practice, this implies that efficient sparse 
matrix multiplication can be used ( CD is sparse)

¡ Note: not all GNNs can be expressed in matrix form, when 
aggregation function is complex 

66

W(E;0) = >( ZYW(E)5E
N +W E [E

N)
where ZY = X20Y

O(&) = [ℎ"(&)…ℎ|)|
(&)]*
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¡ Node embedding J6 is a function of input graph
¡ Supervised setting: we want to minimize the loss 
ℒ (see also Slide 15):

min
$
ℒ(", * E! )

§ ): node label
§ ℒ could be L2 if ) is real number, or cross entropy 

if ) is categorical
¡ Unsupervised setting:
§ No node label available
§ Use the graph structure as the supervision!
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¡ “Similar” nodes have similar embeddings
ℒ = 8

8',8&
CE(:,,!, DEC <,, <! )

§ Where \F,B = 1 when node > and $ are similar
§ CE is the cross entropy (Slide 16)
§ DEC is the decoder such as inner product (Lecture 4)

¡ Node similarity can be anything from 
Lecture 3, e.g., a loss based on:
§ Random walks (node2vec, DeepWalk, struc2vec)
§ Matrix factorization
§ Node proximity in the graph
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Directly train the model for a supervised task 
(e.g., node classification)

69

Safe or toxic 
drug?

Safe or toxic 
drug?

E.g., a drug-drug 
interaction network
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Directly train the model for a supervised task 
(e.g., node classification)
¡ Use cross entropy loss (Slide 16)

70

Encoder output:
node embedding

Classification 
weights

Node class 
labelSafe or toxic drug?

ℒ = <
6∈E

-6log(:(z6FN)) + 1 − -6 log(1 − : z6FN )
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(1) Define a neighborhood 
aggregation function

(2) Define a loss function on the 
embeddings

E=
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(3) Train on a set of nodes, i.e., 
a batch of compute graphs
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(4) Generate embeddings 
for nodes as needed

Even for nodes we never 
trained on!
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¡ The same aggregation parameters are shared 
for all nodes:
§ The number of model parameters is sublinear in 
|B| and we can generalize to unseen nodes!

74

INPUT GRAPH

B

D
E

F

CA

Compute graph for node A Compute graph for node B

shared parameters

shared parameters

-> F>
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Inductive node embedding          Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate 
embeddings on newly collected data about organism B

Train on one graph Generalize to new graph

zD
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Train with snapshot New node arrives
Generate embedding 

for new node

¡ Many application settings constantly encounter 
previously unseen nodes:

§ E.g., Reddit, YouTube, Google Scholar
¡ Need to generate new embeddings “on the fly”

zD
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INPUT GRAPH

TARGET NODE B
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(2) Aggregation

(1) Message
GNN Layer 1

GNN Layer 2

(4) Graph augmentation

(3) Layer 
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf
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(2) Aggregation

(1) Message
GNN Layer 1

GNN Layer = Message + Aggregation
• Different instantiations under this perspective
• GCN, GraphSAGE, GAT, …

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf


¡ Idea of a GNN Layer:
§ Compress a set of vectors into a single vector
§ Two-step process:

§ (1) Message
§ (2) Aggregation
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Input node embedding 9!#.% , 9(∈/(!)#.%

(from node itself + neighboring nodes)

:-th GNN Layer

Output node embedding 9!#

(2) Aggregation

(1) Message

Node "



¡ (1) Message computation
§ Message function: 

§ Intuition: Each node will create a message, which will be 
sent to other nodes later

§ Example: A Linear layer ";
(<) = $ < %;

<=>

§ Multiply node features with weight matrix 5 #
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(2) Aggregation

(1) Message

Node "

!6
(7) = MSG 7 &6

789

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A



¡ (2) Aggregation
§ Intuition: Each node will aggregate the messages from 

node &’s neighbors

§ Example: Sum(⋅), Mean(⋅) or Max(⋅) aggregator

§%?
< = Sum({";

< , 4 ∈ 6(&)})

!!(#) = AGG # !6
7 , ( ∈ * +
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(2) Aggregation

(1) Message

Node "

INPUT GRAPH

TARGET NODE B
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%?
< = CONCAT AGG ";

< , 4 ∈ 6 & ,"?
<

¡ Issue: Information from node + itself could get lost

§ Computation of %?
(<) does not directly depend on %?

(<=>)

¡ Solution: Include &:
(789) when computing &:

(7)

§ (1) Message: compute message from node > itself
§ Usually, a different message computation will be performed

§ (2) Aggregation: After aggregating from neighbors, we can 
aggregate the message from node > itself
§ Via concatenation or summation
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;!
(#) = < # =!#<%;'

(#) = 5 # ='#<%

First aggregate from neighbors

Then aggregate from node itself



(2) Aggregation

(1) Message

¡ Putting things together:
§ (1) Message: each node computes a message

§ (2) Aggregation: aggregate messages from neighbors

§ Nonlinearity (activation): Adds expressiveness
§ Often written as ?(⋅): ReLU(⋅), Sigmoid(⋅) , …
§ Can be added to message or aggregation
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!6
(7) = MSG 7 &6

789 , ( ∈ {* + ∪ +}

!!(#) = AGG # %%
# , ' ∈ ) * ,%!

#



¡ (1) Graph Convolutional Networks (GCN)

¡ How to write this as Message + Aggregation?
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%?
(<) = ? $ < G

;∈@ ?

%;
<=>

6 &

%?
(<) = ? G

;∈@ ?
$ < %;

<=>

6 &

Aggregation

Message

T. Kipf, M. Welling. Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017

(2) Aggregation

(1) Message

https://arxiv.org/pdf/1609.02907.pdf


¡ (1) Graph Convolutional Networks (GCN)

¡ Message: 

§ Each Neighbor: ";
(<) = >

@ ? $ < %;
<=>

¡ Aggregation:
§ Sum over messages from neighbors, then apply activation

§ %?
< = ? Sum ";

< , 4 ∈ 6 &
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Normalized by node degree
(In the GCN paper they use a slightly 
different normalization)

%?
(<) = ? G

;∈@ ?
$ < %;

<=>

6 &
(2) Aggregation

(1) Message

In GCN graph is assumed to have 
self-edges that are included in the 
summation.



¡ (2) GraphSAGE

¡ How to write this as Message + Aggregation?

§ Message is computed within the AGG ⋅
§ Two-stage aggregation

§ Stage 1: Aggregate from node neighbors

§ Stage 2: Further aggregate over the node itself
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%?
(<) = ? $(<) H CONCAT %?

<=> , AGG %;
<=> , ∀4 ∈ 6 &

==(!)
(#) ← AGG ='(#<%), ∀A ∈ B C

=!(#) ← # 5(#) ⋅ CONCAT(=!#<% , ==(!)
(#) )

Hamilton et al. Inductive Representation Learning on Large Graphs, NeurIPS 2017

https://arxiv.org/pdf/1706.02216.pdf


¡ Mean: Take a weighted average of neighbors

¡ Pool: Transform neighbor vectors and apply 
symmetric vector function Mean(⋅) or Max(⋅)

¡ LSTM: Apply LSTM to reshuffled of neighbors

AGG = 7
6∈I(:)

&6
(789)

*(+)
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AGG = Mean({MLP(&6
(789)), ∀( ∈ *(+)})

AGG = LSTM([&6
(789), ∀( ∈ = * + ])

Message computation

Message computation

Aggregation

Aggregation

Aggregation



¡ ℓ! Normalization: 
§ Optional: Apply ℓA normalization to %?

(<) at every layer

§ !!(#) ←
&#
(%)

&#
(%)

'
∀* ∈ - where ' ' = ∑( '(' (ℓ'-norm)

§ Without ℓ' normalization, the embedding vectors have 
different scales (ℓ'-norm) for vectors

§ In some cases (not always), normalization of embedding 
results in performance improvement 

§ After ℓ' normalization, all vectors will have the same 
ℓ'-norm
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¡ (3) Graph Attention Networks

¡ In GCN / GraphSAGE
§ ?:6 =

9
I : is the weighting factor (importance)

of node (’s message to node +
§ ⟹ ?:6 is defined explicitly based on the 

structural properties of the graph (node degree)
§ ⟹ All neighbors ( ∈ *(+) are equally important 

to node +

&:
(7) = A(∑6∈I : ?:6C(7)&6

(789))
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Attention weights



¡ (3) Graph Attention Networks

Not all node’s neighbors are equally important
§ Attention is inspired by cognitive attention. 
§ The attention D4J focuses on the important parts of 

the input data and fades out the rest. 
§ Idea: the NN should devote more computing power on that 

small but important part of the data. 
§ Which part of the data is more important depends on the 

context and is learned through training.

&:
(7) = A(∑6∈I : ?:6C(7)&6

(789))
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Attention weights



Can we do better than simple 
neighborhood aggregation?

Can we let weighting factors !!" to be 
learned?

¡ Goal: Specify arbitrary importance to different 
neighbors of each node in the graph

¡ Idea: Compute embedding "#(%) of each node in the 
graph following an attention strategy:
§ Nodes attend over their neighborhoods’ message
§ Implicitly specifying different weights to different nodes 

in a neighborhood
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[Velickovic et al., ICLR 2018; Vaswani et al., NIPS 2017]



¡ Let ""# be computed as a byproduct of an 
attention mechanism #:
§ (1) Let E compute attention coefficients F4J across 

pairs of nodes (, + based on their messages:
G:6 = E(C(7)&6

(789),C(7)H:
(789))

§ KBC indicates the importance of LDMmessage to node >
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90
(#.%)

91(#.%)E01

NFG = O($(<)%F
(<=>),$(<)%G

(<=>))



§ Normalize G:6 into the final attention weight D4J
§ Use the softmax function, so that ∑;∈@ ? Q?; = 1:

0!% =
exp(5!%)

∑)∈+ ! exp(5!))
§ Weighted sum based on the final attention weight 
D4J

!!(#) = 7(∑%∈+ ! 0!%$(<)!%(#,-))
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H01
Weighted sum using QFG, QFI, QFJ:
=>(#) = #(K>?5(#)=?(#<%)+K>@5(#)=@(#<%)+ 

K>A5(#)=A(#<%))

91(#.%)

92(#.%)
H02

H03



¡ Multi-head attention: Stabilizes the learning 
process of attention mechanism
§ Create multiple attention scores (each replica 

with a different set of parameters):

§ Outputs are aggregated:
§ By concatenation or summation

§ %?
(<) = AGG(%?

(<) 1 , %?
(<) 2 , %?

(<) 3 )
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!!(#)[1] = 7(∑%∈+ ! 0!%- ;(#)!%(#,-))
!!(#)[2] = 7(∑%∈+ ! 0!%' ;(#)!%(#,-))
!!(#)[3] = 7(∑%∈+ ! 0!%. ;(#)!%(#,-))



¡ Key benefit: Allows for (implicitly) specifying different 
importance values ("4J) to different neighbors

¡ Computationally efficient: 
§ Computation of attentional coefficients can be parallelized 

across all edges of the graph
§ Aggregation may be parallelized across all nodes

¡ Storage efficient: 
§ Sparse matrix operations do not require more than
U(V + X) entries to be stored

§ Fixed number of parameters, irrespective of graph size
¡ Localized:

§ Only attends over local network neighborhoods
¡ Inductive capability: 

§ It is a shared edge-wise mechanism
§ It does not depend on the global graph structure
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¡ In practice, these classic GNN 
layers are a great starting point
§ We can often get better 

performance by considering a 
general GNN layer design 

§ Concretely, we can include 
modern deep learning modules 
that proved to be useful in many 
domains
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J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

A suggested GNN Layer

https://arxiv.org/pdf/2011.08843.pdf


¡ Many modern deep learning modules can be 
incorporated into a GNN layer
§ Batch Normalization:

§ Stabilize neural network training

§ Dropout:
§ Prevent overfitting

§ Attention/Gating:
§ Control the importance of a message

§ More:
§ Any other useful deep learning modules

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 51

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

A suggested GNN Layer

https://arxiv.org/pdf/2011.08843.pdf


¡ Goal: Regularize a neural net to prevent overfitting.
¡ Idea: 

§ During training: with some probability ^, randomly set 
neurons to zero (turn off)

§ During testing: Use all the neurons for computation
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Srivastava et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting, JMLR 2014

Removed neurons

Dropout

https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf?utm_campaign=buffer&utm_content=buffer79b43&utm_medium=social&utm_source=twitter.com


¡ In GNN, Dropout is applied to the 
linear layer in the message function
§ A simple message function with linear 

layer: !6
(7) = C 7 &6

789
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Dropout
%;
<=> ";

(<)

$ <

Visualization of a linear layer

(2) Aggregation

(1) Message



Apply activation to I-th dimension of 
embedding J
¡ Rectified linear unit (ReLU)

ReLU _V = max(_V, 0)
§ Most commonly used

¡ Sigmoid

? _V =
1

1 + N=W!
§ Used only when you want to restrict the 

range of your embeddings
¡ Parametric ReLU
PReLU _V = max _V, 0 + OVmin(_V, 0)

OV is a trainable parameter
§ Empirically performs better than ReLU
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¡ Summary: Modern deep learning 
modules can be included into a GNN 
layer for better performance

¡ Designing novel GNN layers is still 
an active research frontier!

¡ Suggested resources: You can 
explore diverse GNN designs or try 
out your own ideas in GraphGym
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A GNN Layer

https://github.com/snap-stanford/GraphGym
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GNN Layer 1

GNN Layer 2

(3) Layer 
connectivity

How to connect GNN layers into a GNN?
• Stack layers sequentially
• Ways of adding skip connections

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf


¡ How to construct a Graph Neural Network?
§ The standard way: Stack GNN layers sequentially
§ Input: Initial raw node feature J:
§ Output: Node embeddings  &:

(X) after K GNN layers
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=!(B) = Y!

=!(%)

=!(C)

=!(D)



¡ The Issue of stacking many GNN layers
§ GNN suffers from the over-smoothing problem

¡ The over-smoothing problem: all the node 
embeddings converge to the same value
§ This is bad because we want to use node 

embeddings to differentiate nodes
¡ Why does the over-smoothing problem 

happen?
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¡ Receptive field: the set of nodes that determine 
the embedding of a node of interest
§ In a L-layer GNN, each node has a receptive field of 
L-hop neighborhood
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Receptive field for 
1-layer GNN

Receptive field for 
2-layer GNN

Receptive field for 
3-layer GNN



¡ Receptive field overlap for two nodes
§ The shared neighbors quickly grows when we 

increase the number of hops (num of GNN layers)
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1-hop neighbor overlap
Only 1 node

2-hop neighbor overlap
About 20 nodes

3-hop neighbor overlap
Almost all the nodes!



¡ We can explain over-smoothing via the notion 
of receptive field
§ We knew the embedding of a node is determined 

by its receptive field
§ If two nodes have highly-overlapped receptive fields, then 

their embeddings are highly similar

§ Stack many GNN layers à nodes will have highly-
overlapped receptive fields à node embeddings 
will be highly similar à suffer from the over-
smoothing problem

¡ Next: how do we overcome over-smoothing problem?
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¡ What do we learn from the over-smoothing problem? 
¡ Lesson 1: Be cautious when adding GNN layers

§ Unlike neural networks in other domains (CNN for image 
classification), adding more GNN layers do not always help

§ Step 1: Analyze the necessary receptive field to solve your 
problem. E.g., by computing the diameter of the graph

§ Step 2: Set number of GNN layers b to be a bit more than the 
receptive field we like. Do not set c to be unnecessarily 
large!

¡ Question: How to enhance the expressive power of a 
GNN, if the number of GNN layers is small?
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¡ How to make a shallow GNN more expressive?
¡ Solution 1: Increase the expressive power within 

each GNN layer
§ In our previous examples, each transformation or 

aggregation function only include one linear layer
§ We can make aggregation / transformation become a 

deep neural network!
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(2) Aggregation

(1) Transformation

If needed, each box could 
include a 3-layer MLP



¡ How to make a shallow GNN more expressive?
¡ Solution 2: Add layers that do not pass messages

§ A GNN does not necessarily only contain GNN layers
§ E.g., we can add MLP layers (applied to each node) before and after 

GNN layers, as pre-process layers and post-process layers
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Pre-processing layers: Important when 
encoding node features is necessary.
E.g., when nodes represent images/text

Post-processing layers: Important when 
reasoning / transformation over node 
embeddings are needed
E.g., graph classification, knowledge graphs

In practice, adding these layers works great!



¡ What if my problem still requires many GNN layers?
¡ Lesson 2: Add skip connections in GNNs

§ Observation from over-smoothing: Node embeddings in 
earlier GNN layers can sometimes better differentiate nodes

§ Solution: We can increase the impact of earlier layers on the 
final node embeddings, by adding shortcuts in GNN
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Idea of skip connections:
Before adding shortcuts: 

Z Y
After adding shortcuts: 

Z Y + Y

Duplicate 
into two 
branches

Sum two 
branches

He et al. Deep Residual Learning for Image Recognition, CVPR 2015

https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf


¡ Why do skip connections work?
§ Intuition: Skip connections create a mixture of models
§ 6 skip connections à 2@ possible paths
§ Each path could have up to 6 modules
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Veit et al. Residual Networks Behave Like Ensembles of Relatively Shallow Networks, ArXiv 2016

Path 1: include this module

Path 2: skip this module

All the possible paths:
2 ∗ 2 ∗ 2 = 29 = 8

§ We automatically get a mixture 
of shallow GNNs and deep GNNs

https://arxiv.org/abs/1605.06431


¡ A standard GCN layer 

¡ %?
(<) = ? ∑;∈@ ? $ < 9*+,-

@ ?

¡ A GCN layer with skip connection

¡ %?
(<) = ? ∑;∈@ ? $ < 9*+,-

@ ? + %?
(<=>)
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This is our d _

d(_) + _



¡ Other options: Directly 
skip to the last layer
§ The final layer directly 

aggregates from the all the 
node embeddings in the 
previous layers
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Xu et al. Representation learning on graphs with jumping knowledge networks, ICML 2018
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https://arxiv.org/abs/1806.03536

