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Many Types of Data are Graphs (1)
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Many Types of Data are Graphs (2)
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Many Types of Data are Graphs (3)
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Graphs and Relational Data
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Graphs: Machine Learning

Complex domains have a rich relational
structure, which can be represented as a
relational graph

By explicitly modeling relationships we
achieve better performance!
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Today: Modern ML Toolbox
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Text/Speech

Modern deep learning toolbox is designed

for simple sequences & grids




bDoubt thou the stars are fire,
Doubt that the sun doth move,
Doubt truth to be a liar,
But never doubt I love...

Text

Modern
deep learning toolbox

Audio signals

IS designed for
sequences & grids




Not everything
can be represented as
a sequence or a gria

How can we develop neural
networks that are much more

broadly applicable?

New frontiers beyond classic neural
networks that only learn on images
and seqguences

222222222



The hottest subfield in ML

ICLR Keyword Growth 2018-2020

graph neural network
adversarial robustness
robustness
meta-learning
transformer

neural architecture search

self-supervised learning

bert
2019
continual learning = 2020

0.0000 0.0025 0.0050 0.0075 0.0100
% of keywords
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Why 1s Graph Deep Learning Hard?

Networks are complex.
Arbitrary size and complex topological
structure (i.e., no spatial locality like grids)

o0 0 0
Text

Networks Images

No fixed nhode ordering or reference point
Often dynamic and have multimodal features

9/22/2021



CS224W & Representation Learning

(Supervised) Machine Learning Lifecycle:
This feature, that feature. Every single time!

Raw Graph Learning
—> —>

. —> Model
Data Data Algorithm
at Representation Downstream
Eng INg Learning - prediction task

Automatically
Iearn the featu res
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CS224W & Representation Learning

Map nodes to d-dimensional
embeddings such that similar nodes in
the network are embedded close

together
node representation
1 Learn a neural network>
fiu—->RY J

~
Rd
Feature representation,
embedding
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.........

Applications of Graph ML

Stanford CS224W




Different Types of Tasks

Node level

Graph-level «— Community

(p;::?;tlon, (subgraph)
generation evel

——> Edge-level
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Classic Graph ML Tasks

Node classification: Predict a property of a node

Example: Categorize online users / items
Link prediction: Predict whether there are missing

links between two nodes

Example: Knowledge graph completion
Graph classification: Categorize different graphs

Example: Molecule property prediction
Clustering: Detect if nodes form a community

Example: Social circle detection
Other tasks:

Graph generation: Drug discovery
Graph evolution: Physical simulation
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Classic Graph ML Tasks

Node classification: Predict a property of a node

Example: Categorize online users / items
Link prediction: Predict whether there are missing

Graph generation: Drug discovery
Graph evolution: Physical simulation
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Example of
Node-level ML Tasks




Example (1): Protein Folding

A protein chain acquires its native 3D structure

Every protein is made up These amino acids interact These shapes fold up on Proteins can interact with
of a sequence of amino locally to form shapes like larger scales to form the other proteins, performing
acids bonded together helices and sheets full three-dimensional functions such as signalling
protein structure and transcribing DNA
Alpha Pleated Pleated Alpha
helix sheet sheet helix
DeepMind
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The Protein Folding Problem

Computationally predict a protein’s
based solely on its amino acid

Jure

T1037 / 6vr4 T1049 / 6yaf
90.7 GDT 93.3 GDT
(RNA polymerase domain) (adhesin tip)

Experimental result
® Computational prediction
DeepMind

Leskovec, Stanford CS224W: Machine Learning with Graphs



AlphaFold: Impact

Median Free-Modelling Accurac

AAAAAAAAAA

Challenges

By Shelly Fan - Dec 15,2020 ® 24,780

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
2006 2008 2010 2012 2014 2016 2018 2020

SingularityHub

AIphaFoId’s Al could change the world of
biological science as we know it

DeepMind's latest Al breakthrough can
accurately predict the way proteins fold

Has Artificial Intelligence ‘Solved’ Biology'’s
Protein-Folding Problem?

12-14-20

DeepMind’s latest Al

breakthrough could turbocharge
drug discovery
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Examples of
Edge-level ML Tasks




Example (2): Recommender Systems

Users interacts with items
Watch movies, buy merchandise, listen to music
Nodes: Users and items

Edges: User-item interactions
Goal: Recommend items users might like

Users @ |® @ @ @ Interactions
/

--->

. “You mightalso like”

2
"/
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Yingetal, , KDD 2018

PinSage: Graph-based Recommender

Task: Recommend related pins to users

o B R
P ;

£ ot Task: Learn node
/ embeddings z; such that
(W) RECOMMENDATIN d(Zcake1) Zeake2)

<d (ankelr steater)

BAD RECOMMENDATION

Predict whether two nodes in a graph are related

Yeeag,




Example (3): Drug Side Effects

Many patients take multiple drugs to treat

complex or co-existing diseases:

46% of people ages 70-79 take more than 5 drugs
Many patients take more than 20 drugs to treat
heart disease, depression, insomnia, etc.

Task: Given a pair of drugs predict
adverse side effects

o — ()

30% 65%
prob. prob.




Examples of
Subgraph-level ML Tasks




Example (4): Traffic Prediction
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Road Network as a Graph

Nodes: Road segments
Edges: Connectivity between road segments
Prediction: Time of Arrival (ETA)




Traffic Prediction via GNN

Networks

travel data

Anonymised ; Supersegments ; Graph neural
Analysed

Training

Predictions
network ‘
data
Used in Google Maps

Predicting Time of Arrival with Graph Neural

Google Maps
API

7\

| A\ f
~ Routes ranked %Sur aced
by ETA

J A4
€Te x'}j; $~ MAanec
9/22/2021

Candidate
FOUTI Ng
SVS ‘[(: !‘ |
THE MODEL ARCHITECTURE FOR DETERMINING OPTIMAL ROUTES AND THEIR TRAVEL TIME.

user routes

A-B
Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

app

Google Maps



Examples of
Graph-level ML Tasks




Example (5): Drug Discovery

Antibiotics are small molecular graphs
Nodes: Atoms
Edges: Chemical bonds

ROCHN ROCHN ROCHN OCH3S

COZ C02 COzH

penicillins cephalosporins cephamycins
ROCHN

E g FO T

CO,H C02 CO,H
oxacephems clavulanic acid penems

(an oxapenem)
d RHN
HO f on RHN
R

) T T

o o o SOs
CO,H CO,H

carbapenems nocardicin monobactams
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Stokeset al., , Cell 2020

Deep Learning for Antibiotic Discovery

A Graph Neural Network graph classification model
Predict promising molecules from a pool of candidates

Chemical landscape

Directed message Large scale predictions “
passing neural network (upper limit 10° +)
_ )
/ \, T Conventional small
\ by molecule screening
\” s r 3 3 q
4 & %
Jrainingsot Iterative Chemical screening
4
(10* molecules) model (upper limit 10° - 10°)
l re-training l

Machine learning

|

Predictions &
model validation

Hit validation
(1 - 3% hit rate)

\

Growth

]

identification

[antibiotic] & optimization
J \. J
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Stanford CS224W:
Choice of Graph Representation




Components of a Network

Objects: nodes, vertices N
Interactions: links, edges E
System: network, graph G(N,E)



Directed vs. Undirected Graphs

Undirected Directed
Links: undirected Links: directed
(symmetrical, reciprocal) (arcs)

Examples: Examples:
Collaborations Phone calls

Friendship on Facebook Following on Twitter

9/22/2021 Jure Leskovec, Stanford CS224\W: Machine Learning with Graphs 70



Heterogeneous Graphs

A heterogeneous graph is defined as
G =(V,E RT)
Nodes with node types v; € V
Edges with relation types (vi, T, v]-) € E
Node type T (v;)
Relation typer € R

9/22/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 71



Node Degrees

Undirected

Directed

Source: Node with k"=0
Sink: Node with k°vt =Q

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 73

Node degree, k;: the number
of edges adjacent to node i
k, =4
- 1 8 2F
Avg. degree: k={iN\=—9 k. ==
g. deg (k) Ng =
In directed networks we define

an in-degree and out-degree.
The (total) degree of a node is the
sum of in- and out-degrees.

k=2 k2 =1 k=3

- F
k:ﬁ kin:kout




Bipartite Graph

Bipartite graph isa graph whose nodes can

be divided into two disjoint sets U and V such that
every link connects a node in Uto one in V; that is,
U and V are independent sets

Examples:
Authors-to-Papers (they authored)
Actors-to-Movies (they appeared in)
Users-to-Movies (they rated)
Recipes-to-Ingredients (they contain)
“Folded” networks:
Author collaboration networks
Movie co-rating networks

9/22/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs A



Representing Graphs: Adjacency Matrix

A

A,-j = 1 ifthereis a link from node i to node j

A,-j =0 otherwise

(0 1 0 1) (0 0 0 1)

1 0 0 1 1 0 0 O
A= A=

0O 0 0 1 O 0 0 O

(1 1 1 0 0 1 1 0

Note that for a directed graph (right) the matrix is not symmetric.

9/22/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs



Representing Graphs: Adjacency list

Adjacency list:
Easier to work with if network is

Large o

Sparse

Allows us to quickly retrieve all
neighbors of a given node

1:

2:3,4

3:2,4

4:5

5:1, 2

9/22/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 81



Machine learning with Graphs

Applications and use cases

Different types of tasks:

Node level
Edge level
Graph level

Choice of a graph representation:

Directed, undirected, bipartite, weighted,
adjacency matrix

9/22/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 89



Stanford CS224W:
Traditional Methods for

Machine Learning in Graphs




Traditional ML Pipeline

Design features for nodes/links/graphs
Obtain features for all training data

e RP

G raph features

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 8



Traditional ML Pipeline

Train an ML model:

Random forest
SVM

Neural network, etc.

X1 —> Y1

XN —> YN

Apply the model:

Given a new
node/link/graph, obtain
its features and make a
prediction

R

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Stanford CS224W:
Node-Level Tasks and

Features




Node-Level Tasks

? 9
2
@, ﬁﬁ ®
4 >
) Machi
o Leaaclin:gg '

Node classification

ML needs features.
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Node-Level Features: Overview

Goal: Characterize the structure and position of
a node in the network:

Node degree

Node centrality

Clustering coefficient Node feature

Graphlets

»
a®
a®
a®
“““
a®
a®
a®
at®

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 15



Node Features: Node Degree

The degree k,, of node v is the number of
edges (neighboring nodes) the node has.
Treats all neighboring nodes equally.

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Node Features: Node Centrality

Node degree counts the neighboring nodes
without capturing their importance.

Node centrality ¢, takes the node importance
in a graph into account

Different ways to model importance:

Eigenvector centrality

Betweenness centrality
Closeness centrality
and many others...

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 17



Node Centrality (2)

A node is important if it lies on many shortest
paths between other nodes.

B z #(shortest paths betwen s and t that contain v)
v = #(shortest paths between s and t)

SFV#L

Example:

CA — CB — CE — O
CC — 3
(A-C-B, A-C-D, A-C-D-E)

CD:3

(A-C-D-E, B-D-E, C-D-E)

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu




Node Centrality (3)

A node is important if it has small shortest path

lengths to all other nodes.
1

Y.,=p Shortest path length between u and v

Example:

¢, =1/2+1+2+3)=1/8
(A-C-B, A-C, A-C-D, A-C-D-E)

cp=1/Q2+14+1+1)=1/5
(D-C-A, D-B, D-C, D-E)

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Node Features: Clustering Coefficient

Measures how connected v's neighboring
nodes are:

#(edges among neighboring nodes)

v = R € [0,1]
(5)
#(node pairs among k,, neighboring nodes)
Examples In our examples below the denomlnator is 6 (4 choose 2).

A M

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu




Node Features: Graphlets

Observation: Clustering coefficient counts the
#(triangles) in the ego-network

e

3 triangles (out of 6 node triplets)

We can generalize the above by counting
#(pre-specified subgraphs, i.e., ).

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Node-Level Feature: Summary

They can be categorized as:

Node degree
Different node centrality measures

Node degree
Clustering coefficient
Graphlet count vector

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 29



Node-Level Feature: Summary

Importance-based features: capture the
importance of a node in a graph

Node degree:

Simply counts the number of neighboring nodes

Node centrality:
Models importance of neighboring nodes in a graph

Different modeling choices: eigenvector centrality,
betweenness centrality, closeness centrality

Useful for predicting influential nodes in a graph

Example: predicting celebrity users in a social
network

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 30



Node-Level Feature: Summary

Structure-based features: Capture topological
properties of local neighborhood around a node.

Node degree:
Counts the number of neighboring nodes
Clustering coefficient:
Measures how connected neighboring nodes are
Graphlet degree vector:
Counts the occurrences of different graphlets
Useful for predicting a particular role a node
plays in a graph:
Example: Predicting protein functionality in a
protein-protein interaction network.

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 1



Stanford CS224W:
Link Prediction Task and

Features




LI

nk-Level Prediction Task: Recap

The task is to predict new links based on the
existing links.

At test time, node pairs (with no existing links)
are ranked, and top K node pairs are predicted.

ure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Link Prediction as a Task

1) Links missing at random:

Remove a random set of links and then
aim to predict them

2) Links over time:

Given G|ty, ty] a graph defined by edges

up to time ty,

of edges (not in G[ty, ty]) that are

predicted to appear in time G[t,, t{] G[to, o]

n=|E,.,|:#new edgesthat appear during
the test period [t,, t]

Take top n elements of L and count correct edges

9/27/2021 ¢, Stanford CS224W: Ma chine Learning with Graphs, http://cs224w.stanford.edu



Link Prediction via Proximity

Methodology:

For each pair of nodes (x,y) compute score c(x,y)

For example, c(x,y) could be the # of common neighbors
of xand y

Sort pairs (x,y) by the decreasing score c(x,y)
Predict top n pairs as new links

See which of these links actually
appear in G[t, t{]

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 36



Link-Level Features: Overview

Distance-based feature
Local neighborhood overlap
Global neighborhood overlap

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 37



Distance-Based Features

Example:

However, this does not capture the degree of
neighborhood overlap:

Node pair (B, H) has 2 shared neighboring nodes,
while pairs (B, E) and (A, B) only have 1 such node.

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 38



Local Neighborhood Overlap

IN(v1) N N(vy)|
Example: IN(A)NN(B)|=|{C}| =1

IN(v))NN(v,)|
IN(v1)UN(v,)|
Example: INGONNEB)| _ I{c}l 1
"IN(AUNB)|  [{CD} 2
_1
ZuEN(vl)nN(vz) log(ky,)
1 1
Example:

log(kc) - log 4

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 39



Global Neighborhood Overlap

Metric is always zero if the two nodes do not have
any neighbors in common.

However, the two nodes may still potentially be
connected in the future.

Global neighborhood overlap metrics resolve
the limitation by considering the entire graph.

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 40




Global Neighborhood Overlap

count the number of walks of all
lengths between a given pair of nodes.

How to compute #walks between two

nodes?
Use powers of the graph adjacency matrix!

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Link-Level Features: Summary

9/27/2021

Uses the shortest path length between two nodes
but does not capture how neighborhood overlaps.

Captures how many neighboring nodes are shared
by two nodes.

Becomes zero when no neighbor nodes are shared.

Uses global graph structure to score two nodes.

Katz index counts #walks of all lengths between two
nodes.

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 46



Stanford CS224W:
Graph-Level Features
and Graph Kernels




Graph-Level Features

We want features that characterize the
structure of an entire graph.

For example:

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 48



Graph-Level Features: Overview

Measure similarity between
two graphs:

Other kernels are also proposed in the literature
(beyond the scope of this lecture)

Random-walk kernel
Shortest-path graph kernel
And many more...

[1] Shervashidze, Nino, et al. "Efficient graphlet kernels for large graph comparison." Artificial Intelligence and Statistics. 2009.
[2] Shervashidze, Nino, et al. "Weisfeiler-lehman graph kernels." Journal of Machine Learning Research 12.9 (2011).

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5o



Graph Kernel: Key Idea

Key idea: Bag-of-Words (BoW) for a graph

9/27/2021

Recall: BoW simply uses the word counts as
features for documents (no ordering considered).

Naive extension to a graph: Regard nodes as words.

Since both graphs have 4 red nodes, we get the
same feature vector for two different graphs...

(D) = o(N\D

Jure Leskovec, Stanford CS224\W: Machine Learning with Graphs, http://cs224w.stanford.edu



Graph Kernel: Key Idea

Degl: @ Deg2: e Deg3:

qb(N) = count(hT ) = [;, 5 1]

Obtains different features
for different graphs!

d(IN]) = count([N] ) =10, 2, 2]

Both Graphlet Kernel and Weisfeiler-Lehman
(WL) Kernel use Bag-of-* representation of
graph, where * is more sophisticated than
node degrees!

9/27/20 re Leskovec, Stanford CS224\W: Machine Learning with Graphs. http://cs224w.stanford.edu



Today’s Summary

Hand-crafted feature + ML model

Node-level:

Node degree, centrality, clustering coefficient, graphlets

Link-level:
Distance-based feature
local/global neighborhood overlap

Graph-level:
Graphlet kernel, WL kernel
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Stanford CS224W:
Node Embeddings




Recap: Traditional ML for Graphs

Given an input graph, extract node, link
and graph-level features, learn a model
(SVM, neural network, etc.) that maps

features to labels.

Input Structured
Graph Features

Feature engineering
(node-level, edge-level, graph-
level features)

Learning

Algorithm —> Prediction

Downstream
prediction task

9/28/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 2



Graph Representation Learning

Graph Representation Learning alleviates
the need to do feature engineering every
single time.

Input Structured Learning Prediction

Graph Features Algorithm
t Representation Learning -- Downstream
EngiffoNgng Automatically prediction task

learn the features

9/28/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 3



Graph Representation Learning

Goal: Efficient task-independent feature
learning for machine learning with graphs!

node vector
u >
. d
fru->R N - J
]Rd

Feature representation,
embedding

9/28/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 4



Why Embedding?

Similarity of embeddings between nodes indicates
their similarity in the network. For example:

Both nodes are close to each other (connected by an edge)
Encode network information

Potentially used for many downstream predictions

Vec Tasks
« Node classification
C > « Link prediction
~ « Graph classification

, « Anomalous node detection
embeddings R4 « Clustering

9/28/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5



Stanford CS224W:
Node Embeddings:
Encoder and Decoder




Setup

Assume we have a graph G:
V is the vertex set.
A is the adjacency matrix (assume binary).

For simplicity: No node features or extra
information is used

(0 1 0 1)

4|1 0 01

V:{1, 2, 3, 4} 0 0 0 1
(1 1 1 0
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Embedding Nodes

Goal is to encode nodes so that similarity in
the embedding space (e.g., dot product)
approximates similarity in the graph

............................................... agLu
““““““““ ENC(u)
"""""""" Ay

/ \\u encode nodes ‘
\ / \ .......
\/ T

ENC(v)
original network embedding space
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Embedding Nodes

Goal: similarity(u,v) ~ z,z,
in the original network Similarity of the embedding

Need to definel \

QZu
/ \ o .Z’U
\ X enchde nodes A
~, /N U
\/ B e
ENC(v)
original network embedding space

9/28/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Learning Node Embeddings

9/28/2021

Encoder maps from nodes to embeddings
Define a node similarity function (i.e., a
measure of similarity in the original network)
Decoder maps from embeddings to the

similarity score
Optimize the parameters of the encoder so

that: .

7.7,
similarity(u,v) =~ zlz,

in the original network Similarity of the embedding

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 11



Two Key Components

Encoder: maps each node to a low-dimensional
vector d-dimensiona

ENC(v) embedding

node In the input graph

specifies how the
relationshipsin vector space map to the
relationshipsin the original network

similarity(u,v) =~ z)z, Decoder
Similarity of u and v in dot product between node

the original network embeddings

9/28/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



“Shallow” Encoding

Simplest encoding approach: Encoder is just an
embedding-lookup

ENC(v) =z,=Z-v

dx|V| matrix, each column is a node
ZeR embedding [what we learn/
optimize]

indicator vector, all zeroes
v eV '
except a one in column

indicating node v

9/28/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 13



“Shallow” Encoding

Simplest encoding approach: encoder is just an
embedding-lookup
embedding vector for a

embedding specific node
matrix

\
7 —

Dimension/size
~ of embeddings

' y,

~
one column per node

9/28/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 14



“Shallow” Encoding

Simplest encoding approach: Encoder is just an
embedding-lookup

Each node is assighed a unique
embedding vector
(i.e., we directly optimize
the embedding of each node)

Many methods: DeepWalk, node2vec

9/28/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Framework Summary

9/28/2021

Shallow encoder: embedding lookup

Parameters to optimize: Z which contains node
embeddings z, for all nodes u € V

We will cover deep encoders (GNNs) in Lecture 6

Decoder: based on node similarity.

Objective: maximize z.z,, for node pairs (u, v)
that are similar

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 16



How to Define Node Similarity?

Key choice of methods is how they define node
similarity.

Should two nodes have a similar embedding if
they...

are linked?
share neighbors?

have similar “structural roles”?
We will now learn node similarity definition that uses

random walks, and how to optimize embeddings for
such a similarity measure.

9/28/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 17



Note on Node Embeddings

This is
learning node embedc
We are not utilizing noc

way of
INgs.

e labels

We are not utilizing noc

e features

The goal is to directly estimate a set of coordinates

(i.e., the embedding) of

a node so that some aspect

of the network structure (captured by DEC) is

preserved.
These embeddings are

They are not trained for
used for any task.

9/28/2021 Jure Leskovec, Stanford CS224W: Machine

a specific task but can be
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Stanford CS224W:
Random Walk Approaches for
Node Embeddings




Notation

Vector z,,:

The embedding of node u (what we aim to find).
Probability P(v |z,) : ¢&—== Our model prediction based on z,

The (predicted) probability of visiting node v on
random walks starting from node wu.

Non-linear functions used to produce predicted probabilities

Softmax function:
Turns vector of K real values (model predictions) into

. ~ ezl
K probabilities that sum to 1: o(2)[i] = TN

Sigmoid function:

S-shaped function that turns real values into the range of (0, 1).

Written as S(x) = 1+2_x.

9/28/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 20



Random Walk

10

Step 3 l l Step 4 @
Step 5
OF-

11

Given a graph and a starting
Step 2 point, we selecta neighbor of

Step 1 . _
\ it at random, and move to this

G neighbor; then we select a
° neighbor of this point at
random, and move to it, etc.

\ The (random) sequence of
6 points visited this way is a
random walk on the graph.

9/28/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 21



Random-Walk Embeddings

probabllity that u
zgzv ~ and v Cco-0Cccuron a
random walk over
the graph

9/28/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Random-Walk Embeddings

Estimate probability of visiting node v on a
random walk starting from node u using
some random walk strategy R

random walk statistics:

Similarity in embedding space (Here:
dot product=cos(8)) encodes random walk “similarity” Zj

9/28/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Why Random Walks?

9/2

8/2021

Expressivity: Flexible stochastic definition of
node similarity that incorporates both local
and higher-order neighborhood information
Idea: if random walk starting from node u
visits v with high probability, u and v are
similar (high-order multi-hop information)

Efficiency: Do not need to consider all node
pairs when training; only need to consider
pairs that co-occur on random walks

re Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Feature Learning as Optimization

Given G = (V,E),
Our goal is to learn a mapping f:u — R%:

f(u) — Zy
Log-likelihood objective:

m}gx Z log P(Nr(u)| z,)
uev
Np(u) is the neighborhood of node u by strategy R

Given node u, we want to learn feature
representations that are predictive of the nodes
in its random walk neighborhood Ny (u).

9/28/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 26



Random Walk Optimization

Run short fixed-length random walks
starting from each node u in the graph using
some random walk strategy R.

For each node u collect Ny (u), the multiset”
of nodes visited on random walks starting
from u.

Optimize embeddings according to: Given
node u, predict its neighbors Ni (u).

mfax 2 log P(Ng(u)| Z,;) = Maximum likelihood objective

uev

*Ngr (u) can have repeat elements since nodes can be visited multiple times on random walks

9/28/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 27



Random Walk Optimization

Equivalently,

L=) ) —logP(v|z))

UEV veNg (u)

Optimize embeddings z,, to maximize
the likelihood of random walk co-occurrences.

P(v|z,)
T Why softmax?
exXp (Zu Zv) We want node v to be
P(vlz,) = most similar to node w
u T (out of all nodes n).
ZnEV eXp (Zu ZTL) Intuition: Y, exp(x;) =

max exp (x;)
l
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Random Walk Optimization

Putting it all together:

exp(ZyZy)
=), ), o > exp(@izn)

uUeV veNg(u)

Optimizing random walk embeddings =

Finding embeddings z,, that minimize L

9/28/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Random Walk Optimization

B exp(z, Zy)
- 2 2 _log( ZnEV eXp(Z;,IL‘ZTL))

ueV veNg((u)

Nested sum over nodes gives
O(|V]%) complexity!
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Stochastic Gradient Descent

= After we obtained the objective function, how do
we optimize (minimize) it?

L=% ) -log(P(vlz))

uevV veNg(u)

" Gradient Descent: a simple way to minimize £ :

" |nitialize z,, at some randomized value for all nodes w.

" [terate until convergence:

... dL : i
* For all u, compute the derivative P 7: learning rate
u

_ 9L
1 0z
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Stochastic Gradient Descent

= Stochastic Gradient Descent: Instead of evaluating
gradients over all examples, evaluate it for each
individual training example.

" |nitialize z,, at some randomized value for all nodes wu.

" |terate until convergence: L™ = z —log(P(v|z,))
VENR(U)

oL

0Zy,

= Sample a node u, for all v calculate the derivative

oL@

0z,

= For all v, update:Zv < Zy—1nN
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Random Walks: Summary

Run short fixed-length random walks starting
from each node on the graph

For each node u collect N (1), the multiset of
nodes visited on random walks starting from u.

Optimize embeddings using Stochastic
Gradient Descent:

L=5 ) —log(P(vlz)

U€EV veNg(u)
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How should we randomly walk?

= So far we have described how to optimize
embeddings given a random walk strategy R

= What strategies should we use to run these
random walks?

" Simplestidea: Just run fixed-length, unbiased
random walks starting from each node (i.e.,
DeepWalk from Perozzi et al., 2013)

" Theissue is that such notion of similarity is too constrained

= How can we generalize this?

Reference: Perozzi et al. 2014. DeepWalk: Online [earning of Social Representations. KDD.
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Summary so far

Core idea: Embed nodes so that distances in

embedding space reflect node similarities in
the original network.

Different notions of node similarity:
Naive: similar if two nodes are connected
Neighborhood overlap (covered in Lecture 2)
Random walk approaches (covered today)
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How to Use Embeddings

How to use embeddings z; of nodes:

9/28/2021

Clustering/community detection: Cluster points z;
Node classification: Predict label of node i based on z;
Link prediction: Predict edge (i,j) based on (z;, z;)

Where we can: concatenate, avg, product, or take a difference
between the embeddings:

Concatenate: f(z;,z;)=g(|z;, z])

Hadamard: f(z;, z;)= g(z; = z;) (per coordinate product)

Sum/Avg: f(z;,2;)= g(z; + z;)

Distance: f(z;,2;)= g(||z; — zj||2)
Graph classification: Graph embedding z via aggregating
node embeddings or anonymous random walks.
Predict label based on graph embedding z.
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Stanford CS224W:
Graph Neural Networks



Recap: Node Embeddings

Intuition: Map nodes to d-dimensional
embeddings such that similar nodes in the
graph are embedded close together

Input graph 2D node embeddings

How to learn mapping function f?

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 3



Today: Deep Graph Encoders

10/7/21

Today: We will now discuss deep learnig
methods based on graph neural networks
(GNNs):

multiple layers of

ENC(v) =  non-linear transformations
based on graph structure

Note: All these deep encoders can be
combined with node similarity functions
defined in the Lecture 3.



Tasks on Networks

Tasks we will be able to solve:
Node classification

Predict a type of a given node
Link prediction

Predict whether two nodes are linked
Community detection

ldentify densely linked clusters of nodes
Network similarity

How similar are two (sub)networks
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But networks are far more complex!

Arbitrary size and complex topological structure (i.e.,
no spatial locality like grids)

Text

Networks Images

No fixed node ordering or reference point
Often dynamic and have multimodal features

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 12



Stanford CS224W:
Deep Learning for Graphs



Setup

Assume we have a graph G:
V is the vertex set
A is the adjacency matrix (assume binary)

X € R™*IVl is a matrix of node features
v:anodeinV; N(v): the set of neighbors of v.

Node features:
Social networks: User profile, User image

Biological networks: Gene expression profiles, gene
functional information

When there is no node feature in the graph dataset:

Indicator vectors (one-hot encoding of a node)
Vector of constant 1: [1, 1, ..., 1]
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A Naive Approach

Join adjacency matrix and features
Feed them into a deep neural net:

hidden layer 1  hidden layer 2 hidden layer 3

input layer
A B C D E Feat Q
( ) Q_ output layer
A o 1 1 1 O 1 0
@:
Blft o o1 1 o0 o0 -
Cl 10010 01 G u
G
D 11 1 0 1 1 1 c*
ELo 1010 1 0 o

Issues with this idea:

O(|V]) parameters
Not applicable to graphs of different sizes

Sensitive to node ordering
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ldea: Convolutional Networks

CNN on an image:

Goal is to generalize convolutions beyond simple lattices
Leverage node features/attributes (e.g., text, images)
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Real-World Graphs

But our graphs look like this:

a o
e J° | orthis A V)
v ® ¢ .o 7 o =
e o \ .' ®
® ® o ® o °

= There is no fixed notion of locality or sliding
window on the graph

= Graph is permutation invariant
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Permutation Invariance

Graph does not have a canonical order of the nodes!
We can have many different order plans.
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Permutation Invariance

Graph does not have a canonical order of the nodes!
Node features X, Adjacency matrix A4

Order plan1 ABCDEFTF

mm O N @ >
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Permutation Invariance

Graph does not have a canonical order of the nodes!
Node features X, Adjacency matrix A4

Order plan1 ABCDEFTF

mm O N @ >

Node features X, Adjacency matrix 4,

Order plan 2 ~ G ABCDEF
- D
c GID 2
P @D
@D
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Permutation Invariance

Graph does not have a canonical order of the nodes!
Node feature X, Adjacency matrix 44

Order plan1 » GID ABCDEF
D

c D
D D

J N @ >

Order plan 1

O Order plan 2

O
m O M C
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Graph Neural Network Overview

Are other neural network architectures, e.g.,
MLPs, permutation invariant / equivariant?

No.

Switching the order of the
input leads to different
outputs!
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Graph Neural Network Overview

Are other neural network architectures, e.g.,
MLPs, permutation invariant / equivariant?
No.

A B C D E Feat

r N\ output layer
A o 1 1 1 O 1 0
B i 0 0 1 1 0 O J
cCl 10010 o0 1 "
D 11 1 0 1 1 1
E

L o 1 0 1 O 1 0 )

the naive MLP approach
fails for graphs
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Graph Neural Network Overview

Are any neural network architecture, e.g.,

?

passing and aggregating
Information from neighbors
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[Kipf and Welling, ICLR 2017]

Graph Convolutional Networks

ldea: Node’s neighborhood defines a
computation graph
i

Determine node Propagate and
computation graph transform information

Learn how to propagate information across the
graph to compute node features
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ldea: Aggregate Neighbors

Key idea: Generate node embeddings based
on local network neighborhoods

ARGET NODE ® A‘:‘I ..................... )

"

a

A .”“

. |
K A e .
A' e
A < > TETTPETYPTTTTTEITY ‘ V' ...............
3
Q.’
.0

°-n
INPUTGRAPH T T A
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ldea: Aggregate Neighbors

Intuition: Nodes aggregate information from
their neighbors using neural networks

TARGET NODE

l

A
‘/ B «

INPUT GRAPH

Neural networks
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ldea: Aggregate Neighbors

Intuition: Network neighborhood defines a

computation graph
Every node defines a computation .
graph based on its neighborhood! /

INPUT GRAPH

o ? ’ ? o
o o ] N ] N
Nt % o %mgé. T .% o & 3
8% N % A i A% 2
D oll e %es see®  Medg et aie %eay W0 %es e
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Deep Model: Many Layers

Model can be of arbitrary depth:

Nodes have embeddings at each layer

Layer-0 embedding of node v is its input feature, x,,
Layer-k embedding gets information from nodes that

are k hops away

TARGET NODE ‘4‘< """"""""""" © XC
i Layer-2 .~ ® XA

| |
“w ___________ ‘ X
, < e ol b

N
INPUTGRAPH o e A
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Neighborhood Aggregation

Neighborhood aggregation: Key distinctions
are in how different approaches aggregate
information across the layers

TARGET NODE | ' 4‘: ...................... ‘
l What is in the box?.~

A

A ........ B
/ Dt D g ol

' N
INPUTGRAPH T T A
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Neighborhood Aggregation

Basic approach: Average information from
neighbors and apply a neural network

(1) average messages -
TARGET NODE from neigh bors '4‘4: .................. o

‘0
’Q
*

A Q”" ‘....""‘
~ 4"-‘ e .
&
.................. ...,
A < O ®
‘..

°-n
INPUTGRAPH & T A

(2) apply neural network
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The Math: Deep Encoder

Basic approach: Average neighbor messages
and apply a neural network

embedding of

hY = x
v v / v at layer k

_ h(k)
h(+D —fg(w, z B, h), vk € (0, ..., K- 1)
NI
UueN(v) \
(K) _ Total number
Z, = h; Average of neighbor’s of layers

previous layer embeddings

Non-linearity
RelU Notice summation is a permutation
(e'g" e ) invariant pooling/aggregation.
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Training the Model

How do we train the GCN to
generate embeddings?

o
iis

ZAA<-

Need to define a loss function on the embeddings.
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Model Parameters

Trainable weight matrices
0) _ i.e., what we learn

(k+1) < P 1
WD — o (T z NGy B, vk € (0K ~ 1

eN
Zy, = hl(]K) HEN®)
~—

Final node embedding

We can feed these embeddings into any loss function
and run SGD to train the weight parameters

h¥: the hidden representation of node v at layer k
W, : weight matrix for neighborhood aggregation
B}, : weight matrix for transforming hidden vector of
self
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Matrix Formulation (1)

Many aggregations can be performed

efficiently by (sparse) matrix operations

Let () = [h(k) hl(‘}',‘l)]T Matrix of hidden embeddings H®*~)

Then: ZuENv hik) = Av’:H(k)
Let D be diagonal matrix where
Dv,v = Deg(v) = [N(v)|
The inverse of D: D1 is also diagonal:
D, =1/IN(w)| p k=D
Therefore,

h,gk_l)
IN(v)]

UEN (V)
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Matrix Formulation (2)

Re-writing update function in matrix form:

HOD = (AHOW] + HOB]) :gj)i@
where A=D"1A

Red: neighborhood aggregation
Blue: self transformation

In practice, this implies that efficient sparse
matrix multiplication can be used (4 is sparse)

Note: not all GNNs can be expressed in matrix form, when
aggregation function is complex
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How to Train A GNN

Node embedding z,, is a function of input graph
Supervised setting: we want to minimize the loss
L (see also Slide 15):

min L(y, f(z,))

y: node label

L could be L2 if y is real number, or cross entropy
if y is categorical
Unsupervised setting:

No node label available
Use the graph structure as the supervision!
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Unsupervised Training

“Similar” nodes have similar embeddings
L= ) CE(yu DEC(z2,))

ZurZy

Where y,, , = 1 when node u and v are similar
CE is the cross entropy (Slide 16)

DEC is the decoder such as inner product (Lecture 4)
Node similarity can be anything from
Lecture 3, e.g., a loss based on:
Random walks (node2vec, DeepWalk, struc2vec)
Matrix factorization
Node proximity in the graph
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Supervised Training

Directly train the model for a supervised task
(e.g., node classification)

_ Safe or toxic
Safe or toxic

drug?
drug? .
|
% 8
v2%
Yuv
B ® E.g., a drug-drug

interaction network
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Supervised Training

Directly train the model for a supervised task
(e.g., node classification)
Use cross entropy loss (Slide 16)

£=) Wflog(o@l) + (1 ~mPlog(1 - oz}

vev
Encoder output: / Classification
node embedding weights
i
. Node class
o ® label

Safe or toxic drug? ‘.i Y

2
P
0 O .
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Model Design: Overview

(1) Define a neighborhood
aggregation function

ZAAd-

(2) Define a loss function on the
embeddings
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Model Design: Overview

(3) Train on a set of nodes, i.e.,
a batch of compute graphs

INPUT GRAPH
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Model Design: Overview

(4) Generate embeddings
/ for nodes as needed

Even for nodes we never
trained on!

INPUT GRAPH
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Inductive Capability

The same aggregation parameters are shared
for all nodes:

The number of model parameters is sublinear in
|V'| and we can generalize to unseen nodes!

A oe0 Wi Bx o o
/ ‘ ﬁ “shared parameters ‘ i

INPUT GRAPH Compute graph for node A Compute graph for node B
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Inductive Capability: New Graphs

- O\ /
o <4

Train on one graph Generalize to new graph

Inductive node embedding Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate
embeddings on newly collected data about organism B
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Inductive Capability: New Nodes

Generate embedding
Train with snapshot New node arrives for new node

Many application settings constantly encounter
previously unseen nodes:

E.g., Reddit, YouTube, Google Scholar
Need to generate new embeddings “on the fly”
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Stanford CS224W:
A General Perspective on
Graph Neural Networks



J.You, R.Ying, J. Leskovec. , NeurlPS 2020

GNN Framework: Summary

TARGET NODE
A

INPUT GRAPH

— oo

(2) Aggregation

. GNN Layer 1

& (1) Message

connectlwty ‘ ..........

GNN Layer 2

(4) Graph augmentation
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Stanford CS224W:
A Single Layer of a GNN



J.You, R.Ying, J. Leskovec. , NeurlPS 2020

A GNN Layer

GNN Layer = Message + Aggregation
* Different instantiations under this perspective
 GCN, GraphSAGE, GAT, ...

— oo

(2) Aggregation

TARGET NODE
A

INPUT GRAPH

GNN Layer 1 FER
: % & (1) Message

Y @ 0
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A Single GNN Layer

Compress a set of vectors into a single vector
Two-step process:

(1) Message Output node embedding hff)

1
Node v
x BTN

(2) Aggregation

(2) Aggregation 1
& o ¢# (1) Message ‘|: ® 6 ©
o O Input node embedding h{ ™ , h';1)

(from node itself + neighboring nodes)
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Message Computation

Message function: mg) = MSGW (hg_l))

Intuition: Each node will create a message, which will be
sent to other nodes later

Example: A Linear layer mfp = w(l)hg—l)
Multiply node features with weight matrix W

Node v
TARGE‘l NODE I
4 (2) Aggregation
/ %[:¢ (1) Message
INPUT GRAPH . . .
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Message Aggregation

Intuition: Each node will aggregate the messages from
node v’s neighbors

h’ = AG6® ({m$,u € N(v)})

Example: Sum(-), Mean(-) or Max(-) aggregator
hl = sSum(m®,u e N}

TARGET NODE Node v
: b
/A : (2) Aggregation

® on ¢® (1) Message

INPUT GRAPH . ‘ .
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Message Aggregation: Issue

Information from node v itself could get lost

Computation of h( ) does not directly depend on h( —1)

Include hfj when computing hl(,)

compute message from node v itself
Usually, a different message computation will be performed

l - l -1
000 ) - wini™ m{ = BORY ™

After aggregating from neighbors, we can
aggregate the message from node v itself

Via or
Then aggregate from node itself

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 34



A Single GNN Layer

Putting things together:
(1) Message: each node computes a message
m'"” = MSG® (h,(f_l)),u € {N(v) U v}
(2) Aggregation: aggregate messages from neighbors
h = AGGW ({ D e N(v)} “))
Adds expressiveness

Often written as g (-): ReLU(+), Sigmoid(-), ...
Can be added to message or aggregation

i

(2) Aggregation

QY mm ¢® (1) Message
® O O
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T. Kipf, M. Welling. , ICLR 2017

Classical GNN Layers: GCN (1)

0 _ 0 EE u
h, ' = W
v =9 IN(v)|
UEN (v)

How to write this as Message + Aggregation?

Message
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Classical GNN Layers: GCN (2)

hg_l) |

h(l) =0 2 W(l) L (2) Aggregation
’ U€EN (v) |N(17)| & o, ¢» (1) Message
Message:
Each Neighbor: mg) = w(l)hg—l) i the GN paper they use a shahtly

different normalization)

Aggregation:

Sum over messages from neighbors, then apply activation

hl()l) =0 (Sum ({mg)’ u € N(U)})) InGCN graph is assumed to have

self-edges that are included in the
summation.

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 37



Hamilton et al. , NeurlIPS 2017

Classical GNN Layers: GraphSAGE

h = 5 (w@ . CONCAT (h,(,l_l),AGG ({hg-D, Vi € N(v)})))

Message is computed within the AGG(:)

Stage 1: Aggregate from node neighbors
h{}, < AGG ({h“ D vu e N(v)})

Stage 2: Further aggregate over the node itself

b — o (WO - CONCAT(n{ ™ ha(v)))
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GraphSAGE Neighbor Aggregation

Mean: Take a weighted average of neighbors

h(l_l)
06 = o -
Aggregation [eN() Message computation

Pool: Transform neighbor vectors and apply
symmetric vector function Mean(-) or Max(-)

AGG =|Nean ({MLP(h! "), vu € N(v)})
Aggregation |Message computation
LSTM: Apply LSTM to reshuffled of neighbors

AGG =[LSTM (b, vu € n(N())])

Aggregation
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GraphSAGE: L2 Normalization

£, Normalization:

Optional: Apply ¢, normalization to h,(,l) at every layer

D
l h ,
hi(,) ¢ Hh('{)u Vv € V where |[ull, = [X,u? (£,-norm)
vz

Without £, normalization, the embedding vectors have
different scales (£,-norm) for vectors

In some cases (not always), normalization of embedding
results in performance improvement

After £, normalization, all vectors will have the same
£,-norm
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Classical GNN Layers: GAT (1)

10/12/21

l -1
hi()) — O-(ZuEN(v) avuw(l)hg ))

Ay = Nl is the weighting factor (importance)
of node u’s message to node v

= ., is defined

— All neighbors u € N(v) are equally important
to node v

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Classical GNN Layers: GAT (2)

l -1
hi()) — O-(ZuEN(v) avuw(l)hg ))

Not all node’s neighbors are equally important
Attention is inspired by cognitive attention.

The attention a,,,, focuses on the important parts of
the input data and fades out the rest.

Idea: the NN should devote more computing power on that
small but important part of the data.

Which part of the data is more important depends on the
context and is learned through training.
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[Velickovic et al., ICLR 2018; Vaswani et al., NIPS 2017]

Graph Attention Networks

Can we do better than simple
neighborhood aggregation?

Can we let weighting factors a,,, to be
learned?

Goal: Specify arbitrary importance to different
neighbors of each node in thel§raph

ldea: Compute embedding h,,” of each node in the
graph following an :

Nodes attend over their neighborhoods’ message

Implicitly specifying different weights to different nodes
in a neighborhood
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Attention Mechanism (1)

Let «,,,, be computed as a byproduct of an
attention mechanism a:

(1) Let a compute attention coefficients e, across
pairs of nodes u, v based on their messages:

e,y = a(W(l)h,(f_l), W(l)hf,l_l))

e, indicates the importance of u's message to node v

eap = a(WORY™ wORI™)
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Attention Mechanism (2)

Normalize e, into the final attention weight a,,,

Use the softmax function, so that X, ey ) @pu = 1:
exp(epy)

B Zke]\](v) exp(evk)
Weighted sum based on the final attention weight

) _ (1-1)
hv — U(ZuEN(v) W(l)hu )

Weighted sum using a5, s, dsp:
hg) = O'(CXABW(l)hg_l)+aACW(l)h(Cl_1)+
a,p WORY D)
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Attention Mechanism (4)

Multi-head attention: Stabilizes the learning
process of attention mechanism

Create (each replica
with a different set of parameters):

AT -1
hl(J) 1] = U(ZuEN(v) avuw( )h( ))
1) rn- [-1
hl(J) 2] = U(ZuEN(v) avuw( )h( ))
1) - [-1
hl(J) 3] = U(ZuEN(v) avuw( )h( ))

By concatenation or summation
l l l l
h{’ = AGG(hYP[1], 0 (2], h{[3])
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Benefits of Attention Mechanism

Key benefit: Al
importance va

Computationa

ows for (implicitly) specifying different
ues (a,, ) to different neighbors

ly efficient:

Computation of attentional coefficients can be parallelized
across all edges of the graph

Aggregation may be parallelized across all nodes
Storage efficient:

Sparse matrix operations do not require more than
O(V + E) entries to be stored

Fixed number of parameters, irrespective of graph size

Localized:

Only attends over local network neighborhoods
Inductive capability:

It is a shared edge-wise mechanism
It does not depend on the global graph structure
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Stanford CS224W:
GNN Layers in Practice



J.You, R.Ying, J. Leskovec. , NeurlPS 2020

GNN Layer in Practice

A suggested GNN Layer

4
We can often get better ([ Linear
performance by considering a - —
general GNN layer design v
. Transformation ~ Dropout
Concretely, we can include v
. Activation
modern deep learning modules 7
that proved to be useful in many . Attei“"”
domains Aggregation

v
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J.You, R.Ying, J. Leskovec. , NeurlPS 2020

GNN Layer in Practice

Batch Normalization: A suggested GNN Layer

Stabilize neural network training - Li:
ear
. ¥
DrOPOUt' BatchNorm
Prevent overfitting v
. . Transformation - Dropout
Attention/Gating: v
i Activation
Control the importance of a message v
M . _ | Attention
ore. ¥
Any other useful deep learning modules Aggregation

v
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Srivastava et al. , JMLR 2014

Dropout

Goal: Regularize a neural net to prevent overfitting.
Idea:

During training: with some probability p, randomly set
neurons to zero (turn off)

During testing: Use all the neurons for computation

Dropout

X
Removed neurons
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Dropout for GNNs

In GNN, Dropout is applied to the
linear layer in the message function t (2) Aggregation

. R S
A simple message function with linear ¢ 2% "

layer: =

Dropout

ﬁ

Visualization of a linear layer
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Activation (Non-linearity)

Rectified linear unit (RelLU)

ReLU(x;) = max(x;, 0)
Most commonly used
Sigmoid Y=y
1 ................
o) =T — 7

Used only when you want to restrict the
range of your embeddings

Parametric RelLU

PReLU(x;) = max(x;, 0) + a;min(x;, 0) /y:x
a; is a trainable parameter - >

y = ax

Empirically performs better than RelLU
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GNN Layer in Practice

Modern deep learning
modules can be included into a GNN A GNN Layer
layer for better performance v

Linear

v

BatchNorm

v

Transformation ~ Dropout

v

Activation

You can ¥

Attention

explore diverse GNN designs or try ¥

out your own ideas in GraphGym Aggrefation
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Stanford CS224W:
Stacking Layers of a GNN



J.You, R.Ying, J. Leskovec. , NeurlPS 2020

Stacking GNN Layers

How to connect GNN layers into a GNN?
* Stack layers sequentially
‘/“ * Ways of adding skip connections

— oo

. GNN Layer 1

TARGET NODE

INPUT GRAPH

(3) Lay .

connectlwty ‘ ........ . ........... i ............................................... :

GNN Layer 2 »
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Stacking GNN Layers

How to construct a Graph Neural Network?
The standard way: Stack GNN layers sequentially

Input: Initial raw node feature

Output: Node embeddings after L GNN layers

'

GNN Layer

Lo

GNN Layer

[

GNN Layer

v
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The Over-smoothing Problem

GNN suffers from the over-smoothing problem
The over-smoothing problem: all the node
embeddings converge to the same value

This is bad because we want to use node
embeddings to differentiate nodes
Why does the over-smoothing problem

happen?
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Receptive Field of a GNN

the set of nodes that determine
the embedding of a node of interest

In a K-layer GNN, each node has a receptive field of
K-hop neighborhood

Receptive field for Receptive field for Receptive field for
1-layer GNN 2-layer GNN 3-layer GNN
CR O Node of interest O Node of interest

@ Receptive field
O Other nodes

o @ Receptive field

O Node of interest
o @ Receptive field
O Other nodes

O Other nodes
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LL

ive

Recept

ield overlap for two nodes

ive f

Recept

ickly grows when we

the number of hops (num of GNN layers)

The shared neighbors qu

INCrease

O Nodes of interest
@ Shared neighbors
O Other nodes

3-hop neighbor overlap
Almost all the nodes!

O Nodes of interest
@ Shared neighbors
O Other nodes

2-hop neighbor overlap

About 20 nodes

O Nodes of interest
@ Shared neighbors
O Other nodes

1-hop neighbor overlap

Only 1 node
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Receptive Field & Over-smoothing

10/12/21

We knew the embedding of a node is determined
by its
If two nodes have highly-overlapped receptive fields, then
their embeddings are highly similar
= nodes will have highly-
overlapped receptive fields > node embeddings
will be highly similar = suffer from the over-
smoothing problem
how do we overcome over-smoothing problem?
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Design GNN Layer Connectivity

What do we learn from the over-smoothing problem?
Lesson 1: Be cautious when adding GNN layers

Unlike neural networks in other domains (CNN for image
classification), adding more GNN layers do not always help

Step 1: Analyze the necessary receptive field to solve your
problem. E.g., by computing the diameter of the graph

Step 2: Set number of GNN layers L to be a bit more than the
receptive field we like. Do not set L to be unnecessarily
large!

Question: How to enhance the expressive power of a
GNN, if the number of GNN layers is small?
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Expressive Power for Shallow GNNs

How to make a shallow GNN more expressive?
Solution 1: Increase the expressive power within
each GNN layer

In our previous examples, each transformation or
aggregation function only include one linear layer

We can make aggregation / transformation become a
deep neural network!

(2) Aggregation

If needed, each box could _—
include a 3-I MLP
include a s-ayer o & on ¢# (1) Transformation
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Expressive Power for Shallow GNNs

How to make a shallow GNN more expressive?
Solution 2: Add layers that do not pass messages

A GNN does not necessarily only contain GNN layers

E.g., we can add MLP layers (applied to each node) before and after
GNN layers, as pre-process layers and post-process layers

R— +
i | MLP Layer Pre- |
\’ process |
MLP Layer layers
_____________ I
GNN Layer
v
GNN Layer
v
GNN Layer
_________ Ny
MLP Layer Post-
\’ process |
MLP Layer layers
S — P

Pre-processing layers: Important when
encoding node features is necessary.
E.g., when nodes represent images/text

Post-processing layers: Important when
reasoning / transformation over node
embeddings are needed

E.g., graph classification, knowledge graphs

In practice, adding these layers works great!
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He et al. , CVPR 2015

Design GNN Layer Connectivity

What if my problem still requires many GNN layers?
Lesson 2: Add skip connections in GNNs

Observation from over-smoothing: Node embeddings in
earlier GNN layers can sometimes better differentiate nodes

Solution: We can increase the impact of earlier layers on the
final node embeddings, by adding shortcuts in GNN

i, S | Duplicate

e

process

layers branches

GNN Layer .

5 5 weight layer
GNN Layer SKIp_ 'F(X) A 4 relu
; i connection : .

: : ; weight layer
. | GNN Layer |: :

MLP Layer Post-

W sum two
process E

layers | branches
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Idea of skip connections:
Before adding shortcuts:
X F(x)
identity ~ After adding shortcuts:
F(x) + x



https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

ldea of Skip Connections

Why do skip connections work?
Intuition: Skip connections create a mixture of models
N skip connections = 2V possible paths
Each path could have up to N modules

We automatically get a mixture All the possible paths:
of shallow GNNs and deep GNNs =~ 2*2%2=2°=8

Path 2: skip this module

Building block

Skip
connection

TR

Residual
module

Path 1: include this module —
(a) Conventional 3-block residual network (b) Unraveled view of (a)

Veit et al. Residual Networks Behave Like Ensembles of Relatively Shallow Networks, ArXiv 2016
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Example: GCN with Skip Connections

A standard GCN layer ;

weight layer

F(x) Jrelu

X

weight layer

l h{~Y
hY) = o (ZuEN(v)w(l) ) e

identity

MLP Layer Pre-
v process
MLP Layer layers

Skip

[ U —
hl(J) =0 (ZuEN(v) w(l IN(v)] v

F(X) + MLP Layer Post-

¥ process
MLP Layer layers

e e I
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Xu et al.

, ICML 2018

Other Options of Skip Connections

Other options: Directly
skip to the last layer
The final layer directly
aggregates from the all the

node embeddings in the
previous layers

10/12/21 Jure

Input: h1(70)
I

\ 2
GNN Layer

iV

A 4
GNN Layer

(2)
h; v
GNN Layer

h® l;:

Layer aggregation
Concat/Pooling/LSTM

Output: hl(,f tnal)
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