National Technical University of Athens MSc on Data Science and Machine Learning Course "Deep Learning"

Graph Machine Learning

Concepts, algorithms and tools for analysis of graph data

02 June 2022

Stanford CS224W: Machine Learning with Graphs

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Many Types of Data are Graphs (1)

Image credit: SalientNetworks

Event Graphs Computer Networks

Disease Pathways

Image credit: <u>Wikipedia</u> Image credit: Pinterest Image credit: Pinterest Image credit: visitlondon.com

Food Webs Underground Networks

9/22/2021

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 21

Particle Networks

Many Types of Data are Graphs (2)

Image credit: Science Image credit: Lumen Learning

Image credit: Medium

Social Networks

Economic Networks Communication Networks

Citation Networks

Image credit: Missoula Current News

Internet

Image credit: The Conversation

Networks of Neurons

9/22/2021

Many Types of Data are Graphs (3)

 \overline{LINE}

Image credit: Maximilian Nickel et al

Knowledge Graphs

Image credit: ese.wustl.edu

Regulatory Networks

Image credit: math.hws.edu

Scene Graphs

 $NH₂$

Image credit: MDPI

Molecules

Image credit: Wikipedia

3D Shapes

Code Graphs

Graphs and Relational Data

Code Graphs

Molecules

3D Shapes

Complex domains have a rich relational structure, which can be represented as a **relational graph**

By explicitly modeling relationships we achieve better performance!

Today: Modern ML Toolbox

Modern deep learning toolbox is designed for simple sequences & grids

Doubt thou the stars are fire. Doubt that the sun doth move, Doubt truth to be a liar, But never doubt I love...

Images

Modern deep learning toolbox is designed for sequences & grids

9/22/2021

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 29

Not everything can be represented as a sequence or a grid

How can we develop neural networks that are much more broadly applicable?

New frontiers beyond classic neural networks that only learn on images and sequences

The hottest subfield in ML

ICLR Keyword Growth 2018-2020

Why is Graph Deep Learning Hard?

Networks are complex.

Arbitrary size and complex topological structure (*i.e.*, no spatial locality like grids)

- **No fixed node ordering or reference point**
- **Often dynamic and have multimodal features**

CS224W & Representation Learning

(Supervised) Machine Learning Lifecycle: This feature, that feature. Every single time!

Map nodes to d -dimensional **embeddings** such that similar nodes in the network are embedded close together

Stanford CS224W: Applications of Graph ML

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Different Types of Tasks

Classic Graph ML Tasks

Node classification: Predict a property of a node

- **Example:** Categorize online users / items
- **Link prediction**: Predict whether there are missing links between two nodes
	- **Example:** Knowledge graph completion
- **Graph classification**: Categorize different graphs
	- **Example:** Molecule property prediction
- **Clustering**: Detect if nodes form a community
	- **Example:** Social circle detection
- **Other tasks**:
	- **Graph generation**: Drug discovery
	- **Graph evolution**: Physical simulation

Classic Graph ML Tasks

Node classification: Predict a property of a node

- **Example:** Categorize online users / items
- **Link prediction**: Predict whether there are missing
	- links
- **Exa**mple: Example: \mathbf{F} **Grap E Grap** These Graph ML tasks lead to phs
- **Example**: Monecule property **Executed in the clustering of the community of the community of** \mathbf{y} **high-impact applications!**
	- **Exa**mple
- **Others**:
	- **Graph generation**: Drug discovery
	- **Graph evolution**: Physical simulation

Example of Node-level ML Tasks

Example (1): Protein Folding

A protein chain acquires its native 3D structure

Image credit: DeepMind

The Protein Folding Problem

Computationally predict a protein's 3D structure based solely on its amino acid sequence

AlphaFold: Impact

Image credit: SingularityHub

AlphaFold's AI could change the world of biological science as we know it

DeepMind's latest AI breakthrough can accurately predict the way proteins fold

Has Artificial Intelligence 'Solved' Biology's **Protein-Folding Problem? DeepMind's latest AI** breakthrough could turbocharge drug discovery

 $12 - 14 - 20$

9/22/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 47

Examples of Edge-level ML Tasks

Example (2): Recommender Systems

$\mathcal{L}_{\mathcal{A}}$ **Users interacts with items**

- Watch movies, buy merchandise, listen to music
- **Nodes:** Users and items
- **Edges:** User-item interactions
- **Goal: Recommend items users might like**

Ying et al., Graph Convolutional Neural Networks for Web-Scale Recommender Systems, KDD 2018

PinSage: Graph-based Recommender

Task: Recommend related pins to users

Task: Learn node embeddings z_i such that $d(z_{\text{cache1}}, z_{\text{cache2}})$ $\langle d(Z_{\text{cake1}}, Z_{\text{sweater}}) \rangle$

Predict whether two nodes in a graph are related

9/22/2021

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Example (3): Drug Side Effects

Many patients take multiple drugs to treat complex or co-existing diseases: **Presentable** multiple drugs to the **sompley or co ovicting diseases:**

- 46% of people ages 70-79 take more than 5 drugs
- **Many patients take more than 20 drugs to treat** heart disease, depression, insomnia, etc.

Task: Given a pair of drugs predict adverse side effects

Examples of Subgraph-level ML Tasks

Example (4): Traffic Prediction

Road Network as a Graph

- **Nodes: Road segments**
- **Edges:** Connectivity between road segments
- **Prediction:** Time of Arrival (ETA)

Traffic Prediction via GNN

Predicting Time of Arrival with Graph Neural Networks

Examples of Graph-level ML Tasks

Example (5): Drug Discovery

Antibiotics are small molecular graphs

Nodes: Atoms

Edges: Chemical bonds

Konaklieva, Monika I. "Molecular targets of β-lactam-based antimicrobials: beyond the usual suspects." Antibiotics 3.2 (2014): 128-142.

Image credit: CNN

Stokeset al., A Deep Learning Approach to Antibiotic Discovery, Cell 2020

Deep Learning for Antibiotic Discovery

 A Graph Neural Network **graph classification model Predict promising molecules from a pool of candidates**

Stokes, Jonathan M., et al. "A deep learning approach to antibiotic discovery." Cell 180.4 (2020): 688-702.

Stanford CS224W: Choice of Graph Representation

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Components of a Network

- **Objects:** nodes, vertices *N*
- **Interactions:** links, edges *E*
- **System:** network, graph *G(N,E)*

Directed vs. Undirected Graphs

Undirected

 Links: undirected (symmetrical, reciprocal)

- $\mathcal{L}^{\mathcal{L}}$ **Examples:**
	- Collaborations
	- Friendship on Facebook

Directed

Links: directed

(arcs)

Examples:

- Phone calls
- Following on Twitter
Heterogeneous Graphs

- **A heterogeneous graph is defined as** $G=(V,E,R,T)$
	- Nodes with node types
	- **Edges with relation types**
	- **Node type**
	- **Relation type**

Node Degrees

Node degree, k_i **: the number** of edges adjacent to node *i* $k_{4} = 4$ In directed networks we define an **in-degree** and **out-degree.** The (total) degree of a node is the sum of in- and out-degrees. $\overline{k} = \langle k \rangle = \frac{1}{k}$ *N* $k_{\scriptscriptstyle i}$ *i*=1 $\oint_{-1}^{N} k_i = \frac{2E}{N}$ **Avg. degree:**

$$
k_C^{in} = 2 \qquad k_C^{out} = 1 \qquad k_C = 3
$$

$$
\overline{k} = \frac{E}{\lambda^T} \qquad \qquad \overline{k^m} = \overline{k^{out}}
$$

Bipartite Graph

 \Box **Bipartite graph** is a graph whose nodes can be divided into two disjoint sets *U* and *V* such that every link connects a node in *U* to one in *V*; that is, *U* and *V* are **independent sets**

\Box **Examples:**

- Authors-to-Papers (they authored)
- **Actors-to-Movies (they appeared in)**
- **Users-to-Movies (they rated)**
- **Recipes-to-Ingredients (they contain)**
- $\overline{}$ **͞Folded͟ neƚǁorks͗**
	- \mathbb{R}^n Author collaboration networks
	- **Novie co-rating networks**

Representing Graphs: Adjacency Matrix

 $A_{ii} = 1$ if there is a link from node *i* to node *j* $A_{ii} = 0$ otherwise

Note that for a directed graph (right) the matrix is not symmetric.

Representing Graphs: Adjacency list

Adjacency list:

- Easier to work with if network is
	- **Large**
	- **Sparse**
- **Allows us to quickly retrieve all** neighbors of a given node
	- \blacksquare 1:
	- \blacksquare 2: 3, 4
	- \blacksquare 3: 2, 4
	- $-4:5$
	- \blacksquare 5: 1, 2

Summary

Machine learning with Graphs

Applications and use cases

Different types of tasks:

- **Node level**
- **Edge level**
- **Graph level**

Choice of a graph representation:

 Directed, undirected, bipartite, weighted, adjacency matrix

Stanford CS224W: Traditional Methods for Machine Learning in Graphs

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Traditional ML Pipeline

- **Design features for nodes/links/graphs**
- **Obtain features for all training data**

Traditional ML Pipeline

Train an ML model:

- Random forest
- **SVM**
- Neural network, etc.

• Apply the model:

Given a new node/link/graph, obtain its features and make a prediction

Stanford CS224W: Node-Level Tasks and Features

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Node-Level Tasks

Node classification

ML needs features.

Node-Level Features: Overview

Goal: Characterize the structure and position of a node in the network:

- **Node degree**
- **Node centrality**

Node Features: Node Degree

The degree k_{ν} of node ν is the number of edges (neighboring nodes) the node has. **Treats all neighboring nodes equally.**

Node Features: Node Centrality

- **Node degree counts the neighboring nodes** without capturing their importance.
- \blacksquare Node centrality c_v takes the node importance in a graph into account
- **Different ways to model importance:**
	- **Eigenvector centrality**
	- Betweenness centrality
	- **Closeness centrality**
	- and many others...

Node Centrality (2)

E Betweenness centrality:

A node is important if it lies on many shortest paths between other nodes.

 $c_v = \sum \frac{\#(\text{shortest paths between } s \text{ and } t \text{ that contain } v)}{\#(\text{shortest paths between } s \text{ and } t)}$

Example:

 $S \neq v \neq t$

 $c_A = c_B = c_E = 0$ $c_c = 3$ $(A - C - B, A - C - D, A - C - D - E)$

 $c_D = 3$ $(A-C-\underline{D}-E, B-\underline{D}-E, C-D-E)$

Node Centrality (3)

E Closeness centrality:

A node is important if it has small shortest path lengths to all other nodes.

1

 $c_v = \frac{c_v}{\sum_{v \neq v}$ shortest path length between u and v

Example:

$c_A = 1/(2 + 1 + 2 + 3) = 1/8$ $(A-C-B, A-C, A-C-D, A-C-D-E)$

 $c_D = 1/(2 + 1 + 1 + 1) = 1/5$ (D-C-A, D-B, D-C, D-E)

Node Features: Clustering Coefficient

• Measures how connected $v's$ neighboring nodes are:

Node Features: Graphlets

• Observation: Clustering coefficient counts the #(triangles) in the ego-network

• We can generalize the above by counting #(pre-specified subgraphs, i.e., graphlets).

Node-Level Feature: Summary

- **We have introduced different ways to obtain node features.**
- **They can be categorized as:**
	- **Importance-based features:**
		- **Node degree**
		- Different node centrality measures
	- **Structure-based features:**
		- **Node degree**
		- **Clustering coefficient**
		- Graphlet count vector

Node-Level Feature: Summary

- **Importance-based features:** capture the importance of a node in a graph
	- **Node degree:**
		- **Simply counts the number of neighboring nodes**
	- **Node centrality:**
		- **Models importance of neighboring nodes in a graph**
		- $\overline{\mathbb{R}}$ Different modeling choices: eigenvector centrality, betweenness centrality, closeness centrality
- **Useful for predicting influential nodes in a graph**
	- **Example:** predicting celebrity users in a social network

Node-Level Feature: Summary

- **Structure-based features:** Capture topological properties of local neighborhood around a node.
	- **Node degree:**
		- **Counts the number of neighboring nodes**
	- **Clustering coefficient:**
		- **Measures how connected neighboring nodes are**
	- **Graphlet degree vector:**
		- **Counts the occurrences of different graphlets**
- **Useful for predicting a particular role a node plays in a graph:**
	- **Example:** Predicting protein functionality in a protein-protein interaction network.

Stanford CS224W: Link Prediction Task and Features

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Link-Level Prediction Task: Recap

- **The task is to predict new links based on the** existing links.
- **At test time, node pairs (with no existing links)** are ranked, and top K node pairs are predicted.
- The key is to design features for **a pair of nodes**.

Link Prediction as a Task

Two formulations of the link prediction task:

1) Links missing at random:

Remove a random set of links and then aim to predict them

2) Links over time:

 \blacksquare Given $G[t_0,t_0]$ \boldsymbol{I}] a graph defined by edges up to time t_{0}^{\prime} ᇱ *,* **output a ranked list** *L* of edges (not in $G[t_0,t_0^{\prime}]$ \boldsymbol{I} ሿ) that are predicted to appear in time $G[t_1,t_1']$ ᇱ $\overline{}$

- **Evaluation:**
	- \blacksquare *n* = $|E_{new}|$: # new edges that appear during the test period $\left[t_1,t_1'\right]$ \boldsymbol{I} ሿ
- **Take top** n **elements of** L **and count correct edges I** and state top $n_{\text{sure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu}$

Link Prediction via Proximity

Methodology:

- For each pair of nodes (x, y) compute score $c(x, y)$
	- For example, $c(x, y)$ could be the # of common neighbors of *^x* and *y*
- Sort pairs *(x,y)* by the decreasing score *c(x,y)*
- **Predict top** *n* **pairs as new links**
- **See which of these links actually appear in** $G[t_1, t'_1]$

Link-Level Features: Overview

- **Distance-based feature**
- **Local neighborhood overlap**
- **Global neighborhood overlap**

Distance-Based Features

Shortest-path distance between two nodes

Example:

 $S_{BH} = S_{BE} = S_{AB} = 2$ $S_{BG} = S_{BF} = 3$

- However, this does not capture the degree of neighborhood overlap:
	- Node pair (B, H) has 2 shared neighboring nodes, while pairs (B, E) and (A, B) only have 1 such node.

Local Neighborhood Overlap

Captures # neighboring nodes shared between two nodes \boldsymbol{v}_1 and \boldsymbol{v}_2 :

- **Common neighbors:** $|N(v_1) \cap N(v_2)|$
	- Example: $|N(A) \cap N(B)| = |\{C\}| = 1$
- Jaccard's coefficient: <u>IN(v₁)nN(v₂)</u> $|N(v_1) \cup N(v_2)|$

Example:
$$
\frac{|N(A) \cap N(B)|}{|N(A) \cup N(B)|} = \frac{|\{C\}|}{|\{C,D\}|} = \frac{1}{2}
$$

Adamic -Adar index:

$$
\sum_{u \in N(v_1) \cap N(v_2)} \frac{1}{\log(k_u)}
$$

Example:
$$
\frac{1}{\log(k_C)} = \frac{1}{\log 4}
$$

Global Neighborhood Overlap

Limitation of local neighborhood features:

• Metric is always zero if the two nodes do not have any neighbors in common.

$$
N_A \cap N_E = \phi
$$

$$
|N_A \cap N_E| = 0
$$

However, the two nodes may still potentially be connected in the future.

Global neighborhood overlap metrics resolve the limitation by considering the entire graph.

Global Neighborhood Overlap

- **Katz index:** count the number of walks of all lengths between a given pair of nodes.
- **Q: How to compute #walks between two nodes?**
- Use **powers of the graph adjacency matrix**!

Link-Level Features: Summary

Distance-based features:

- **Uses the shortest path length between two nodes** but does not capture how neighborhood overlaps.
- **Local neighborhood overlap:**
	- **Captures how many neighboring nodes are shared** by two nodes.
- **Becomes zero when no neighbor nodes are shared. Global neighborhood overlap:**
	- Uses global graph structure to score two nodes.
	- **Katz index counts #walks of all lengths between two** nodes.

Stanford CS224W: Graph-Level Features and Graph Kernels

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Graph-Level Features

Goal: We want features that characterize the structure of an entire graph.

Graph-Level Features: Overview

- **Graph Kernels**: Measure similarity between two graphs:
	- Graphlet Kernel [1]
	- Weisfeiler-Lehman Kernel [2]
	- **Other kernels are also proposed in the literature** (beyond the scope of this lecture)
		- Random-walk kernel
		- **Shortest-path graph kernel**
		- **And many more...**

[1] Shervashidze, Nino, et al. "Efficient graphlet kernels for large graph comparison." Artificial Intelligence and Statistics. 2009. [2] Shervashidze, Nino, et al. "Weisfeiler-lehman graph kernels." Journal of Machine Learning Research 12.9 (2011).

Graph Kernel: Key Idea

- Goal: Design graph feature vector $\phi(G)$
- **Key idea**: Bag-of-Words (BoW) for a graph
	- **Recall:** BoW simply uses the word counts as features for documents (no ordering considered).
	- **Naïve extension to a graph: Regard nodes as words.**
	- **Since both graphs have 4 red nodes, we get the** same feature vector for two different graphs...

Graph Kernel: Key Idea

What if we use Bag of **node degrees** ? Deg1: Oeg2: Oeg3: O $\phi(\sum) = \text{count}(\sum) = [1, 2, 1]$ $\phi(\sum)$ = count(\sum) = [0, 2, 2] Obtains different features for different graphs!

■ Both Graphlet Kernel and Weisfeiler-Lehman (WL) Kernel use **Bag -of - *** representation of graph, where ***** is more sophisticated than node degrees!
Today's Summary

Traditional ML Pipeline

- Hand-crafted feature + ML model
- **E** Hand-crafted features for graph data

- Node-level:

• Node degree, centrality, clustering coefficient, graphlets

Link -level:

- **Distance-based feature**
- **local/global neighborhood overlap**

Graph -level:

Graphlet kernel, WL kernel

Stanford CS224W: Node Embeddings

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Recap: Traditional ML for Graphs

Given an input graph, extract node, link and graph-level features, learn a model (SVM, neural network, etc.) that maps features to labels.

Graph Representation Learning alleviates the need to do feature engineering every single time.

Graph Representation Learning

Goal: Efficient task-independent feature learning for machine learning with graphs!

Why Embedding?

Task: Map nodes into an embedding space

- **Similarity of embeddings between nodes indicates** their similarity in the network. For example:
	- Both nodes are close to each other (connected by an edge)
- **Encode network information**
- Potentially used for many downstream predictions

Stanford CS224W: Node Embeddings: Encoder and Decoder

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

E Assume we have a graph G:

- \blacksquare V is the vertex set.
- **A** is the adjacency matrix (assume binary).
- **For simplicity: No node features or extra information is used**

Embedding Nodes

Goal is to encode nodes so that similarity in the embedding space (e.g., dot product) approximates similarity in the graph

Embedding Nodes

Learning Node Embeddings

- **1. Encoder** maps from nodes to embeddings
- **2. Define a node similarity function** (i.e., a measure of similarity in the original network)
- **3. Decoder DEC** maps from embeddings to the similarity score
- **4. Optimize the parameters of the encoder so that:**

 $\operatorname{DEC}(\mathbf{z}^1_{v}$ T $\mathbf{z}_u)$

similarity $(u,v)~\approx~\;~\mathbf{z}_{v}^{1}$

T \mathbf{Z}_u

in the original network Similarity of the embedding

Two Key Components

- **Encoder:** maps each node to a low-dimensional vector $\text{ENC}(v) = \mathbf{z}_v$ embedding node in the input graph d-dimensional
- **Similarity function:** specifies how the relationships in vector space map to the relationships in the original network **Decoder** similarity $(u,v)~\approx~\;~\mathbf{z}_{v}^{1}$ T \mathbf{Z}_u

Similarity of \vec{u} and \vec{v} in

Example $\frac{d}{dx}$ dot product between node the original network dot product between node

"Shallow" Encoding

Simplest encoding approach: **Encoder is just an embedding -lookup**

$$
ENC(v) = \mathbf{z}_v = \mathbf{Z} \cdot v
$$

matrix, each column is a node $Z \in \mathbb{R}^{d \times |\mathcal{V}|}$ embedding [what we learn / optimize] indicator vector, all zeroes $v \in \mathbb{I}^{|\mathcal{V}|}$ except a one in column indicating node *v*

"Shallow" Encoding

Simplest encoding approach: **encoder is just an embedding -lookup**

"Shallow" Encoding

Simplest encoding approach: **Encoder is just an embedding -lookup**

Each node is assigned a unique embedding vector (i.e., we directly optimize the embedding of each node)

Many methods: DeepWalk, node2vec

Framework Summary

Encoder + Decoder Framework

- **Shallow encoder: embedding lookup**
- Parameters to optimize: Z which contains node embeddings \mathbf{z}_u for all nodes $u \in V$
- We will cover deep encoders (GNNs) in Lecture 6
- **Decoder:** based on node similarity.
- **Objective:** maximize \mathbf{z}_{v}^{T} T \mathbf{z}_u for node pairs (u,v) that are **similar**

How to Define Node Similarity?

- **Example 18 Exay choice of methods is how they define node similarity.**
- **Should two nodes have a similar embedding if** they…
	- are linked?
	- **Share neighbors?**
	- have similar "structural roles"?
- **We will now learn node similarity definition that uses random walks**, and how to optimize embeddings for such a similarity measure.

Note on Node Embeddings

- **This is unsupervised/self-supervised way of** learning node embeddings.
	- We are **not** utilizing node labels
	- We are **not** utilizing node features
	- **The goal is to directly estimate a set of coordinates** (i.e., the embedding) of a node so that some aspect of the network structure (captured by DEC) is preserved.
- **These embeddings are task independent**
	- **They are not trained for a specific task but can be** used for any task.

Stanford CS224W: Random Walk Approaches for Node Embeddings

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Notation

- **•** Vector z_u :
	- **The embedding of node** u (what we aim to find).
- **Probability** $P(v | \mathbf{z}_u): \iff$ Our model prediction based on \mathbf{z}_u
	- **The (predicted) probability** of visiting node v on random walks starting from node u .

Non -linear functions used to produce predicted **probabilities**

- **Softmax** function:
	- \blacksquare Turns vector of K real values (model predictions) into K probabilities that sum to 1: $\sigma(\mathbf{z})[i]$ ൌ $e^{\mathbf{z}[i]}$ $\sum_{j=1}^K$ ಼ $e^{\mathbf{z}[j]}$
- **Sigmoid** function:
	- S-shaped function that turns real values into the range of (0, 1). Written as $S(x) =$ $\mathbf 1$ $1+e^{-x}$

Random Walk

probability that u $\mathbf{Z}_{\mathcal{U}}^{\mathcal{I}} \mathbf{Z}_{\mathcal{U}} \approx$ and v co -occur on a random walk over the graph

Random-Walk Embeddings

1. Estimate probability of visiting node ࢜ **on a** \bf{r} andom walk starting from node \bf{u} using **some random walk strategy** ࡾ

2. Optimize embeddings to encode these random walk statistics:

Similarity in embedding space (Here: dot product= $\cos(\theta)$) encodes random walk "similarity" $P_R(v|u)$

 $\propto P_R(v|u)$

 θ

 \mathbf{z}_i

Why Random Walks?

- **1. Expressivity:** Flexible stochastic definition of node similarity that incorporates both local and higher-order neighborhood information **Idea:** if random walk starting from node u visits ν with high probability, ν and ν are similar (high-order multi-hop information)
- **2. Efficiency:** Do not need to consider all node pairs when training; only need to consider pairs that co-occur on random walks

Feature Learning as Optimization

Given
$$
G = (V, E)
$$
,

- \blacksquare Our goal is to learn a mapping $f: u \to \mathbb{R}^d$: $f(u) = \mathbf{Z}_u$
- **Log-likelihood objective:** $\max_{f} \sum_{u} \log P(N_R(u) | \mathbf{z}_u)$ $11 \in V$
	- $N_R(u)$ is the neighborhood of node u by strategy R
- Given node u , we want to learn feature representations that are predictive of the nodes in its random walk neighborhood $N_R(u)$.

- 1. Run **short fixed-length random walks** starting from each node u in the graph using some random walk strategy R.
- 2. For each node u collect $N_R(u)$, the multiset^{*} of nodes visited on random walks starting from u .
- 3. Optimize embeddings according to: Given node u , predict its neighbors $N_{\rm R}(u)$.

9/28/2021

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 27

Equivalently,

$$
\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))
$$

- \bullet **• Intuition:** Optimize embeddings z_u to maximize the likelihood of random walk co -occurrences.
- \bullet • Parameterize $P(v|\mathbf{z}_u)$ using softmax:

$$
P(v|\mathbf{z}_u) = \frac{\exp(\mathbf{z}_u^{\mathrm{T}} \mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^{\mathrm{T}} \mathbf{z}_n)}
$$

Why softmax ? We want node v to be most similar to node u (out of all nodes n). **Intuition:** $\sum_i \exp(x_i) \approx$ max exp $\left(x_i\right)$

Putting it all together:

Optimizing random walk embeddings =

Finding <code>embeddings</code> \mathbf{z}_u that minimize <code>L</code>

But doing this naively is too expensive!

Stochastic Gradient Descent

After we obtained the objective function, how do we optimize (minimize) it?

$$
\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))
$$

Gradient Descent: a simple way to minimize \mathcal{L} :

- \blacksquare Initialize z_u at some randomized value for all nodes $u.$
- Iterate until convergence:
	- \blacksquare For all u , compute the derivative $\partial \mathcal{L}$ ∂z_u .

 η : learning rate

 \blacksquare For all u , make a step in reverse direction of derivative: $z_u \leftarrow z_u - \eta$

.

 ∂ $\cal L$

 ∂ \boldsymbol{Z}

Stochastic Gradient Descent

- **Stochastic Gradient Descent:** Instead of evaluating gradients over all examples, evaluate it for each **individual** training example.
	- \blacksquare Initialize z_u at some randomized value for all nodes u .
	- Iterate until convergence: $\mathcal{L}^{(u)} =$ \sum $v \in N_R(u)$ $-\text{log}(P(v|\mathbf{z}_u))$

Sample a node u, for all v calculate the derivative $\partial \mathcal{L}^{(u)}$ ∂z_ν

■ For all
$$
v
$$
, update: $z_v \leftarrow z_v - \eta \frac{\partial \mathcal{L}^{(u)}}{\partial z_v}$.

.

Random Walks: Summary

- 1. Run **short fixed-length** random walks starting from each node on the graph
- 2. For each node u collect $N_R(u)$, the multiset of nodes visited on random walks starting from u .
- 3. Optimize embeddings using Stochastic Gradient Descent:

$$
\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))
$$

We can efficiently approximate this using negative sampling!

How should we randomly walk?

- **So far we have described how to optimize** embeddings given a random walk strategy R
- **What strategies should we use to run these random walks?**
	- **E** Simplest idea: Just run fixed-length, unbiased **random walks starting from each node** (i.e., DeepWalk from Perozzi et al., 2013)
		- The issue is that such notion of similarity is too constrained
- **E** How can we generalize this?

Reference: Perozzi et al. 2014. DeepWalk: Online Learning of Social Representations. *KDD.*

Summary so far

 Core idea: Embed nodes so that distances in embedding space reflect node similarities in the original network.

Different notions of node similarity:

- **Naïve: similar if two nodes are connected**
- **Neighborhood overlap (covered in Lecture 2)**
- Random walk approaches **(covered today)**

How to Use Embeddings

E How to use embeddings z_i of nodes:

- **EXTERNITE: Clustering/community detection:** Cluster points z_i
- **Node classification:** Predict label of node *i* based on z_i
- **Link prediction:** Predict edge (i, j) based on (z_i, z_j)
	- Where we can: concatenate, avg, product, or take a difference between the embeddings:
		- Concatenate: $f(\mathbf{z}_i, \mathbf{z}_j)$ = $g([\mathbf{z}_i, \mathbf{z}_j])$
		- Hadamard: $f(\mathbf{z}_i, \mathbf{z}_j)$ = $g(\mathbf{z}_i * \mathbf{z}_j)$ (per coordinate product)
		- Sum/Avg: $f(\mathbf{z}_i, \mathbf{z}_j)$ = $g(\mathbf{z}_i + \mathbf{z}_j)$
		- Distance: $f(\mathbf{z}_i, \mathbf{z}_j)$ = $g(||\mathbf{z}_i \mathbf{z}_j||_2)$
- **Graph classification**: Graph embedding z_G via aggregating node embeddings or anonymous random walks. Predict label based on graph embedding $\boldsymbol{z}_G.$

Stanford CS224W: Graph Neural Networks

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Recap: Node Embeddings

• Intuition: Map nodes to d-dimensional embeddings such that similar nodes in the graph are embedded close together

How to learn mapping function f?

Today: Deep Graph Encoders

Today: We will now discuss deep learnig methods based on **graph neural networks (GNNs):**

multiple layers of non-linear transformations based on graph structure $ENC(v) =$

• Note: All these deep encoders can be **combined with node similarity functions** defined in the Lecture 3.

Tasks on Networks

Tasks we will be able to solve:

- **Node classification**
	- Predict a type of a given node
- **Example 12 Link prediction**
	- **Predict whether two nodes are linked**
- Community detection
	- Identify densely linked clusters of nodes
- **E** Network similarity
	- How similar are two (sub)networks

Why is it Hard?

But networks are far more complex!

■ Arbitrary size and complex topological structure (i.e., no spatial locality like grids)

- No fixed node ordering or reference point
- § Often dynamic and have multimodal features

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Stanford CS224W: Deep Learning for Graphs

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

etup

¡ **Assume we have a graph** <**:**

- *V* is the **vertex set**
- **A** is the **adjacency matrix** (assume binary)
- $\mathbf{X} \in \mathbb{R}^{m \times |V|}$ is a matrix of **node features**
- **•** $v:$ a node in $V: N(v):$ the set of neighbors of v .

§ **Node features:**

- Social networks: User profile, User image
- **Biological networks: Gene expression profiles, gene** functional information
- When there is no node feature in the graph dataset:
	- Indicator vectors (one-hot encoding of a node)
	- Vector of constant $1: [1, 1, ..., 1]$

A Naïve Approach

 $\mathbf A$ and feature matrix $\mathbf A$

• Join adjacency matrix and features **Feed them into a deep neural net:**

E Issues with this idea:

Problems:

- $\overline{O(|V|)}$ parameters
- **E** inhiber oriparameters $O(b)$ of different sizes • Huge number of parameters
- No inductive learning possible
	- Sensitive to node ordering

Idea: Convolutional Networks

CNN on an image: Feature maps f.maps

Goal is to generalize convolutions beyond simple lattices Leverage node features/attributes (e.g., text, images)

Real-World Graphs

Graph-structured data

- There is no fixed notion of locality or sliding window on the graph
- Graph is permutation invariant

- **Graph does not have a canonical order of the nodes!**
- We can have many different order plans.

¡ **Graph does not have a canonical order of the nodes!**

¡ **Graph does not have a canonical order of the nodes!**

¡ **Graph does not have a canonical order of the nodes!**

E F E F E **Graph and node representations** A **Order plan 2** ^A ^B ^C ^D ^E ^F **and Order plan 2 Should be the same for Order plan 1**

Graph Neural Network Overview

Are other neural network architectures, e.g., MLPs, permutation invariant / equivariant? ¡ **No.**

Graph Neural Network Overview

Are other neural network architectures, e.g., **MLPs, permutation invariant / equivariant?** ¡ **No.** $\mathbf A$ \mathbf{A} ic Ollici lic $\mathbf{X}_{\text{in}} = [\mathbf{A}, \mathbf{X}]$ • Feed them into deep (fully connected) neural net

Problems:

- Huge number of parameterst be *Na*ïve MLP approach
- No inductive learning possibler graphs!

Graph Neural Network Overview

Are any neural network architecture, e.g., $\mathbf A$ **F** AIC dily IICH di IICU WA

A B C D E WUI NЭ LI IC **C D passing and aggregating 1 0 0 1 0 0 1 1 1 1 0 1 1 1 Feat networks that are permutation** • Feed them into deep (fully connected) neural net • Done? Pro**lin Provisions we did the putting during the set of the set Next: Design graph neural invariant / equivariant by information from neighbors!**

No inductive learning possible

• Huge number of parameters

C

EKipf and Welling, ICLR 2017]
Graph Convolutional Networks

Idea: Node's neighborhood defines a computation graph

 $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

Determine node computation graph

Propagate and transform information

i

aggregator

aggregator

Learn how to propagate information across the graph to compute node features

Idea: Aggregate Neighbors

■ Key idea: Generate node embeddings based on **local network neighborhoods**

Idea: Aggregate Neighbors

· Intuition: Nodes aggregate information from their neighbors using neural networks

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Idea: Aggregate Neighbors

Example 2 Intuition: Network neighborhood defines a computation graph

Deep Model: Many Layers

- Model can be of arbitrary depth:
	- Nodes have embeddings at each layer
	- Layer-0 embedding of node ν is its input feature, x_{ν}
	- Layer- k embedding gets information from nodes that are k hops away

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Neighborhood Aggregation

¡ **Neighborhood aggregation:** Key distinctions are in how different approaches aggregate information across the layers

Neighborhood Aggregation

■ **Basic approach:** Average information from neighbors and apply a neural network

The Math: Deep Encoder

■ **Basic approach:** Average neighbor messages and apply a neural network

Training the Model

Need to define a loss function on the embeddings.

Model Parameters

We can feed these **embeddings into any loss function** and run SGD to **train the weight parameters**

 h_{ν}^k : the hidden representation of node ν at layer k \blacksquare W_k : weight matrix for neighborhood aggregation B_k : weight matrix for transforming hidden vector of self

Matrix Formulation (1)

- ¡ **Many aggregations can be performed efficiently by (sparse) matrix operations**
- ¡ Let $H^{(k)} = [h_{1_k}^{(k)}]$ $... h_{|V|}^{(\kappa)}$ (k) \mathcal{I}^{T}
- **•** Then: $\sum_{u \in N_v} h_u^{(k)} = A_{v,:}^{\prime \prime} H^{(k)}$
- Let D be diagonal matrix where $D_{v,v} = \text{Deg}(v) = |N(v)|$
	- The inverse of $D: D^{-1}$ is also diagonal: $D_{v,v}^{-1} = 1/|N(v)|$

¡ **Therefore,**

Matrix Formulation (2)

■ Re-writing update function in matrix form:

 $H^{(k+1)} = \sigma(\tilde{A}H^{(k)}W_k^{\mathrm{T}} + H^{(k)}B_k^{\mathrm{T}})$ where $\tilde{A} = D^{-1}A$

- Red: neighborhood aggregation
- Blue: self transformation
- **In practice, this implies that efficient sparse** matrix multiplication can be used (\tilde{A}) is sparse)
- ¡ **Note**: not all GNNs can be expressed in matrix form, when aggregation function is complex

 $H^{(k)} = [h_1^{(k)} \dots h_{|V|}^{(k)}]^T$

How to Train A GNN

- Node embedding z_{ν} is a function of input graph
- **EXTERG** Supervised setting: we want to minimize the loss \mathcal{L} (see also Slide 15):

$$
\min_{\Theta} \mathcal{L}(\mathbf{y}, f(\mathbf{z}_v))
$$

- \blacksquare y: node label
- $\mathcal L$ could be L2 if $\mathbf y$ is real number, or cross entropy if y is categorical
- ¡ **Unsupervised setting:**
	- **No node label available**
	- § **Use the graph structure as the supervision!**

Unsupervised Training

¡ **"Similar" nodes have similar embeddings**

$$
\mathcal{L} = \sum_{z_u, z_v} \text{CE}(y_{u,v}, \text{DEC}(z_u, z_v))
$$

- **Where** $y_{u,v} = 1$ **when node u and v are similar**
- CE is the cross entropy (Slide 16)

■ DEC is the decoder such as inner product (Lecture 4) **Example Similarity** can be anything from Lecture 3, e.g., a loss based on:

- § **Random walks** (node2vec, DeepWalk, struc2vec)
- § **Matrix factorization**
- § **Node proximity in the graph**

Supervised Training

Directly train the model for a supervised task (e.g., node classification)

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Supervised Training

Directly train the model for a supervised task (e.g., **node classification**)

Use cross entropy loss (Slide 16)

^{10/7/21} Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Model Design: Overview

Model Design: Overview

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Model Design: Overview

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Inductive Capability

¡ **The same aggregation parameters are shared for all nodes:**

■ The number of model parameters is sublinear in |B| and we can **generalize to unseen nodes**!

Inductive Capability: New Graphs

Inductive node embedding \longrightarrow Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate embeddings on newly collected data about organism B

Inductive Capability: New Nodes

- Many application settings constantly encounter previously unseen nodes:
	- E.g., Reddit, YouTube, Google Scholar
- ¡ Need to generate new embeddings "on the fly"

Stanford CS224W: A General Perspective on Graph Neural Networks

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

J. You, R. Ying, J. Leskovec. [Design Space of Graph Neural Networks](https://arxiv.org/pdf/2011.08843.pdf), NeurIPS 2020

GNN Framework: Summary

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 28

Stanford CS224W: A Single Layer of a GNN

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

A GNN Layer

A Single GNN Layer

¡ **Idea of a GNN Layer:**

- § Compress a set of vectors into a single vector
- § **Two-step process:**

(2) Aggregation

(1) Message

§ **(1) Message** § **(2) Aggregation Node** v

Message Computation

¡ **(1) Message computation**

- **Message function:** $\mathbf{m}_u^{(l)} = \text{MSG}^{(l)} \left(\mathbf{h}_u^{(l-1)} \right)$
	- **Intuition:** Each node will create a message, which will be sent to other nodes later
	- **Example:** A Linear layer $\mathbf{m}_{u}^{(l)} = \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)}$

• Multiply node features with weight matrix $W^{(l)}$

Message Aggregation

¡ **(2) Aggregation**

Intuition: Each node will aggregate the messages from node v' s neighbors

$$
\mathbf{h}_{\nu}^{(l)} = \text{AGG}^{(l)}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(\nu)\right\}\right)
$$

§ **Example:** Sum(⋅), Mean(⋅) or Max(⋅) aggregator

$$
\mathbf{h}_v^{(l)} = \text{Sum}(\{\mathbf{m}_u^{(l)}, u \in N(v)\})
$$

Message Aggregation: Issue

- **Example:** Information from node v itself could get lost
	- **Computation of** $\mathbf{h}_{v}^{(l)}$ **does not directly depend on** $\mathbf{h}_{v}^{(l-1)}$
- **Solution:** Include $\mathbf{h}_{v}^{(l-1)}$ when computing $\mathbf{h}_{v}^{(l)}$
	- \blacksquare (1) Message: compute message from node $\boldsymbol{\nu}$ itself
		- § Usually, a **different message computation** will be performed

$$
\bullet \bullet \bullet \mathbf{m}_u^{(l)} = \mathbf{W}^{(l)} \mathbf{h}_u^{(l-1)} \qquad \bullet \quad \mathbf{m}_v^{(l)} = \mathbf{B}^{(l)} \mathbf{h}_v^{(l-1)}
$$

- § **(2) Aggregation:** After aggregating from neighbors, we can **aggregate the message from node** ν **itself**
	- § Via **concatenation or summation**

$$
\mathbf{h}_{v}^{(l)} = \text{CONCAT}\left(\text{AGG}\left(\{\mathbf{m}_{u}^{(l)}, u \in N(v)\}\right)\mid \mathbf{m}_{v}^{(l)}\right)
$$

First aggregate from neighbors

A Single GNN Layer

¡ **Putting things together:**

- (1) Message: each node computes a message **,** $u \in \{N(v) \cup v\}$
- § **(2) Aggregation**: aggregate messages from neighbors ${\bf h}_\nu^{(l)} = \text{AGG}^{(l)}\left(\left\{ {\bf m}_u^{(l)}, u \in N(\nu) \right\}, {\bf m}_\nu^{(l)} \right)$
- § **Nonlinearity (activation):** Adds expressiveness
	- Often written as $σ(·)$: ReLU $(·)$, Sigmoid $(·)$, ...
	- § Can be added to **message or aggregation**

T. Kipf, M. Welling. [Semi-Supervised Classification with Graph Convolutional Networks](https://arxiv.org/pdf/1609.02907.pdf), ICLR 2017

Classical GNN Layers: GCN (1)

¡ **(1) Graph Convolutional Networks (GCN)**

$$
\mathbf{h}_{v}^{(l)} = \sigma \left(\mathbf{W}^{(l)} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|} \right)
$$

How to write this as Message + Aggregation?

Classical GNN Layers: GCN (2)

¡ **(1) Graph Convolutional Networks (GCN)**

$$
\mathbf{h}_{\nu}^{(l)} = \sigma \left(\sum_{u \in N(\nu)} \mathbf{W}^{(l)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(\nu)|} \right) \tag{2) Aggregation (1) Message}
$$

¡ **Message:**

• Each Neighbor: $\mathbf{m}_{u}^{(l)} = \frac{1}{|N(l)|}$ $\frac{1}{N(\nu)}\mathbf{W}^{(l)}\mathbf{h}_u^{(l-1)}$

Normalized by node degree

(In the GCN paper they use a slightly different normalization)

Aggregation:

§ **Sum** over messages from neighbors, then apply activation

$$
\mathbf{h}_{\nu}^{(l)} = \sigma\left(\operatorname{Sum}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(\nu)\right\}\right)\right)
$$

In GCN graph is assumed to have self-edges that are included in the summation.

Classical GNN Layers: GraphSAGE

¡ **(2) GraphSAGE**

$$
\mathbf{h}_{v}^{(l)} = \sigma \bigg(\mathbf{W}^{(l)} \cdot \text{CONCAT} \bigg(\mathbf{h}_{v}^{(l-1)}, \text{AGG} \bigg(\big\{ \mathbf{h}_{u}^{(l-1)}, \forall u \in N(v) \big\} \bigg) \bigg) \bigg)
$$

- ¡ **How to write this as Message + Aggregation?**
	- **Message** is computed within the $AGG(\cdot)$
	- § **Two-stage aggregation**
		- **Stage 1: Aggregate from node neighbors** $\mathbf{h}_{N(v)}^{(l)} \leftarrow \text{AGG} \left(\left\{ \mathbf{h}_{u}^{(l-1)}, \forall u \in N(v) \right\} \right)$
		- **Stage 2: Further aggregate over the node itself**

$$
\mathbf{h}_{v}^{(l)} \leftarrow \sigma\left(\mathbf{W}^{(l)} \cdot \text{CONCAT}(\mathbf{h}_{v}^{(l-1)}, \mathbf{h}_{N(v)}^{(l)})\right)
$$

GraphSAGE Neighbor Aggregation

Mean: Take a weighted average of neighbors

$$
AGG = \sum_{u \in N(v)} \frac{\mathbf{h}_u^{(l-1)}}{|N(v)|}
$$
 Message computation

Pool: Transform neighbor vectors and apply symmetric vector function Mean (\cdot) or Max (\cdot)

$$
AGG = \boxed{\text{Mean}(\{\text{MLP}(\mathbf{h}_{u}^{(l-1)}), \forall u \in N(v)\})}
$$

Message computation Aggregation

LSTM: Apply LSTM to reshuffled of neighbors

$$
AGG = [LSTM([h_u^{(l-1)}, \forall u \in \pi(N(v))])
$$

Aggregation

GraphSAGE: L2 Normalization

■ ℓ ₂ Normalization:

• Optional: Apply ℓ_2 normalization to $\mathbf{h}_{\nu}^{(l)}$ at every layer

$$
\mathbf{h}_{v}^{(l)} \leftarrow \frac{\mathbf{h}_{v}^{(l)}}{\left\|\mathbf{h}_{v}^{(l)}\right\|_{2}} \ \forall v \in V \ \text{where} \ ||u||_{2} = \sqrt{\sum_{i} u_{i}^{2}} \ (\ell_{2} \text{-norm})
$$

- Without ℓ_2 normalization, the embedding vectors have different scales (ℓ_2 -norm) for vectors
- In some cases (not always), normalization of embedding results in performance improvement
- After ℓ_2 normalization, all vectors will have the same ℓ_2 -norm

Classical GNN Layers: GAT (1)

¡ **(3) Graph Attention Networks**

$$
\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})
$$

Attention weights

- ¡ **In GCN / GraphSAGE**
	- $\alpha_{vu} =$ $\mathbf{1}$ $N(v)$ is the **weighting factor (importance)** of node u' s message to node v
	- $\bullet \Rightarrow \alpha_{\nu\mu}$ is defined **explicitly** based on the structural properties of the graph (node degree)
	- $\blacksquare \Longrightarrow$ All neighbors $u \in N(v)$ are equally important to node ν

Classical GNN Layers: GAT (2)

¡ **(3) Graph Attention Networks**

$$
\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})
$$

Attention weights

Not all node's neighbors are equally important

- **Attention** is inspired by cognitive attention.
- **The attention** $\alpha_{\nu\mu}$ focuses on the important parts of the input data and fades out the rest.
	- **If Idea:** the NN should devote more computing power on that small but important part of the data.
	- § Which part of the data is more important depends on the context and is learned through training.

[Velickovic et al., ICLR 2018; Vaswani et al., NIPS 2017]

Graph Attention Networks

Can we do better than simple neighborhood aggregation?

Can we let weighting factors $\alpha_{\nu\mu}$ to be **learned?**

- ¡ **Goal:** Specify **arbitrary importance** to different neighbors of each node in the graph
- **Idea:** Compute embedding $h_v^{(l)}$ of each node in the graph following an **attention strategy:**
	- Nodes attend over their neighborhoods' message
	- § Implicitly specifying different weights to different nodes in a neighborhood

Attention Mechanism (1)

- **Let** $\alpha_{\nu\mu}$ **be computed as a byproduct of an attention mechanism a:**
	- \blacksquare (1) Let a compute **attention coefficients** $e_{\nu\mu}$ across pairs of nodes u, v based on their messages:

$$
e_{vu} = a(\mathbf{W}^{(l)}\mathbf{h}_u^{(l-1)}, \mathbf{W}^{(l)}\mathbf{h}_v^{(l-1)})
$$

 \bullet e_{vu} indicates the importance of u' s message to node v

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 44

Attention Mechanism (2)

- **Normalize** $e_{\nu\mu}$ into the final attention weight $\alpha_{\nu\mu}$
	- Use the **softmax** function, so that $\sum_{u \in N(v)} \alpha_{vu} = 1$: $\alpha_{vu} =$ $\exp(e_{vu})$ $\sum_{k\in N(v)} \exp(e_{vk})$
- § **Weighted sum** based on the **final attention weight** α_{vu}

$$
\mathbf{h}_{\nu}^{(l)} = \sigma(\sum_{u \in N(\nu)} \alpha_{\nu u} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})
$$
\n
$$
\alpha_{AB} \cdots \mathbf{h}_{B}^{(l-1)}
$$

 α_{AD} :

 α_{AB}

 α_{AC}

Weighted sum using α_{AB} , α_{AC} , α_{AD} : $$ $\alpha_{AD}\mathbf{W}^{(l)}\mathbf{h}_{D}^{(l-1)})$

 $\mathbf{h}_c^{(l-1)}$

Attention Mechanism (4)

- **Multi-head attention:** Stabilizes the learning process of attention mechanism
	- **Create multiple attention scores** (each replica with a different set of parameters):

$$
\mathbf{h}_{v}^{(l)}[1] = \sigma(\sum_{u \in N(v)} \alpha_{vu}^{1} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})
$$

$$
\mathbf{h}_{v}^{(l)}[2] = \sigma(\sum_{u \in N(v)} \alpha_{vu}^{2} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})
$$

$$
\mathbf{h}_{v}^{(l)}[3] = \sigma(\sum_{u \in N(v)} \alpha_{vu}^{3} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})
$$

- § **Outputs are aggregated:**
	- **By concatenation or summation**
	- $\mathbf{h}_{v}^{(l)} = \text{AGG}(\mathbf{h}_{v}^{(l)}[1], \mathbf{h}_{v}^{(l)}[2], \mathbf{h}_{v}^{(l)}[3])$

Benefits of Attention Mechanism

Key benefit: Allows for (implicitly) specifying **different importance values** $(\alpha_{m}$ **) to different neighbors**

¡ **Computationally efficient**:

- § Computation of attentional coefficients can be parallelized across all edges of the graph
- § Aggregation may be parallelized across all nodes

¡ **Storage efficient**:

- Sparse matrix operations do not require more than $O(V + E)$ entries to be stored
- Fixed number of parameters, irrespective of graph size

¡ **Localized**:

§ Only **attends over local network neighborhoods**

¡ **Inductive capability**:

- § It is a shared *edge-wise* mechanism
- It does not depend on the global graph structure

Stanford CS224W: GNN Layers in Practice

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

J. You, R. Ying, J. Leskovec. [Design Space of Graph Neural Networks](https://arxiv.org/pdf/2011.08843.pdf), NeurIPS 2020

GNN Layer in Practice

- **In practice, these classic GNN layers are a great starting point**
	- We can often get better performance by considering a general GNN layer design
	- Concretely, we can include modern deep learning modules that proved to be useful in many domains

GNN Layer in Practice

- ¡ **Many modern deep learning modules can be incorporated into a GNN layer**
	- § **Batch Normalization:**
		- Stabilize neural network training
	- § **Dropout:**
		- **Prevent overfitting**
	- § **Attention/Gating:**
		- Control the importance of a message

§ **More:**

• Any other useful deep learning modules

A suggested GNN Layer

Dropout

- **Goal:** Regularize a neural net to prevent overfitting.
- ¡ **Idea**:
	- **During training**: with some probability p , randomly set neurons to zero (turn off)
	- **During testing:** Use all the neurons for computation

Dropout for GNNs

- \blacksquare In GNN, Dropout is applied to **the linear layer in the message function**
	- **A simple message function with linear** layer: ${\bf m}_u^{(l)} = {\bf W}^{(l)}{\bf h}_u^{(l-1)}$

Visualization of a linear layer

Activation (Non-linearity)

Apply activation to I**-th dimension of embedding X**

- **Rectified linear unit (ReLU)**
	- $ReLU(\mathbf{x}_i) = max(\mathbf{x}_i, 0)$
	- Most commonly used

Sigmoid

$$
\sigma(\mathbf{x}_i) = \frac{1}{1 + e^{-\mathbf{x}_i}}
$$

- Used only when you want to restrict the range of your embeddings
- ¡ **Parametric ReLU**

 $PReLU(\mathbf{x}_i) = max(\mathbf{x}_i, 0) + a_i min(\mathbf{x}_i, 0)$

 a_i is a trainable parameter

Empirically performs better than ReLU

 $\overline{0}$

 $v = ax$

 χ

GNN Layer in Practice

- **E.** Summary: Modern deep learning modules can be included into a GNN layer for better performance
- **Designing novel GNN layers is still an active research frontier!**
- **Example 3 Suggested resources: You can** explore diverse GNN designs or try out your own ideas in **[GraphGym](https://github.com/snap-stanford/GraphGym)**

Stanford CS224W: Stacking Layers of a GNN

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

J. You, R. Ying, J. Leskovec. [Design Space of Graph Neural Networks](https://arxiv.org/pdf/2011.08843.pdf), NeurIPS 2020

Stacking GNN Layers

Stacking GNN Layers

- How to construct a Graph Neural Network?
	- **The standard way: Stack GNN layers sequentially**
	- **Input:** Initial raw node feature \mathbf{x}_v
	- **Output:** Node embeddings $\mathbf{h}_{v}^{(L)}$ after L GNN layers

The Over-smoothing Problem

¡ **The Issue of stacking many GNN layers**

- § GNN suffers from **the over-smoothing problem**
- ¡ **The over-smoothing problem: all the node embeddings converge to the same value**
	- § This is bad because we **want to use node embeddings to differentiate nodes**
- ¡ **Why does the over-smoothing problem happen?**

Receptive Field of a GNN

- **Executive field:** the set of nodes that determine the embedding of a node of interest
	- In a K-layer GNN, each node has a receptive field of L**-hop neighborhood**

^{10/12/21} Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 61

Receptive Field of a GNN

Example 1 Receptive field overlap for two nodes **• The shared neighbors quickly grows** when we increase the number of hops (num of GNN layers)

1-hop neighbor overlap Only 1 node

2-hop neighbor overlap About 20 nodes

3-hop neighbor overlap Almost all the nodes!

Receptive Field & Over-smoothing

- We can explain over-smoothing via the notion **of receptive field**
	- We knew the embedding of a node is determined **by its receptive field**
		- **If two nodes have highly-overlapped receptive fields, then their embeddings are highly similar**
	- Stack many GNN layers → nodes will have highly**overlapped receptive fields** \rightarrow **node embeddings** will be highly similar \rightarrow suffer from the over**smoothing problem**

■ **Next:** how do we overcome over-smoothing problem?

Design GNN Layer Connectivity

- ¡ **What do we learn from the over-smoothing problem?**
- ¡ **Lesson 1: Be cautious when adding GNN layers**
	- Unlike neural networks in other domains (CNN for image classification), **adding more GNN layers do not always help**
	- **Step 1: Analyze the necessary receptive field** to solve your problem. E.g., by computing the diameter of the graph
	- **Step 2:** Set number of GNN layers L to be a bit more than the receptive field we like. Do not set L to be unnecessarily **large**!
- **Question:** How to enhance the expressive power of a GNN, if the number of GNN layers is small?

Expressive Power for Shallow GNNs

- **How to make a shallow GNN more expressive?**
- ¡ **Solution 1:** Increase the expressive power **within each GNN layer**
	- In our previous examples, each transformation or aggregation function only include one linear layer
	- § We can **make aggregation / transformation become a deep neural network**!

Expressive Power for Shallow GNNs

- ¡ **How to make a shallow GNN more expressive?**
- **Solution 2:** Add layers that do not pass messages
	- § A GNN does not necessarily only contain GNN layers
		- E.g., we can add **MLP layers** (applied to each node) before and after GNN layers, as **pre-process layers** and **post-process layers**

Pre-processing layers: Important when encoding node features is necessary. E.g., when nodes represent images/text

Post-processing layers: Important when reasoning / transformation over node embeddings are needed E.g., graph classification, knowledge graphs

In practice, adding these layers works great!

Design GNN Layer Connectivity

- ¡ **What if my problem still requires many GNN layers?**
- ¡ **Lesson 2: Add skip connections in GNNs**
	- **Observation from over-smoothing:** Node embeddings in earlier GNN layers can sometimes better differentiate nodes
	- § **Solution:** We can increase the impact of earlier layers on the final node embeddings, **by adding shortcuts in GNN**

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 67

Idea of Skip Connections

¡ **Why do skip connections work?**

- § **Intuition:** Skip connections create **a mixture of models**
- N skip connections $\rightarrow 2^N$ possible paths
- Each path could have up to *modules*
- § We automatically get **a mixture of shallow GNNs and deep GNNs**

Path 1: include this module

(a) Conventional 3-block residual network

All the possible paths:

(b) Unraveled view of (a)

Veit et al. [Residual Networks Behave Like Ensembles of Relatively Shallow Networks](https://arxiv.org/abs/1605.06431), ArXiv 2016

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 68

Example: GCN with Skip Connections

Other Options of Skip Connections

■ **Other options:** Directly skip to the last layer **• The final layer directly aggregates from the all the node embeddings** in the previous layers

