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Tensors

2
As mentioned in the introduction, all laws of continuum mechanics must be formulated in terms of quantities

that are independent of coordinates. It is the purpose of this chapter to introduce such mathematical entities.

We begin by introducing a shorthand notation—the indicial notation—in Part A of this chapter, which is fol-

lowed by the concept of tensors, introduced as a linear transformation in Part B. Tensor calculus is considered

in Part C, and expressions for the components in cylindrical and spherical coordinates for tensors resulting

from operations such as the gradient, the divergence, and the Laplacian of them are derived in Part D.

PART A: INDICIAL NOTATION

2.1 SUMMATION CONVENTION, DUMMY INDICES
Consider the sum

s ¼ a1x1 þ a2x2 þ . . .þ anxn: (2.1.1)

We can write the preceding equation in a compact form using a summation sign:

s ¼
Xn
i¼1

aixi: (2.1.2)

It is obvious that the following equations have exactly the same meaning as Eq. (2.1.2):

s ¼
Xn
j¼1

ajxj; s ¼
Xn
m¼1

amxm; s ¼
Xn
k¼1

akxk: (2.1.3)

The index i in Eq. (2.1.2), or j or m or k in Eq. (2.1.3), is a dummy index in the sense that the sum is inde-

pendent of the letter used for the index. We can further simplify the writing of Eq. (2.1.1) if we adopt the

following convention: Whenever an index is repeated once, it is a dummy index indicating a summation with

the index running through the integral numbers 1, 2, . . ., n.
This convention is known as Einstein’s summation convention. Using this convention, Eq. (2.1.1) can be

written simply as:

s ¼ aixi or s ¼ ajxj or s ¼ amxm; etc: (2.1.4)
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It is emphasized that expressions such as aibixi or ambmxm are not defined within this convention. That is,

an index should never be repeated more than once when the summation convention is used. Therefore, an

expression of the form Xn
i¼1

aibixi;

must retain its summation sign.

In the following, we shall always take the number of terms n in a summation to be 3, so that, for example:

aixi ¼ a1x1 þ a2x2 þ a3x3; aii ¼ a11 þ a22 þ a33:

The summation convention obviously can be used to express a double sum, a triple sum, and so on. For

example, we can write:

a ¼
X3
i¼1

X3
j¼1

aijxixj

concisely as

a ¼ aijxixj: (2.1.5)

Expanding in full, Eq. (2.1.5) gives a sum of nine terms in the right-hand side, i.e.,

a ¼ aijxixj ¼ a11x1x1 þ a12x1x2 þ a13x1x3 þ a21x2x1 þ a22x2x2 þ a23x2x3
þ a31x3x1 þ a32x3x2 þ a33x3x3:

For newcomers, it is probably better to perform the preceding expansion in two steps: first, sum over i,
and then sum over j (or vice versa), i.e.,

aijxixj ¼ a1jx1xj þ a2jx2xj þ a3jx3xj;

where

a1jx1xj ¼ a11x1x1 þ a12x1x2 þ a13x1x3;

and so on. Similarly, the indicial notation aijkxixjxk represents a triple sum of 27 terms, that is,

X3
i¼1

X3
j¼1

X3
k¼1

aijkxixjxk ¼ aijkxixjxk: (2.1.6)

2.2 FREE INDICES
Consider the following system of three equations:

x 01 ¼ a11x1 þ a12x2 þ a13x3;
x 02 ¼ a21x1 þ a22x2 þ a23x3;
x 03 ¼ a31x1 þ a32x2 þ a33x3:

(2.2.1)

Using the summation convention, Eqs. (2.2.1) can be written as:

x 01 ¼ a1mxm;
x 02 ¼ a2mxm;
x 03 ¼ a3mxm;

(2.2.2)
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which can be shortened into

x 0i ¼ aim xm; i ¼ 1; 2; 3: (2.2.3)

An index that appears only once in each term of an equation such as the index i in Eq. (2.2.3) is

called a free index. Unless stated otherwise, we agree that a free index takes on the integral num-

ber 1, 2 or 3. Thus, x 0i ¼ aimxm is shorthand for three equations, each having a sum of three terms on

its right-hand side. Another simple example of a free index is the following equation defining the com-

ponents of a vector a in terms of a dot product with each of the base vectors ei,

ai ¼ a � ei; (2.2.4)

and clearly the vector a can also be expressed in terms of its components as

a ¼ aiei: (2.2.5)

A further example is given by

e 0i ¼ Qmiem; (2.2.6)

representing

e 01 ¼ Q11e1 þ Q21e2 þ Q31e3;
e 02 ¼ Q12e1 þ Q22e2 þ Q32e3;
e 03 ¼ Q13e1 þ Q23e2 þ Q33e3:

(2.2.7)

We note that x 0j ¼ ajmxm is the same as Eq. (2.2.3) and e 0j ¼ Qmjem is the same as Eq. (2.2.6). However,

ai ¼ bj is a meaningless equation. The free index appearing in every term of an equation must be the same.
Thus, the following equations are meaningful:

ai þ ki ¼ ci or ai þ bicjdj ¼ fi:

If there are two free indices appearing in an equation such as:

Tij ¼ AimAjm; (2.2.8)

then the equation is a shorthand for the nine equations, each with a sum of three terms on the right-hand side.

In fact,

T11 ¼ A1mA1m ¼ A11A11 þ A12A12 þ A13A13;
T12 ¼ A1mA2m ¼ A11A21 þ A12A22 þ A13A23;
T13 ¼ A1mA3m ¼ A11A31 þ A12A32 þ A13A33;
T21 ¼ A2mA1m ¼ A21A11 þ A22A12 þ A23A13;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
T33 ¼ A3mA3m ¼ A31A31 þ A32A32 þ A33A33:

2.3 THE KRONECKER DELTA
The Kronecker delta, denoted by dij, is defined as:

dij ¼ 1 if i ¼ j;
0 if i 6¼ j:

�
(2.3.1)
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That is,
d11 ¼ d22 ¼ d33 ¼ 1; d12 ¼ d13 ¼ d21 ¼ d23 ¼ d31 ¼ d32 ¼ 0: (2.3.2)

In other words, the matrix of the Kronecker delta is the identity matrix:

½dij� ¼
d11 d12 d13
d21 d22 d23
d31 d32 d33

2
4

3
5 ¼ 1 0 0

0 1 0

0 0 1

2
4

3
5: (2.3.3)

We note the following:

(a) dii ¼ d11 þ d22 þ d33 ¼ 1þ 1þ 1,

that is,

dii ¼ 3: (2.3.4)

(b) d1mam ¼ d11a1 þ d12a2 þ d13a3 ¼ d11a1 ¼ a1;
d2mam ¼ d21a1 þ d22a2 þ d23a3 ¼ d22a2 ¼ a2;
d3mam ¼ d31a1 þ d32a2 þ d33a3 ¼ d33a3 ¼ a3;

that is,

dimam ¼ ai: (2.3.5)

(c) d1mTmj ¼ d11T1j þ d12T2j þ d13T3j ¼ T1j;
d2mTmj ¼ d21T1j þ d22T2j þ d23T3j ¼ T2j;
d3mTmj ¼ d31T1j þ d32T2j þ d33T3j ¼ T3j;

that is,

dimTmj ¼ Tij: (2.3.6)

In particular,

dimdmj ¼ dij; dimdmndnj ¼ dij; etc: (2.3.7)

(d) If e1, e2, e3 are unit vectors perpendicular to one another, then clearly,

ei � ej ¼ dij: (2.3.8)

2.4 THE PERMUTATION SYMBOL
The permutation symbol, denoted by eijk, is defined by:

eijk ¼
1

�1
0

8<
:

9=
; � according to whether i; j; k

form an even

form an odd

do not form

0
@

1
Apermutation of 1; 2; 3; (2.4.1)

i.e.,

e123 ¼ e231 ¼ e312 ¼ þ1;
e213 ¼ e321 ¼ e132 ¼ �1;
e111 ¼ e112 ¼ e222 ¼ . . . ¼ 0:

(2.4.2)
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We note that

eijk ¼ ejki ¼ ekij ¼ �ejik ¼ �ekji � eikj: (2.4.3)

If {e1, e2, e3} is a right-handed triad, then

e1 � e2 ¼ e3; e2 � e1 ¼ �e3; e2 � e3 ¼ e1; e3 � e2 ¼ �e1; etc., (2.4.4)

which can be written in a short form as

ei � ej ¼ eijkek ¼ ejkiek ¼ ekijek: (2.4.5)

Now, if a ¼ aiei and b ¼ biei, then, since the cross-product is distributive, we have

a� b ¼ ðaieiÞ � ðbjejÞ ¼ aibjðei � ejÞ ¼ aibjeijkek: (2.4.6)

The following useful identity can be proven (see Prob. 2.12):

eijmeklm ¼ dikdjl � dildjk: (2.4.7)

2.5 INDICIAL NOTATION MANIPULATIONS
(a) Substitution: If

ai ¼ Uim bm; (i)

and

bi ¼ Vim cm; (ii)

then, in order to substitute the bi in Eq. (ii) into the bm in Eq. (i), we must first change the free index in Eq. (ii)

from i to m and the dummy index m to some other letter—say, n—so that

bm ¼ Vmn cn: (iii)

Now Eqs. (i) and (iii) give

ai ¼ UimVmn cn: (iv)

Note that Eq. (iv) represents three equations, each having a sum of nine terms on its right-hand side.

(b) Multiplication: If

p ¼ ambm and q ¼ cmdm;

then

pq ¼ ambmcndn:

It is important to note that pq 6¼ ambmcmdm: In fact, the right-hand side of this expression, i.e., ambmcmdm,
is not even defined in the summation convention, and further, it is obvious that

pq 6¼
X3
m¼1

ambmcmdm:
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Since the dot product of vectors is distributive, therefore, if a ¼ aiei and b ¼ biei, then

a � b ¼ ðaieiÞ � ðbjejÞ ¼ aibjðei � ejÞ:
In particular, if e1, e2, e3 are unit vectors perpendicular to one another, then ei � ej ¼ dij so that

a � b ¼ aibjdij ¼ aibi ¼ a1b1 þ a2b2 þ a3b3;

which is the familiar expression for the evaluation of the dot product in terms of the vector components.

(c) Factoring: If

Tijnj � lni ¼ 0;

then, using the Kronecker delta, we can write ni ¼ dijnj, so that we have

Tijnj � ldijnj ¼ 0:

Thus,

ðTij � ldijÞnj ¼ 0:

(d) Contraction: The operation of identifying two indices is known as a contraction. Contraction indicates a

sum on the index. For example, Tii is the contraction of Tij with

Tii ¼ T11 þ T22 þ T33:

If

Tij ¼ lDdij þ 2mEij;

then

Tii ¼ lDdii þ 2mEii ¼ 3lDþ 2mEii:

PROBLEMS FOR PART A
2.1 Given

½Sij� ¼
1 0 2

0 1 2

3 0 3

2
4

3
5 and ½ai� ¼

1

2

3

2
4
3
5;

evaluate (a) Sii, (b) SijSij, (c) SjiSji, (d) SjkSkj, (e) amam, (f) Smnaman, and (g) Snmaman.

2.2 Determine which of these equations has an identical meaning with ai ¼ Qija
0
j .

(a) ap ¼ Qpma
0
m, (b) ap ¼ Qqpa

0
q, (c) am ¼ a 0nQmn.

2.3 Given the following matrices

½ai� ¼
1

0

2

2
4
3
5; ½Bij� ¼

2 3 0

0 5 1

0 2 1

2
4

3
5;

demonstrate the equivalence of the subscripted equations and the corresponding matrix equations in the

following two problems:

(a) bi ¼ Bijaj and [b] ¼ [B][a] and (b) s ¼ Bijaiaj and s ¼ [a]T[B][a].
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2.4 Write in indicial notation the matrix equation (a) [A]¼ [B][C], (b) [D]¼ [B]T[C] and (c) [E]¼ [B]T[C][F].

2.5 Write in indicial notation the equation (a) s ¼ A2
1 þ A2

2 þ A2
3 and (b)

@2f
@x21

þ @2f
@x22

þ @2f
@x23

¼ 0.

2.6 Given that Sij¼aiaj and S 0ij ¼ a 0i a
0
j , where a 0i ¼ Qmiam and a 0j ¼ Qnjan, and QikQjk¼dij, show that

S 0ii ¼ Sii.

2.7 Write ai ¼ @vi
@t
þ vj

@vi
@xj

in long form.

2.8 Given that Tij ¼ 2mEij þ lEkkdij, show that

(a) TijEij ¼ 2mEijEij þ lðEkkÞ2 and (b) TijTij ¼ 4m2EijEij þ ðEkkÞ2ð4mlþ 3l2Þ.
2.9 Given that ai ¼ Tijbj, and a 0i ¼ T 0ijb

0
j , where ai ¼ Qima

0
m and Tij ¼ QimQjnT

0
mn,

(a) show that QimT
0
mnb

0
n ¼ QimQjnT

0
mnbj and (b) if QikQim ¼ dkm, then T 0knðb 0n � QjnbjÞ ¼ 0.

2.10 Given

½ai� ¼
1

2

0

2
4
3
5; ½bi� ¼

0

2

3

2
4
3
5;

evaluate [di], if dk ¼ eijkaibj, and show that this result is the same as dk ¼ a� bð Þ � ek.
2.11 (a) If eijkTij ¼ 0, show that Tij ¼ Tji, and (b) show that dijeijk ¼ 0.

2.12 Verify the following equation: eijmeklm ¼ dikdjl � dildjk. Hint: There are six cases to be considered:

(1) i ¼ j, (2) i ¼ k, (3) i ¼ l, (4) j ¼ k, (5) j ¼ l, and (6) k ¼ l.

2.13 Use the identity eijmeklm ¼ dikdjl � dildjk as a shortcut to obtain the following results: (a) eilmejlm ¼ 2dij
and (b) eijkeijk ¼ 6.

2.14 Use the identity eijmeklm ¼ dikdjl � dildjk to show that a� b� cð Þ ¼ a � cð Þb� a � bð Þc.
2.15 Show that (a) if Tij ¼ �Tji, then Tijaiaj ¼ 0, (b) if Tij ¼ �Tji, and Sij ¼ Sji, then TijSij ¼ 0.

2.16 Let Tij ¼ 1

2
ðSij þ SjiÞ and Rij ¼ 1

2
ðSij � SjiÞ, show that Tij ¼ Tji;Rij ¼ �Rji, and Sij ¼ Tij þ Rij.

2.17 Let f ðx1; x2; x3Þ be a function of x1, x2, and x3 and let viðx1; x2; x3Þ be three functions of x1, x2, and x3.
Express the total differential df and dvi in indicial notation.

2.18 Let jAijj denote the determinant of the matrix [Aij]. Show that jAijj ¼ eijkAi1Aj2Ak3.

PART B: TENSORS

2.6 TENSOR: A LINEAR TRANSFORMATION
Let T be a transformation that transforms any vector into another vector. If T transforms a into c and b into d,

we write Ta ¼ c and Tb ¼ d.

If T has the following linear properties:

Tðaþ bÞ ¼ Taþ Tb; (2.6.1)

TðaaÞ ¼ aTa; (2.6.2)
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where a and b are two arbitrary vectors and a is an arbitrary scalar, then T is called a linear transformation. It
is also called a second-order tensor or simply a tensor.* An alternative and equivalent definition of a linear

transformation is given by the single linear property:

Tðaaþ bbÞ ¼ aTaþ bTb; (2.6.3)

where a and b are two arbitrary vectors and a and b are arbitrary scalars. If two tensors, T and S, transform

any arbitrary vector a identically, these two tensors are the same, that is, if Ta ¼ Sa for any a, then T ¼ S.

We note, however, that two different tensors may transform specific vectors identically.

Example 2.6.1
Let T be a nonzero transformation that transforms every vector into a fixed nonzero vector n. Is this transformation a

tensor?

Solution
Let a and b be any two vectors; then Ta ¼ n and Tb ¼ n. Since a þ b is also a vector, therefore T(a þ b) ¼ n.

Clearly T(a þ b) does not equal Ta þ Tb. Thus, this transformation is not a linear one. In other words, it is not a

tensor.

Example 2.6.2
Let T be a transformation that transforms every vector into a vector that is k times the original vector. Is this transfor-

mation a tensor?

Solution
Let a and b be arbitrary vectors and a and b be arbitrary scalars; then, by the definition of T,

Ta ¼ ka; Tb ¼ kb and Tðaaþ bbÞ ¼ kðaaþ bbÞ: (i)

Clearly,

Tðaaþ bbÞ ¼ akaþ bkb ¼ aTaþ bTb: (ii)

Therefore, T is a linear transformation. In other words, it is a tensor. If k ¼ 0, then the tensor transforms all vectors

into a zero vector (null vector). This tensor is the zero tensor or null tensor and is symbolized by the boldface 0.

Example 2.6.3
Consider a transformation T that transforms every vector into its mirror image with respect to a fixed plane. Is T a

tensor?

Solution
Consider a parallelogram in space with its sides representing vectors a and b and its diagonal the vector sum of

a and b. Since the parallelogram remains a parallelogram after the reflection, the diagonal (the resultant vector)

*Scalars and vectors are sometimes called the zeroth order tensor and the first-order tensor, respectively. Even though they can also

be defined algebraically, in terms of certain operational rules, we choose not to do so. The geometrical concept of scalars and vectors,

with which we assume readers are familiar, is quite sufficient for our purpose.
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of the reflected parallelogram is clearly both T(a þ b) (the reflected a þ b) and Ta þ Tb (the sum of the reflected a

and the reflected b). That is, T(a þ b) ¼ Ta þ Tb. Also, for an arbitrary scalar a, the reflection of aa is obviously the

same as a times the reflection of a, that is, T(aa) ¼ a(Ta), because both vectors have the same magnitude given by a
times the magnitude of a and in the same direction. Thus, T is a tensor.

Example 2.6.4
When a rigid body undergoes a rotation about some axis n, vectors drawn in the rigid body in general change their

directions. That is, the rotation transforms vectors drawn in the rigid body into other vectors. Denote this transforma-

tion by R. Is R a tensor?

Solution
Consider a parallelogram embedded in the rigid body with its sides representing vectors a and b and its diagonal

representing the resultant (a þ b). Since the parallelogram remains a parallelogram after a rotation about any axis,

the diagonal (the resultant vector) of the rotated parallelogram is clearly both R(a þ b) (the rotated a þ b) and

Ra þ Rb (the sum of the rotated a and the rotated b). That is, R(a þ b) ¼ Ra þ Rb. A similar argument as that used

in the previous example leads to R(aa) ¼ a(Ra). Thus, R is a tensor.

Example 2.6.5
Let T be a tensor that transforms the specific vectors a and b as follows:

Ta ¼ aþ 2b;
Tb ¼ a� b:

Given a vector c ¼ 2a þ b, find Tc.

Solution
Using the linearity property of tensors, we have

Tc ¼ Tð2aþ bÞ ¼ 2Taþ Tb ¼ 2ðaþ 2bÞ þ ða� bÞ ¼ 3aþ 3b:

2.7 COMPONENTS OF A TENSOR
The components of a vector depend on the base vectors used to describe the components. This will also be

true for tensors.

Let e1, e2, e3 be unit vectors in the direction of the x1-, x2-, x3-, respectively, of a rectangular Cartesian

coordinate system. Under a transformation T, these vectors e1, e2, e3 become Te1;Te2;Te3. Each of these

Tei, being a vector, can be written as:

Te1 ¼ T11e1 þ T21e2 þ T31e3;
Te2 ¼ T12e1 þ T22e2 þ T32e3;
Te3 ¼ T13e1 þ T23e2 þ T33e3;

(2.7.1)

or

Tei ¼ Tjiej: (2.7.2)
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The components Tij in the preceding equations are defined as the components of the tensor T. These com-

ponents can be put in a matrix as follows:

½T� ¼
T11 T12 T13
T21 T22 T23
T31 T32 T33

2
4

3
5: (2.7.3)

This matrix is called the matrix of the tensor T with respect to the set of base vectors {ei}. We note that, because

of the way we have chosen to denote the components of transformation of the base vectors, the elements of the

first column in the matrix are components of the vector Te1, those in the second column are the components of

the vector Te2, and those in the third column are the components of Te3.

Example 2.7.1
Obtain the matrix for the tensor T that transforms the base vectors as follows:

Te1 ¼ 4e1 þ e2;
Te2 ¼ 2e1 þ 3e3;
Te3 ¼ �e1 þ 3e2 þ e3:

(i)

Solution
By Eq. (2.7.1),

½T� ¼
4 2 �1
1 0 3
0 3 1

2
4

3
5: (ii)

Example 2.7.2
Let T transform every vector into its mirror image with respect to a fixed plane; if e1 is normal to the reflection plane

(e2 and e3 are parallel to this plane), find a matrix of T.

Solution
Since the normal to the reflection plane is transformed into its negative and vectors parallel to the plane are not

altered, we have

Te1 ¼ �e1; Te2 ¼ e2; Te3 ¼ e3

which corresponds to

½T� ¼
�1 0 0
0 1 0
0 0 1

2
4

3
5
ei

:

45�

Mirror

e1

e1
9

e2
e2
9

FIGURE 2.7-1
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We note that this is only one of the infinitely many matrices of the tensor T; each depends on a particular choice of

base vectors. In the preceding matrix, the choice of ei is indicated at the bottom-right corner of the matrix. If we

choose e 01 and e 02 to be on a plane perpendicular to the mirror, with each making 45� with the mirror, as shown in

Figure 2.7-1, and e 03 pointing straight out from the paper, then we have

Te 01 ¼ e 02; Te 02 ¼ e 01; Te 03 ¼ e 03:

Thus, with respect to fe 0i g; the matrix of the tensor is

½T� 0 ¼
0 1 0

1 0 0

0 0 1

2
64

3
75
e 0
i

:

Throughout this book, we denote the matrix of a tensor T with respect to the basis {ei} by either [T] or [Tij]

and with respect to the basis fe 0i g by either [T]0 or ½T 0
ij �. The last two matrices should not be confused with [T0],

which represents the matrix of the tensor T0 with respect to the basis {ei}, not the matrix of T with respect to the

primed basis fe 0i g:

Example 2.7.3
Let R correspond to a right-hand rotation of a rigid body about the x3-axis by an angle y (Figure 2.7-2). Find a

matrix of R.

Solution
From Figure 2.7-2, it is clear that

Re1 ¼ cosye1 þ sinye2;

Re2 ¼ �sinye1 þ cosye2;

Re3 ¼ e3:

;

which corresponds to

½R� ¼
cosy �siny 0

siny cosy 0

0 0 1

2
64

3
75
ei

:

θ

θ

e2
Re2

Re1

e1

FIGURE 2.7-2
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Example 2.7.4
Obtain the matrix for the tensor T, which transforms the base vectors as follows:

Te1 ¼ e1 þ 2e2 þ 3e3;
Te2 ¼ 4e1 þ 5e2 þ 6e3;
Te3 ¼ 7e1 þ 8e2 þ 9e3:

Solution
By inspection,

½T� ¼
1 4 7
2 5 8
3 6 9

2
4

3
5:

This example emphasizes again the convention we use to write the matrix of a tensor: The components of Te1 fill

the first column, the components of Te2 fill the second column, and so on. The reason for this choice of convention

will become obvious in the next section.

Since e1 � e2 ¼ e2 � e3 ¼ e3 � e1 ¼ 0 (because they are mutually perpendicular), it can be easily verified

from Eq. (2.7.1) that

T11 ¼ e1 �Te1; T12 ¼ e1 �Te2; T13 ¼ e1 �Te3;
T21 ¼ e2 �Te1; T22 ¼ e2 �Te2; T23 ¼ e2 �Te3;
T31 ¼ e3 �Te1; T32 ¼ e3 �Te2; T33 ¼ e3 �Te3;

(2.7.4)

or

Tij ¼ ei �Tej: (2.7.5)

These equations are totally equivalent to Eq. (2.7.1) [or Eq. (2.7.2)] and can also be regarded as the defi-

nition of the components of a tensor T. They are often more convenient to use than Eq. (2.7.2).

We note again that the components of a tensor depend on the coordinate systems through the set of base

vectors. Thus,

T 0ij ¼ e 0i �Te 0j ; (2.7.6)

where T 0ij are the components of the same tensor T with respect to the base vectors fe 0i g: It is important to note

that vectors and tensors are independent of coordinate systems, but their components are dependent on the

coordinate systems.

2.8 COMPONENTS OF A TRANSFORMED VECTOR
Given the vector a and the tensor T, which transforms a into b (i.e., b ¼ Ta), we wish to compute the com-

ponents of b from the components of a and the components of T. Let the components of a with respect to

fe1; e2; e3g be ða1; a2; a3Þ; that is,
a ¼ a1e1 þ a2e2 þ a3e3; (2.8.1)
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then

b ¼ Ta ¼ Tða1e1 þ a2e2 þ a3e3Þ ¼ a1Te1 þ a2Te2 þ a3Te3;

thus,

b1 ¼ b � e1 ¼ e1 �Tða1e1 þ a2e2 þ a3e3Þ ¼ a1ðe1 �Te1Þ þ a2ðe1 �Te2Þ þ a3ðe1 �Te3Þ;
b2 ¼ b � e2 ¼ e2 �Tða1e1 þ a2e2 þ a3e3Þ ¼ a1ðe2 �Te1Þ þ a2ðe2 �Te2Þ þ a3ðe2 �Te3Þ;
b3 ¼ b � e3 ¼ e3 �Tða1e1 þ a2e2 þ a3e3Þ ¼ a1ðe3 �Te1Þ þ a2ðe3 �Te2Þ þ a3ðe3 �Te3Þ:

By Eqs. (2.7.4), we have

b1 ¼ T11a1 þ T12a2 þ T13a3;
b2 ¼ T21a1 þ T22a2 þ T23a3;
b3 ¼ T31a1 þ T32a2 þ T33a3:

(2.8.2)

We can write the preceding three equations in matrix form as:

b1
b2
b3

2
4

3
5 ¼ T11 T12 T13

T21 T22 T23
T31 T32 T33

2
4

3
5 a1

a2
a3

2
4

3
5; (2.8.3)

or

½b� ¼ ½T�½a�: (2.8.4)

We can also derive Eq. (2.8.2) using indicial notations as follows: From a¼ aiei, we get Ta ¼ TðaieiÞ ¼ aiTei:
Since Tei ¼ Tjiej [Eq. (2.7.2)], b ¼ Ta ¼ aiTjiej so that

bm ¼ b � em ¼ aiTjiej � em ¼ aiTjidjm ¼ aiTmi;

that is,

bm ¼ aiTmi ¼ Tmiai: (2.8.5)

Eq. (2.8.5) is nothing but Eq. (2.8.2) in indicial notation.

We see that for the tensorial equationb¼Ta, there corresponds amatrix equation of exactly the same form, that

is, ½b� ¼ ½T�½a�: This is the reason we adopted the convention that Tei ¼ Tjiej (i.e., Te1 ¼ T11e1 þ T21e2 þ T31e3,
etc.). If we had adopted the convention that Tei ¼ Tijej (i.e., Te1 ¼ T11e1 þ T12e2 þ T13e3, etc.), then we would

have obtained ½b� ¼ ½T�T½a� for the tensorial equation b ¼ Ta, which would not be as natural.

Example 2.8.1
Given that a tensor T transforms the base vectors as follows:

Te1 ¼ 2e1 � 6e2 þ 4e3;
Te2 ¼ 3e1 þ 4e2 � 1e3;
Te3 ¼ �2e1 þ 1e2 þ 2e3:

how does this tensor transform the vector a ¼ e1 þ 2e2 þ 3e3?
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Solution
Use the matrix equation

b1
b2
b3

2
4

3
5 ¼ 2 3 �2

�6 4 1
4 �1 2

2
4

3
5 1

2
3

2
4
3
5 ¼ 2

5
8

2
4
3
5;

we obtain b ¼ 2e1 þ 5e2 þ 8e3.

2.9 SUM OF TENSORS
Let T and S be two tensors. The sum of T and S, denoted by T þ S, is defined by

ðTþ SÞa ¼ Ta þ Sa (2.9.1)

for any vector a. It is easily seen that T þ S, so defined, is indeed a tensor. To find the components of

T þ S, let

W ¼ Tþ S: (2.9.2)

The components of W are [see Eqs. (2.7.5)]

Wij ¼ ei � ðTþ SÞej ¼ ei �Tej þ ei � Sej;
that is,

Wij ¼ Tij þ Sij: (2.9.3)

In matrix notation, we have

½W� ¼ ½T� þ ½S�; (2.9.4)

and that the tensor sum is consistent with the matrix sum.

2.10 PRODUCT OF TWO TENSORS
Let T and S be two tensors and a be an arbitrary vector. Then TS and ST are defined to be the transformations

(easily seen to be tensors) such that

ðTSÞa ¼ TðSaÞ; (2.10.1)

and

ðSTÞa ¼ SðTaÞ: (2.10.2)

The components of TS are

ðTSÞij ¼ ei � ðTSÞej ¼ ei �TðSejÞ ¼ ei �TSmjem ¼ Smjei �Tem ¼ SmjTim; (2.10.3)

that is,

ðTSÞij ¼ TimSmj: (2.10.4)

Similarly,

ðSTÞij ¼ SimTmj: (2.10.5)
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Eq. (2.10.4) is equivalent to the matrix equation:

½TS� ¼ ½T�½S�; (2.10.6)

whereas Eq. (2.10.5) is equivalent to the matrix equation:

½ST� ¼ ½S�½T�: (2.10.7)

The two products are, in general, different. Thus, it is clear that in general TS 6¼ ST. That is, in general, the

tensor product is not commutative.

If T, S, and V are three tensors, then, by repeatedly using the definition (2.10.1), we have

ðTðSVÞÞa � TððSVÞaÞ � TðSðVaÞÞ and ðTSÞðVaÞ � TðSðVaÞÞ; (2.10.8)

that is,

TðSVÞ ¼ ðTSÞV ¼ TSV: (2.10.9)

Thus, the tensor product is associative. It is, therefore, natural to define the integral positive powers of a ten-

sor by these simple products, so that

T2 ¼ TT; T3 ¼ TTT; . . . (2.10.10)

Example 2.10.1
(a) Let R correspond to a 90� right-hand rigid body rotation about the x3-axis. Find the matrix of R.

(b) Let S correspond to a 90� right-hand rigid body rotation about the x1-axis. Find the matrix of S.

(c) Find the matrix of the tensor that corresponds to the rotation R, followed by S.

(d) Find the matrix of the tensor that corresponds to the rotation S, followed by R.

(e) Consider a point P whose initial coordinates are (1,1,0). Find the new position of this point after the

rotations of part (c). Also find the new position of this point after the rotations of part (d).

Solution
(a) Let fe1; e2; e3g be a set of right-handed unit base vector with e3 along the axis of rotation of the rigid

body. Then,

Re1 ¼ e2; Re2 ¼ �e1; Re3 ¼ e3;

that is,

½R� ¼
0 �1 0
1 0 0
0 0 1

2
4

3
5:

(b) In a manner similar to (a), the transformation of the base vectors is given by:

Se1 ¼ e1; Se2 ¼ e3; Se3 ¼ �e2;
that is,

½S� ¼
1 0 0
0 0 �1
0 1 0

2
4

3
5:
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(c) Since S(Ra) ¼ (SR)a, the resultant rotation is given by the single transformation SR whose components are

given by the matrix:

½SR� ¼
1 0 0
0 0 �1
0 1 0

2
4

3
5 0 �1 0

1 0 0
0 0 1

2
4

3
5 ¼ 0 �1 0

0 0 �1
1 0 0

2
4

3
5:

(d) In a manner similar to (c), the resultant rotation is given by the single transformation RS whose components

are given by the matrix:

½RS� ¼
0 �1 0
1 0 0
0 0 1

2
4

3
5 1 0 0

0 0 �1
0 1 0

2
4

3
5 ¼ 0 0 1

1 0 0
0 1 0

2
4

3
5:

(e) Let r be the initial position of the material point P. Let r* and r** be the rotated position of P after the

rotations of part (c) and part (d), respectively. Then

½r�� ¼ ½SR�½r� ¼
0 �1 0
0 0 �1
1 0 0

2
4

3
5 1

1
0

2
4
3
5 ¼ �1

0
1

2
4

3
5;

that is,

r� ¼ �e1 þ e3;

and

½r��� ¼ ½RS�½r� ¼
0 0 1
1 0 0
0 1 0

2
4

3
5 1

1
0

2
4
3
5 ¼ 0

1
1

2
4
3
5;

that is,

r�� ¼ e2 þ e3:

This example further illustrates that the order of rotations is significant.

2.11 TRANSPOSE OF A TENSOR
The transpose of a tensor T, denoted by TT, is defined to be the tensor that satisfies the following identity for

all vectors a and b:

a �Tb ¼ b �TTa: (2.11.1)

It can be easily seen that TT is a tensor (see Prob. 2.34). From the preceding definition, we have

ej �Tei ¼ ei �TTej: (2.11.2)

Thus,

Tji ¼ TT
ij ; (2.11.3)

or

½T�T ¼ ½TT�; (2.11.4)
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that is, the matrix of TT is the transpose of the matrix T. We also note that by Eq. (2.11.1),

we have

a �TTb ¼ b � ðTTÞTa: (2.11.5)

Thus, b �Ta ¼ b � ðTTÞTa for any a and b, so that

ðTTÞT ¼ T: (2.11.6)

It can be easily established that (see Prob. 2.34)

ðTSÞT ¼ STTT: (2.11.7)

That is, the transpose of a product of the tensors is equal to the product of transposed tensors in reverse order,

which is consistent with the equivalent matrix identity. More generally,

ðABC . . .DÞT ¼ DT . . .CTBTAT: (2.11.8)

2.12 DYADIC PRODUCT OF VECTORS
The dyadic product of vectors a and b, denoted* by ab, is defined to be the transformation that transforms any

vector c according to the rule:

ðabÞc ¼ aðb � cÞ: (2.12.1)

Now, for any vectors c, d, and any scalars a and b, we have, from the preceding rule,

ðabÞðacþ bdÞ ¼ aðb � ðacþ bdÞÞ ¼ aððab � cÞ þ ðbb � dÞÞ ¼ aaðb � cÞ þ baðb � dÞ
¼ aðabÞcþ bðabÞd: (2.12.2)

Thus, the dyadic product ab is a linear transformation.

Let W ¼ ab, then the components of W are:

Wij ¼ ei �Wej ¼ ei � ðabÞej ¼ ei � aðb � ejÞ ¼ aibj; (2.12.3)

that is,

Wij ¼ aibj; (2.12.4)

or

½W� ¼
a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

2
4

3
5 ¼ a1

a2
a3

2
4

3
5½ b1 b2 b3 �: (2.12.5)

In particular, the dyadic products of the base vectors ei are:

½e1e1� ¼
1 0 0

0 0 0

0 0 0

2
4

3
5; ½e1e2� ¼

0 1 0

0 0 0

0 0 0

2
4

3
5 . . . : (2.12.6)

*Some authors write a 	 b for ab. Also, some authors write (ab)�c for (ab)c and c �(ab) for (ab)Tc.
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Thus, it is clear that any tensor T can be expressed as:

T ¼ T11e1e1 þ T12e1e2 þ T13e1e3 þ T21e2e1 þ . . . ¼ Tijeiej: (2.12.7)

2.13 TRACE OF A TENSOR
The trace of a tensor is a scalar that obeys the following rules: For any tensor T and S and any vectors a and b,

trðTþ SÞ ¼ trTþ tr S;
trðaTÞ ¼ atrT;
trðabÞ ¼ a � b:

(2.13.1)

In terms of tensor components, using Eq. (2.12.7),

trT ¼ trðTijeiejÞ ¼ TijtrðeiejÞ ¼ Tijei � ej ¼ Tijdij ¼ Tii: (2.13.2)

That is,

trT ¼ T11 þ T22 þ T33 ¼ sum of diagonal elements: (2.13.3)

It is, therefore, obvious that

trTT ¼ trT: (2.13.4)

Example 2.13.1
Show that for any second-order tensor A and B

trðABÞ ¼ trðBAÞ: (2.13.5)

Solution
Let C ¼ AB, then Cij ¼ AimBmj , so that trðABÞ ¼ trC ¼ Cii ¼ AimBmi .

Let D ¼ BA, then Dij ¼ BimAmj ; so that trðBAÞ ¼ tr D ¼ Dii ¼ BimAmi . But BimAmi ¼ BmiAim (change of dummy

indices); therefore, we have the desired result

trðABÞ ¼ trðBAÞ:

2.14 IDENTITY TENSOR AND TENSOR INVERSE
The linear transformation that transforms every vector into itself is called an identity tensor. Denoting this

special tensor by I, we have for any vector a,

Ia ¼ a: (2.14.1)

In particular,

Ie1 ¼ e1; Ie2 ¼ e2; Ie3 ¼ e3: (2.14.2)
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Thus the (Cartesian) components of the identity tensor are:

Iij ¼ ei � Iej ¼ ei � ej ¼ dij; (2.14.3)

that is,

½I� ¼
1 0 0

0 1 0

0 0 1

2
4

3
5: (2.14.4)

It is obvious that the identity matrix is the matrix of I for all rectangular Cartesian coordinates and that

TI ¼ IT ¼ T for any tensor T. We also note that if Ta ¼ a for any arbitrary a, then T ¼ I.

Example 2.14.1
Write the tensor T, defined by the equation Ta ¼ aa, where a is a constant and a is arbitrary, in terms of the identity

tensor, and find its components.

Solution
Using Eq. (2.14.1), we can write aa as aIa, so that

Ta ¼ aa ¼ aIa:

Since a is arbitrary, therefore,

T ¼ aI:

The components of this tensor are clearly Tij ¼ adij .

Given a tensor T, if a tensor S exists such that

ST ¼ I; (2.14.5)

then we call S the inverse of T and write

S ¼ T�1: (2.14.6)

To find the components of the inverse of a tensor T is to find the inverse of the matrix of T. From the

study of matrices, we know that the inverse exists if and only if det T 6¼ 0 (that is, T is nonsingular) and in

this case,

½T��1½T� ¼ ½T�½T��1 ¼ ½I�: (2.14.7)

Thus, the inverse of a tensor satisfies the following relation:

T�1T ¼ TT�1 ¼ I: (2.14.8)

It can be shown (see Prob. 2.35) that for the tensor inverse, the following relations are satisfied:

ðTTÞ�1 ¼ ðT�1ÞT; (2.14.9)

and

ðTSÞ�1 ¼ S�1T�1: (2.14.10)

We note that if the inverse exists, we have the reciprocal relations that

Ta ¼ b and a ¼ T�1b: (2.14.11)
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This indicates that when a tensor is invertible, there is a one-to-one mapping of vectors a and b. On the other

hand, if a tensor T does not have an inverse, then, for a given b, there are in general more than one a that

transform into b. This fact is illustrated in the following example.

Example 2.14.2
Consider the tensor T ¼ cd (the dyadic product of c and d).

(a) Obtain the determinant of T.

(b) Show that if Ta ¼ b, then T(a þ h) ¼ b, where h is any vector perpendicular to the vector d.

Solution

(a) ½T� ¼
c1
c2
c3

2
4

3
5½ d1 d2 d3 � ¼

c1d1 c1d2 c1d3
c2d1 c2d2 c2d3
c3d1 c3d2 c3d3

2
4

3
5 and det ½T� ¼ c1c2c3d1d2d3

�����
1 1 1
1 1 1
1 1 1

����� ¼ 0.

That is, T is a singular tensor, for which an inverse does not exist.

(b) T(aþh) ¼ (cd)(aþ h) ¼ c(d � a) þ c(d � h). Now d � h ¼ 0 (h is perpendicular to d); therefore,

Tðaþ hÞ ¼ cðd � aÞ ¼ ðcdÞa ¼ Ta ¼ b:

That is, all vectors a þ h transform into the vector b, and it is not a one-to-one transformation.

2.15 ORTHOGONAL TENSORS
An orthogonal tensor is a linear transformation under which the transformed vectors preserve

their lengths and angles. Let Q denote an orthogonal tensor; then by definition, jQaj¼ jaj, jQbj¼ jbj, and
cos(a,b) ¼ cos(Qa, Qb). Therefore,

Qa �Qb ¼ a � b (2.15.1)

for any vectors a and b.

Since by the definition of transpose, Eq. (2.11.1), (Qa) � (Qb) ¼ b � QT(Qa), thus

b � a ¼ b � ðQTQÞa or b � Ia ¼ b �QTQa:

Since a and b are arbitrary, it follows that

QTQ ¼ I: (2.15.2)

This means that for an orthogonal tensor, the inverse is simply the transpose,

Q�1 ¼ QT: (2.15.3)

Thus [see Eq. (2.14.8)],

QTQ ¼ QQT ¼ I: (2.15.4)

22 CHAPTER 2 Tensors



In matrix notation, Eq. (2.15.4) takes the form:

½Q�T½Q� ¼ ½Q�½Q�T ¼ ½I�; (2.15.5)

and in subscript notation, we have

QmiQmj ¼ QimQjm ¼ dij: (2.15.6)

Example 2.15.1
The tensor given in Example 2.7.2, being a reflection, is obviously an orthogonal tensor. Verify that ½T�½T�T ¼ ½I� for the
[T] in that example. Also, find the determinant of [T].

Solution
Evaluating the matrix product:

T½ � T½ �T ¼
�1 0 0
0 1 0
0 0 1

2
4

3
5 �1 0 0

0 1 0
0 0 1

2
4

3
5 ¼ 1 0 0

0 1 0
0 0 1

2
4

3
5:

The determinant of T is

jTj ¼
�����
�1 0 0
0 1 0
0 0 1

����� ¼ �1:

Example 2.15.2
The tensor given in Example 2.7.3, being a rigid body rotation, is obviously an orthogonal tensor. Verify that

½R�½R�T ¼ ½I� for the [R] in that example. Also find the determinant of [R].

Solution

½R�½R�T ¼
cos y �sin y 0
sin y cos y 0
0 0 1

2
4

3
5 cos y sin y 0
�sin y cos y 0

0 0 1

2
4

3
5 ¼ 1 0 0

0 1 0
0 0 1

2
4

3
5;

det½R� ¼ jRj ¼
�����
cos y �sin y 0
sin y cos y 0
0 0 1

����� ¼ 1:

The determinant of the matrix of any orthogonal tensor Q is easily shown to be equal to either þ1 or �1.
In fact, since

½Q�½Q�T ¼ ½I�;
therefore,

j½Q�½Q�Tj ¼ jQjjQTj ¼ jIj:
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Now jQj ¼ jQTj and jIj ¼ 1, therefore, jQj2 ¼ 1, thus

jQj ¼ 
1: (2.15.7)

From the previous examples, we can see that for a rotation tensor the determinant is þ1, whereas for a
reflection tensor, it is �1.

2.16 TRANSFORMATION MATRIX BETWEEN TWO RECTANGULAR
CARTESIAN COORDINATE SYSTEMS
Suppose that e1; e2; e3f g and e 01; e

0
2; e

0
3

� �
are unit vectors corresponding to two rectangular Cartesian coordi-

nate systems (see Figure 2.16-1). It is clear that e1; e2; e3f g can be made to coincide with e 01; e
0
2; e

0
3

� �
through

either a rigid body rotation (if both bases are same-handed) or a rotation followed by a reflection (if different-

handed). That is, {ei} and e 0i
� �

are related by an orthogonal tensor Q through the equations below.

e 0i ¼ Qei ¼ Qmiem; (2.16.1)

that is,

e 01 ¼ Q11e1 þ Q21e2 þ Q31e3;
e 02 ¼ Q12e1 þ Q22e2 þ Q32e3;
e 03 ¼ Q13e1 þ Q23e2 þ Q33e3;

(2.16.2)

where

QimQjm ¼ QmiQmj ¼ dij; (2.16.3)

or

QQT ¼ QTQ ¼ I: (2.16.4)

We note that

Q11 ¼ e1 �Qe1 ¼ e1 � e 01 ¼ cosine of the angle between e1 and e
0
1;

Q12 ¼ e1 �Qe2 ¼ e1 � e 02 ¼ cosine of the angle between e1 and e
0
2; etc:

That is, in general, Qij ¼ cosine of the angle between ei and e 0j , which may be written:

Qij ¼ cosðei; e 0j Þ: (2.16.5)

e2e2
9

e3
9

e1
9

e1

e3

FIGURE 2.16-1
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The matrix of these direction cosines, i.e., the matrix

Q½ � ¼
Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

2
4

3
5; (2.16.6)

is called the transformation matrix between e1; e2; e3f g and e 01; e
0
2; e

0
3

� �
. Using this matrix, we shall obtain in

the following sections the relationship between the two sets of components, with respect to these two sets of

base vectors, of a vector and a tensor.

Example 2.16.1
Let e 01; e

0
2; e

0
3

� �
be obtained by rotating the basis e1; e2; e3f g about the e3 axis through 30�, as shown in Figure 2.16-2.

In this figure, e3 and e 03 coincide.

Solution
We can obtain the transformation matrix in two ways:

1. Using Eq. (2.16.5), we have

Q11 ¼ cosðe1; e 01Þ ¼ cos 30� ¼
ffiffiffi
3

p
=2; Q12 ¼ cosðe1; e 02Þ ¼ cos 120� ¼ �1=2; Q13 ¼ cosðe1; e 03Þ ¼ cos 90� ¼ 0;

Q21 ¼ cosðe2; e 01Þ ¼ cos 60� ¼ 1=2; Q22 ¼ cosðe2; e 02Þ ¼ cos 30� ¼
ffiffiffi
3

p
=2; Q23 ¼ cosðe2; e 03Þ ¼ cos 90� ¼ 0;

Q31 ¼ cosðe3; e 01Þ ¼ cos 90� ¼ 0; Q32 ¼ cosðe3; e 02Þ ¼ cos 90� ¼ 0; Q23 ¼ cosðe3; e 03Þ ¼ cos 0� ¼ 1:

2. It is easier to simply look at Figure 2.16-2 and decompose each of the e 0i into its components in the

e1; e2; e3f g directions, i.e.,

e 01 ¼ cos 30�e1 þ sin 30�e2 ¼
ffiffiffi
3

p

2
e1 þ 1

2
e2;

e 02 ¼ �sin 30�e1 þ cos 30�e3 ¼ � 1

2
e1 þ

ffiffiffi
3

p

2
e2;

e 03 ¼ e3:

Thus, by Eq. (2.16.2), we have

½Q� ¼
ffiffiffi
3

p
=2 �1=2 0

1=2
ffiffiffi
3

p
=2 0

0 0 1

2
4

3
5:

e2e2
9

e1
9

e1

30�

30�

FIGURE 2.16-2
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2.17 TRANSFORMATION LAW FOR CARTESIAN COMPONENTS OF A VECTOR
Consider any vector a. The Cartesian components of the vector a with respect to e1; e2; e3f g are:

ai ¼ a � ei; (2.17.1)

and its components with respect to e 01; e
0
2; e

0
3

� �
are:

a 0i ¼ a � e 0i : (2.17.2)

Now e 0i ¼ Qmiem [see Eq. (2.16.1)]; therefore,

a 0i ¼ a �Qmiem ¼ Qmiða � emÞ; (2.17.3)

that is,

a 0i ¼ Qmiam: (2.17.4)

In matrix notation, Eq. (2.17.4) is

a 01
a 02
a 03

2
64

3
75 ¼

Q11 Q21 Q31

Q12 Q22 Q32

Q13 Q23 Q33

2
64

3
75

a1

a2

a3

2
64

3
75; (2.17.5)

or

½a� 0 ¼ ½Q�T½a�: (2.17.6)

Equation (2.17.4), or Eq. (2.17.5), or Eq. (2.17.6) is the transformation law relating components of

the same vector with respect to different rectangular Cartesian unit bases. It is very important to note

that in Eq. (2.17.6), [a]0 denotes the matrix of the vector a with respect to the primed basis e 0i g
�

, and [a]

denotes the same vector with respect to the unprimed basis {ei}. Eq. (2.17.6) is not the same as a 0 ¼ QTa.

The distinction is that [a]0 and [a] are matrices of the same vector, whereas a and a
0 are two different vec-

tors—a0 being the transformed vector of a (through the transformation a 0 ¼ QTa).

If we premultiply Eq. (2.17.6) with [Q], we get

½a� ¼ ½Q�½a� 0: (2.17.7)

The indicial notation for this equation is:

ai ¼ Qima
0
m: (2.17.8)

Example 2.17.1
Given that the components of a vector a with respect to eif g are given to be [2,0,0]. That is, a ¼ 2e1, find its com-

ponents with respect to e 0i
� �

, where the e 0i
� �

axes are obtained by a 90� counter-clockwise rotation of the eif g axis
about its e3 axis.

Solution
The answer to the question is obvious from Figure 2.17-1, that is,

a ¼ 2e1 ¼ �2e 02:
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To show that we can get the same answer from Eq. (2.17.6), we first obtain the transformation matrix of Q. Since

e 01 ¼ e2; e
0
2 ¼ �e1 and e 03 ¼ e3, we have

½Q� ¼
0 �1 0
1 0 0
0 0 1

2
4

3
5:

Thus,

½a� 0 ¼ ½Q�T½a� ¼
0 1 0
�1 0 0
0 0 1

2
4

3
5 2

0
0

2
4
3
5 ¼ 0

�2
0

2
4

3
5;

that is,

a ¼ �2e 02:

2.18 TRANSFORMATION LAW FOR CARTESIAN COMPONENTS OF A TENSOR
Consider any tensor T. The components of T with respect to the basis e1; e2; e3f g are:

Tij ¼ ei �Tej: (2.18.1)

Its components with respect to e 01; e
0
2; e

0
3

� �
are:

T 0ij ¼ e 0i �Te 0j : (2.18.2)

With e 0i ¼ Qmiem, we have

T 0ij ¼ Qmiem �TQnjen ¼ QmiQnjem �Ten;

that is,

T 0ij ¼ QmiQnjTmn: (2.18.3)

In matrix notation, the preceding equation reads:

T 011 T 012 T 013
T 021 T 022 T 023
T 031 T 032 T 033

2
4

3
5 ¼ Q11 Q21 Q31

Q12 Q22 Q32

Q13 Q23 Q33

2
4

3
5 T11 T12 T13

T21 T22 T23
T31 T32 T33

2
4

3
5 Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

2
4

3
5; (2.18.4)

or

½T� 0 ¼ ½Q�T ½T� ½Q�: (2.18.5)

e1e2
9

e1
9 e2

a
x1

x2

FIGURE 2.17-1
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We can also express the unprimed components in terms of the primed components. Indeed, if we premul-

tiply the preceding equation with [Q] and post-multiply it with [Q]T, we obtain, since

½Q� ½Q�T ¼ ½Q�T Q� ¼ ½I�;½ (2.18.6)

½T� ¼ ½Q� ½T� 0 ½Q�T: (2.18.7)

In indicial notation, Eq. (2.18.7) reads

Tij ¼ QimQjnT
0
mn: (2.18.8)

Equations (2.18.5) [or Eq. (2.18.3)] and Eq. (2.18.7) [or Eq. (2.18.8)] are the transformation laws relating

components of the same tensor with respect to different Cartesian unit bases. Again, it is important to note

that in Eqs. (2.18.5) and (2.18.7), [T] and [T]0 are different matrices of the same tensor T. We note that

the equation ½T� 0 ¼ ½Q�T½T�½Q� differs from T 0 ¼ QTTQ in that the former relates the components of the

same tensor T whereas the latter relates the two different tensors T and T0.

Example 2.18.1
Given that with respect to the basis e1; e2; e3f g; the matrix of a tensor T is given by

½T� ¼
0 1 0
1 2 0
0 0 1

2
4

3
5:

Find [T]0, that is, find the matrix of T with respect to the e 0i basis, where e 01; e
0
2; e

0
3

� �
is obtained by rotating

e1; e2; e3f g about its e3-axis through 90� (see Figure 2.17-1).

Solution
Since e 01 ¼ e2; e

0
2 ¼ �e1 and e 03 ¼ e3; by Eq. (2.7.1) we have

½Q� ¼
0 �1 0
1 0 0
0 0 1

2
4

3
5:

Thus, Eq. (2.18.5) gives

½T� 0 ¼
0 1 0
�1 0 0
0 0 1

2
4

3
5 0 1 0

1 2 0
0 0 1

2
4

3
5 0 �1 0

1 0 0
0 0 1

2
4

3
5 ¼ 2 �1 0

�1 0 0
0 0 1

2
4

3
5;

that is,

T 0
11 ¼ 2; T 0

12 ¼ �1; T 0
13 ¼ 0; T 0

22 ¼ 0; T 0
23 ¼ 0; T 0

33 ¼ 1:

Example 2.18.2
Given a tensor T and its components Tij and T 0

ij with respect to two sets of bases eif g and e 0i
� �

. Show that Tii is invari-

ant with respect to these bases, i.e., Tii ¼ T 0
ii .

Solution
The primed components are related to the unprimed components by Eq. (2.18.3):

T 0
ij ¼ QmiQnjTmn;
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thus,

T 0
ii ¼ QmiQniTmn:

But QmiQni ¼ dmn [Eq. (2.15.6)], therefore,

T 0
ii ¼ dmnTmn ¼ Tmm ¼ Tii ;

that is,

T11 þ T22 þ T33 ¼ T 0
11 þ T 0

22 þ T 0
33:

We see from Example 2.18.1 that we can calculate all nine components of a tensor T with respect to e 0i
� �

from the matrix T½ � eif g by using Eq. (2.18.5). However, there are often times when we need only a few com-

ponents. Then it is more convenient to use Eq. (2.18.1). In matrix form, this equation is written:

T 0ij ¼ ½e 0i �T½T� ½e 0j �; (2.18.9)

where ½e 0i �T denote the row matrix whose elements are the components of e 0i with respect to the basis {ei}.

Example 2.18.3
Obtain T 0

12 for the tensor T and the bases {ei} and e 0i
� �

given in Example 2.18.1 by using Eq. (2.18.1).

Solution
Since e 01 ¼ e2 and e 02 ¼ �e1, therefore,

T 0
12 ¼ e 01 � Te 02 ¼ e2 � T �e1ð Þ ¼ �T21 ¼ �1:

Alternatively, using Eq. (2.18.9), we have

T 0
12 ¼ e 01

� �T
T½ � e 02
� � ¼ 0 1 0½ �

0 1 0
1 2 0
0 0 1

2
4

3
5 �1

0
0

2
4

3
5 ¼ 0 1 0½ �

0
�1
0

2
4

3
5 ¼ �1:

2.19 DEFINING TENSOR BY TRANSFORMATION LAWS
Equation (2.17.4) or (2.18.3) states that when the components of a vector or a tensor with respect to

e1; e2; e3f g are known, then its components with respect to any e 01; e
0
2; e

0
3

� �
are uniquely determined from

them. In other words, the components ai or Tij with respect to one set of {e1, e2, e3} completely characterize

a vector or a tensor. Thus, it is perfectly meaningful to use a statement such as “consider a tensor Tij,” mean-

ing consider the tensor T whose components with respect to some set of {e1, e2, e3} are Tij. In fact, an alter-

native way of defining a tensor is through the use of transformation laws relating components of a tensor with

respect to different bases. Confining ourselves to only rectangular Cartesian coordinate systems and using unit

vectors along positive coordinate directions as base vectors, we now define Cartesian components of tensors

of different orders in terms of their transformation laws in the following, where the primed quantities are
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referred to basis e 01; e
0
2; e

0
3

� �
and unprimed quantities to basis e1; e2; e3f g, where the e 0i and ei are related by

e 0i ¼ Qei, Q being an orthogonal transformation:

a 0 ¼ a zeroth-order tensor or scalarð Þ;
a 0i ¼ Qmiam first-order tensor or vectorð Þ;
T 0ij ¼ QmiQnjTmn second-order tensor or tensorð Þ;
S 0ijk ¼ QmiQnjQrkSmnr third-order tensor;

C 0ijkl ¼ QmiQnjQrkQslCmnrs fourth-order tensor;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :

(2.19.1)

Using the preceding transformation laws, we can easily establish the following three rules for tensor com-

ponents: (1) the addition rule, (2) the multiplication rule, and (3) the quotient rule.

1. The addition rule. If Tij and Sij are components of any two second-order tensors, then Tij þ Sij are com-

ponents of a second-order tensor. Similarly, if Tijk and Sijk are components of any two third-order ten-

sors, then Tijk þ Sijk are components of a third-order tensor.

To prove this rule, we note that since T 0ijk ¼ QmiQnjQrkTmnr and S 0ijk ¼ QmiQnjQrkSmnr, thus,

T 0ijk þ S 0ijk ¼ QmiQnjQrkTmnr þ QmiQnjQrkSmnr ¼ QmiQnjQrkðTmnr þ SmnrÞ:

Letting

W 0
ijk ¼ T 0ijk þ S 0ijk and Wmnr ¼ Tmnr þ Smnr;

we have

W 0
ijk ¼ QmiQnjQrkWmnr;

that is, Wijk are components of a third-order tensor.

2. The multiplication rule. Let ai be components of any vector and Tij be components of any tensor. We

can form many kinds of products from these components. Examples are (a) aiaj, (b) aiajak, (c) TijTkl,
(d) TijTjk, etc. It can be proved that these products are components of a tensor whose order is equal

to the number of free indices. For example, aiaj are components of a second-order tensor, aiajak are
components of a third-order tensor, TijTkl are components of a fourth-order tensor, and TijTjk are com-

ponents of a second-order tensor.

To prove that aiaj are components of a second-order tensor, we let Sij ¼ aiaj and S 0ij ¼ a 0i a
0
j , then,

since ai are components of the vector a, a 0i ¼ Qmiam and a 0j ¼ Qnjan, so that

S 0ij ¼ QmiamQnjan ¼ QmiQnjaman ¼ QmiQnjSmn;

thus,

S 0ij ¼ QmiQnjSmn;

which is the transformation law for a second-order tensor.

To prove that TijTkl are components of a fourth-order tensor, let Mijkl ¼ TijTkl; then we have

M 0
ijkl ¼ T 0ijT

0
kl ¼ QmiQnjTmnQrkQslTrs ¼ QmiQnjQrkQslTmnTrs;

that is,

M 0
ijkl ¼ QmiQnjQrkQslMmnrs;

which is the transformation law for a fourth-order tensor. It is quite clear from the proofs given above that

the order of the tensor whose components are obtained from the multiplication of components of tensors
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is determined by the number of free indices; no free index corresponds to a scalar, one free index corre-

sponds to a vector, two free indices correspond to a second-order tensor, and so on.

3. Quotient rule. If ai are components of an arbitrary vector, Tij are components of an arbitrary tensor, and

ai ¼ Tijbj for all coordinates, then bi are components of a vector.

To prove this, we note that since ai are components of a vector and Tij are components of a second-

order tensor, therefore,

ai ¼ Qima
0
m; (i)

and

Tij ¼ QimQjnT
0
mn: (ii)

Now, substituting Eq. (i) and Eq. (ii) into the equation ai ¼ Tijbj, we have

Qima
0
m ¼ QimQjnT

0
mnbj: (iii)

But the equation ai ¼ Tijbj is true for all coordinates, thus we also have

a 0i ¼ T 0ijb
0
j and a 0m ¼ T 0mnb

0
n; (iv)

and thus Eq. (iii) becomes

QimT
0
mnb

0
n ¼ QimQjnT

0
mnbj: (v)

Multiplying the preceding equation with Qik and noting that QikQim ¼ dkm, we get

dkmT 0mnb
0
n ¼ dkmQjnT

0
mnbj or T 0knb

0
n ¼ QjnT

0
knbj;

thus,

T 0knðb 0n � QjnbjÞ ¼ 0: (vi)

Since this equation is to be true for any tensor T, therefore b 0n � Qjnbj must be identically zero. Thus,

b 0n ¼ Qjnbj: (vii)

This is the transformation law for the components of a vector. Thus, bi are components of a vector.

Another example that will be important later when we discuss the relationship between stress and

strain for an elastic body is the following: If Tij and Eij are components of arbitrary second-order ten-

sors T and E, and

Tij ¼ CijklEkl; (viii)

for all coordinates, then Cijkl are components of a fourth-order tensor. The proof for this example fol-

lows exactly the same steps as in the previous example.

2.20 SYMMETRIC AND ANTISYMMETRIC TENSORS
A tensor is said to be symmetric if T ¼ TT. Thus, the components of a symmetric tensor have the property

Tij ¼ Tji; (2.20.1)
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that is,

T12 ¼ T21; T13 ¼ T31; T23 ¼ T32: (2.20.2)

A tensor is said to be antisymmetric if T ¼ �TT. Thus the components of an antisymmetric tensor have

the property

Tij ¼ �Tji; (2.20.3)

that is,

T11 ¼ T22 ¼ T33 ¼ 0; T12 ¼ �T21; T13 ¼ �T31; T23 ¼ �T32: (2.20.4)

Any tensor T can always be decomposed into the sum of a symmetric tensor and an antisymmetric tensor.

In fact,

T ¼ TS þ TA; (2.20.5)

where

TS ¼ Tþ TT

2
is symmetric and TA ¼ T� TT

2
is anti-symmetric: (2.20.6)

It is not difficult to prove that the decomposition is unique (see Prob. 2.47).

2.21 THE DUAL VECTOR OF AN ANTISYMMETRIC TENSOR
The diagonal elements of an antisymmetric tensor are always zero, and, of the six nondiagonal elements, only

three are independent, because T12 ¼ �T21; T23 ¼ �T32 and T31 ¼ �T13. Thus an antisymmetric tensor has

really only three components, just like a vector. Indeed, it does behave like a vector. More specifically, for

every antisymmetric tensor T there is a corresponding vector tA such that for every vector a, the transformed

vector of a under T, i.e., Ta, can be obtained from the cross-product of tA with the vector a. That is,

Ta ¼ tA � a: (2.21.1)

This vector tA is called the dual vector of the antisymmetric tensor. It is also known as the axial vector.
That such a vector indeed can be found is demonstrated here.

From Eq. (2.21.1), we have

T12 ¼ e1 �Te2 ¼ e1 � tA � e2 ¼ tA � e2 � e1 ¼ �tA � e3 ¼ �tA3 ;
T31 ¼ e3 �Te1 ¼ e3 � tA � e1 ¼ tA � e1 � e3 ¼ �tA � e2 ¼ �tA2 ;
T23 ¼ e2 �Te3 ¼ e2 � tA � e3 ¼ tA � e3 � e2 ¼ �tA � e1 ¼ �tA1 :

(2.21.2)

Similar derivations will give T21 ¼ tA3 ; T13 ¼ tA2 ; T32 ¼ tA1 and T11 ¼ T22 ¼ T33 ¼ 0. Thus, only an antisym-

metric tensor has a dual vector defined by Eq. (2.21.1). It is given by

tA ¼ �ðT23e1 þ T31e2 þ T12e3Þ ¼ T32e1 þ T13e2 þ T21e3 (2.21.3)

or, in indicial notation,

2tA ¼ �eijkTjkei: (2.21.4)

The calculations of dual vectors have several uses. For example, it allows us to easily obtain the axis of

rotation for a finite rotation tensor. In fact, the axis of rotation is parallel to the dual vector of the
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antisymmetric part of the rotation tensor (see Example 2.21.2). Also, in Chapter 3 it will be shown that the dual

vector can be used to obtain the infinitesimal angles of rotation of material elements under infinitesimal defor-

mation (Section 3.11) and to obtain the angular velocity of material elements in general motion (Section 3.14).

Example 2.21.1
Given

½T� ¼
1 2 3
4 2 1
1 1 1

2
4

3
5:

(a) Decompose the tensor into a symmetric and an antisymmetric part.

(b) Find the dual vector for the antisymmetric part.

(c) Verify TAa ¼ tA � a for a ¼ e1 þ e3:

Solution

(a) ½T� ¼ ½TS� þ ½TA�; where

½TS� ¼ ½T� þ ½T�
T

2
¼

1 3 2
3 2 1
2 1 1

2
4

3
5; ½TA� ¼ ½T� � ½T�T

2
¼

0 �1 1
1 0 0
�1 0 0

2
4

3
5:

(b) The dual vector of TA is

tA ¼ �ðT A
23e1 þ T A

31e2 þ T A
12e3Þ ¼ �ð0e1 � e2 � e3Þ ¼ e2 þ e3:

(c) Let b ¼ TAa. Then

½b� ¼
0 �1 1
1 0 0
�1 0 0

2
4

3
5 1

0
1

2
4
3
5 ¼ 1

1
�1

2
4

3
5;

that is,

b ¼ e1 þ e2 � e3:

We note that tA � a ¼ ðe2 þ e3Þ � ðe1 þ e3Þ ¼ �e3 þ e1 þ e2 ¼ b:

Example 2.21.2
Given that R is a rotation tensor and that m is a unit vector in the direction of the axis of rotation, prove that the dual

vector q of RA is parallel to m.

Solution
Since m is parallel to the axis of rotation, therefore,

Rm ¼ m:

Multiplying the preceding equation by RT and noticing that RTR ¼ I, we then also have the equation RTm ¼ m. Thus,

ðR� RTÞm ¼ 0 or 2RAm ¼ 0;
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but RAm ¼ q�m, where q is the dual vector of RA. Therefore,

q�m ¼ 0; (2.21.5)

that is, q is parallel to m. We note that it can be shown [see Prob. 2.54(b)] that if y denotes the right-hand rotation

angle, then

q ¼ ðsinyÞm: (2.21.6)

2.22 EIGENVALUES AND EIGENVECTORS OF A TENSOR
Consider a tensor T. If a is a vector that transforms under T into a vector parallel to itself, that is,

Ta ¼ la; (2.22.1)

then a is an eigenvector and l is the corresponding eigenvalue.
If a is an eigenvector with corresponding eigenvalue l of the linear transformation T, any vector parallel

to a is also an eigenvector with the same eigenvalue l. In fact, for any scalar a

TðaaÞ ¼ aTa ¼ aðlaÞ ¼ lðaaÞ: (2.22.2)

Thus, an eigenvector, as defined by Eq. (2.22.1), has an arbitrary length. For definiteness, we shall agree that
all eigenvectors sought will be of unit length.

A tensor may have infinitely many eigenvectors. In fact, since Ia ¼ a, any vector is an eigenvector for the

identity tensor I, with eigenvalues all equal to unity. For the tensor bI, the same is true except that the eigen-

values are all equal to b.
Some tensors only have eigenvectors in one direction. For example, for any rotation tensor that effects a

rigid body rotation about an axis through an angle not equal to an integral multiple of p, only those vectors

that are parallel to the axis of rotation will remain parallel to themselves.

Let n be a unit eigenvector. Then

Tn ¼ ln ¼ lIn; (2.22.3)

thus,

ðT� lIÞn ¼ 0 with n � n ¼ 1: (2.22.4)

Let n ¼ aiei; then, in component form,

Tij � ldij
	 


aj ¼ 0 with ajaj ¼ 1: (2.22.5)

In long form, we have

T11 � lð Þa1 þ T12a2 þ T13a3 ¼ 0;
T21a1 þ T22 � lð Þa2 þ T23a3 ¼ 0;
T31a1 þ T32a2 þ T33 � lð Þa3 ¼ 0:

(2.22.6)

Equations (2.22.6) are a system of linear homogeneous equations in a1, a2 and a3. Obviously, a solution

for this system is a1 ¼ a2 ¼ a3 ¼ 0. This is known as the trivial solution. This solution simply states the
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obvious fact that a ¼ 0 satisfies the equation Ta ¼ la, independent of the value of l. To find the nontrivial

eigenvectors for T, we note that a system of homogeneous, linear equations admits a nontrivial solution only

if the determinant of its coefficients vanishes. That is,

jT� lIj ¼ 0; (2.22.7)

that is, �����
T11 � l T12 T13
T21 T22 � l T23
T31 T32 T33 � l

����� ¼ 0: (2.22.8)

Expanding the determinant results in a cubic equation in l. It is called the characteristic equation of T.

The roots of this characteristic equation are the eigenvalues of T.
Equations (2.22.6), together with the equation

a21 þ a22 þ a23 ¼ 1; (2.22.9)

allow us to obtain eigenvectors of unit length. The procedure for finding the eigenvalues and eigenvectors of a

tensor are best illustrated by example.

Example 2.22.1
Find the eigenvalues and eigenvectors for the tensor whose components are

½T� ¼
2 0 0
0 2 0
0 0 2

2
4

3
5:

Solution
We note that this tensor is 2I, so that Ta ¼ 2Ia ¼ 2a for any vector a. Therefore, by the definition of eigenvector [see

Eq. (2.22.1)], any direction is a direction for an eigenvector. The eigenvalue for every direction is the same, which is

2. However, we can also use Eq. (2.22.8) to find the eigenvalues and Eqs. (2.22.6) to find the eigenvectors. Indeed,

Eq. (2.22.8) gives, for this tensor, the following characteristic equation:

2� lð Þ3 ¼ 0;

so we have a triple root l ¼ 2. Substituting this value in Eqs. (2.22.6), we have

2� 2ð Þa1 ¼ 0; 2� 2ð Þa2 ¼ 0; 2� 2ð Þa3 ¼ 0:

Thus, all three equations are automatically satisfied for arbitrary values of a1, a2 and a3 so that every direction is a

direction for an eigenvector. We can choose any three noncoplanar directions as the three independent eigenvectors;

on them all other eigenvectors depend. In particular, we can choose {e1, e2, e3} as a set of independent eigenvectors.

Example 2.22.2
Show that if T21 ¼ T31 ¼ 0, then 
e1 are eigenvectors of T with eigenvalue T11.

Solution
From Te1 ¼ T11e1 þ T21e2 þ T31e3, we have

Te1 ¼ T11e1 and Tð�e1Þ ¼ T11ð�e1Þ:
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Thus, by definition, Eq. (2.22.1), 
e1 are eigenvectors with T11 as its eigenvalue. Similarly, if T12 ¼ T32 ¼ 0, then


e2 are eigenvectors with corresponding eigenvalue T22, and if T13 ¼ T23 ¼ 0, then 
e3 are eigenvectors with

corresponding eigenvalue T33.

Example 2.22.3
Given that

½T� ¼
2 0 0

0 2 0

0 0 3

2
64

3
75:

Find the eigenvalues and their corresponding eigenvectors.

Solution
The characteristic equation is

ð2� lÞ2ð3� lÞ ¼ 0:

Thus, l1 ¼ 3; l2 ¼ l3 ¼ 2 (obviously the ordering of the eigenvalues is arbitrary). These results are obvious in

view of Example 2.22.2. In fact, that example also tells us that the eigenvectors corresponding to l1 ¼ 3 are 
e3
and eigenvectors corresponding to l2 ¼ l3 ¼ 2 are 
e1 and 
e2. However, there are actually infinitely many eigen-

vectors corresponding to the double root. In fact, since

Te1 ¼ 2e1 and Te2 ¼ 2e2;

therefore, for any a and b,

Tðae1 þ be2Þ ¼ aTe1 þ bTe2 ¼ 2ae1 þ 2be2 ¼ 2ðae1 þ be2Þ;
that is, ae1 þ be2 is an eigenvector with eigenvalue 2. This fact can also be obtained from Eqs. (2.22.6). With l ¼ 2,

these equations give

0a1 ¼ 0; 0a2 ¼ 0; a3 ¼ 0:

Thus, a1 ¼ arbitrary, a2 ¼ arbitrary, and a3 ¼ 0, so that any vector perpendicular to e3, that is, any

n ¼ a1e1 þ a2e2; is an eigenvector.

Example 2.22.4
Find the eigenvalues and eigenvectors for the tensor

½T� ¼
2 0 0

0 3 4

0 4 �3

2
4

3
5:
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Solution
The characteristic equation gives

jT� lIj ¼

�����
2� l 0 0
0 3� l 4
0 4 �3� l

����� ¼ ð2� lÞðl2 � 25Þ ¼ 0:

Thus, there are three distinct eigenvalues, l1 ¼ 2, l2 ¼ 5 and l3 ¼ �5.
Corresponding to l1 ¼ 2, Eqs. (2.22.6) gives

0a1 ¼ 0; a2 þ 4a3 ¼ 0; 4a2 � 5a3 ¼ 0;

and we also have Eq. (2.22.9):

a21 þ a22 þ a23 ¼ 1:

Thus, a2 ¼ a3 ¼ 0 and a1 ¼ 
1 so that the eigenvector corresponding to l1 ¼ 2 is

n1 ¼ 
e1:

We note that from the Example 2.22.2, this eigenvalue 2 and the corresponding eigenvectors n1 ¼ 
e1 can be

written by inspection.

Corresponding to l2 ¼ 5, we have

�3a1 ¼ 0; �2a2 þ 4a3 ¼ 0; 4a2 � 8a3 ¼ 0;

thus (note the second and third equations are the same),

a1 ¼ 0; a2 ¼ 2a3;

and the unit eigenvectors corresponding to l2 ¼ 5 are

n2 ¼ 
 1ffiffiffi
5

p ð2e2 þ e3Þ:

Similarly for l3 ¼ �5, the unit eigenvectors are

n3 ¼ 
 1ffiffiffi
5

p ð�e2 þ 2e3Þ:

All the examples given here have three eigenvalues that are real. It can be shown that if a tensor is

real (i.e., with real components) and symmetric, then all its eigenvalues are real. If a tensor is real

but not symmetric, then two of the eigenvalues may be complex conjugates. The following is such an

example.
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Example 2.22.5
Find the eigenvalues and eigenvectors for the rotation tensor R corresponding to a 90� rotation about the e3 (see

Example 2.10.1).

Solution
With

½R� ¼
0 �1 0
1 0 0
0 0 1

2
4

3
5;

the characteristic equation is �����
0� l �1 0
1 0� l 0
0 0 1� l

����� ¼ 0;

that is,

l2ð1� lÞ þ ð1� lÞ ¼ ð1� lÞðl2 þ 1Þ ¼ 0:

Thus, only one eigenvalue is real, namely l1 ¼ 1; the other two, l2 ¼ þ
ffiffiffiffiffiffiffi
�1

p
and l3 ¼ �

ffiffiffiffiffiffiffi
�1

p
, are imaginary. Only

real eigenvalues are of interest to us. We shall therefore compute only the eigenvector corresponding to l1 ¼ 1. From

ð0� 1Þa1 � a2 ¼ 0; a1 � a2 ¼ 0; ð1� 1Þa3 ¼ 0;

and

a21 þ a22 þ a23 ¼ 1;

we obtain a1 ¼ 0; a2 ¼ 0; a3 ¼ 
1, that is,
n ¼ 
e3;

which, of course, are parallel to the axis of rotation.

2.23 PRINCIPAL VALUES AND PRINCIPAL DIRECTIONS OF REAL SYMMETRIC
TENSORS
In the following chapters, we shall encounter several real tensors (stress tensor, strain tensor, rate of deforma-

tion tensor, etc.) that are symmetric. The following significant theorem can be proven: The eigenvalues of any
real symmetric tensor are all real (we omit the proof). Thus, for a real symmetric tensor, there always exist at

least three real eigenvectors, which we shall also call the principal directions. The corresponding eigenvalues

are called the principal values.
We now prove that there always exist three principal directions that are mutually perpendicular. Let n1

and n2 be two eigenvectors corresponding to the eigenvalues l1 and l2, respectively, of a tensor T. Then

Tn1 ¼ l1n1; (2.23.1)

and

Tn2 ¼ l2n2: (2.23.2)

Thus,

n2 �Tn1 ¼ l1n2 � n1; (2.23.3)
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and

n1 �Tn2 ¼ l2n1 � n2: (2.23.4)

For a symmetric tensor, T ¼ TT, so that

n1 �Tn2 ¼ n2 �TTn1 ¼ n2 �Tn1: (2.23.5)

Thus, from Eqs. (2.23.3) and (2.23.4), we have

ðl1 � l2Þðn1 � n2Þ ¼ 0: (2.23.6)

It follows that if l1 is not equal to l2, then n1 � n2 ¼ 0, that is, n1 and n2 are perpendicular to each other.

We have thus proved that if the eigenvalues of a symmetric tensor are all distinct, then the three principal
directions are mutually perpendicular.

Next, let us suppose that n1 and n2 are two eigenvectors corresponding to the same eigenvalue l. Then, by
definition, Tn1 ¼ ln1 and Tn2 ¼ ln2 so that for any a and b,

Tðan1 þ bn2Þ ¼ aTn1 þ bTn2 ¼ aln1 þ bln2 ¼ lðan1 þ bn2Þ:
That is, ðan1 þ bn2Þ is also an eigenvector with the same eigenvalue l. In other words, if there are

two distinct eigenvectors with the same eigenvalue, then there are infinitely many eigenvectors (which form

a plane) with the same eigenvalue. This situation arises when the characteristic equation has a repeated root

(see Example 2.22.3). Suppose the characteristic equation has roots l1 ¼ l2 ¼ l and l3 (l3 distinct from l).
Let n3 be the eigenvector corresponding to l3; then n3 is perpendicular to any eigenvector of l. Therefore
there exist infinitely many sets of three mutually perpendicular principal directions, each containing n3 and

any two mutually perpendicular eigenvectors of the repeated root l.
In the case of a triple root, l1 ¼ l2 ¼ l3 ¼ l, any vector is an eigenvector (see Example 2.22.1) so that

there exist infinitely many sets of three mutually perpendicular principal directions.

From these discussions, we conclude that for every real symmetric tensor there exists at least one triad of

principal directions that are mutually perpendicular.

2.24 MATRIX OF A TENSOR WITH RESPECT TO PRINCIPAL DIRECTIONS
We have shown that for a real symmetric tensor, there always exist three principal directions that are mutually

perpendicular. Let n1, n2 and n3 be unit vectors in these directions. Then, using n1, n2 and n3 as base vectors,

the components of the tensor are

T11 ¼ n1 �Tn1 ¼ n1 � l1n1 ¼ l1n1 � n1 ¼ l1;
T22 ¼ n2 �Tn2 ¼ n2 � l2n2 ¼ l2n2 � n2 ¼ l2;
T33 ¼ n3 �Tn3 ¼ n3 � l3n3 ¼ l3n3 � n3 ¼ l3;
T12 ¼ n1 �Tn2 ¼ n1 � l2n2 ¼ l2n1 � n2 ¼ 0;
T13 ¼ n1 �Tn3 ¼ n1 � l3n3 ¼ l3n1 � n3 ¼ 0;
T23 ¼ n2 �Tn3 ¼ n2 � l3n3 ¼ l3n2 � n3 ¼ 0;

(2.24.1)

that is,

½T� ¼
l1 0 0

0 l2 0

0 0 l3

2
4

3
5
ni

: (2.24.2)

Thus, the matrix is diagonal and the diagonal elements are the eigenvalues of T.

We now show that the principal values of a tensor T include the maximum and the minimum values that

the diagonal elements of any matrix of T can have. First, for any unit vector e 01 ¼ an1 þ bn2 þ gn3,
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T 011 ¼ e 01 �Te 01 ¼ ½ a b g �
l1 0 0

0 l2 0

0 0 l3

2
4

3
5 a

b
g

2
4
3
5; (2.24.3)

that is,

T 011 ¼ l1a2 þ l2b
2 þ l3g2: (2.24.4)

Without loss of generality, let

l1 � l2 � l3: (2.24.5)

Then, noting that a2 þ b2 þ g2 ¼ 1, we have

l1 ¼ l1ða2 þ b2 þ g2Þ � l1a2 þ l2b
2 þ l3g2; (2.24.6)

that is,

l1 � T 011: (2.24.7)

We also have

l1a2 þ l2b2 þ l3g2 � l3ða2 þ b2 þ g2Þ ¼ l3; (2.24.8)

that is,

T 011 � l3: (2.24.9)

Thus, the maximum value of the principal values of T is the maximum value of the diagonal elements of

all matrices of T, and the minimum value of the principal values of T is the minimum value of the diagonal

elements of all matrices of T. It is important to remember that for a given T, there are infinitely many matri-

ces and therefore, infinitely many diagonal elements, of which the maximum principal value is the maximum

of all of them and the minimum principal value is the minimum of all of them.

2.25 PRINCIPAL SCALAR INVARIANTS OF A TENSOR
The characteristic equation of a tensor T, jTij � ldijj ¼ 0 can be written as:

l3 � I1l
2 þ I2l� I3 ¼ 0; (2.25.1)

where

I1 ¼ T11 þ T22 þ T33 ¼ Tii ¼ trT; (2.25.2)

I2 ¼
���� T11 T12
T21 T22

����þ
����T22 T23
T32 T33

����þ
����T11 T13
T31 T33

���� ¼ 1

2
TiiTjj � TijTji
	 
 ¼ 1

2
ðtrTÞ2 � trðT2Þ
h i

; (2.25.3)

I3 ¼
�����
T11 T12 T13
T21 T22 T23
T31 T32 T33

����� ¼ det ½T�: (2.25.4)

Since by definition, the eigenvalues of T do not depend on the choices of the base vectors, therefore the

coefficients of Eq. (2.25.1) will not depend on any particular choices of basis. They are called the principal
scalar invariants of T.
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We note that, in terms of the eigenvalues of T, which are the roots of Eq. (2.25.1), the scalar invariants

take the simple form

I1 ¼ l1 þ l2 þ l3;
I2 ¼ l1l2 þ l2l3 þ l3l1;
I3 ¼ l1l2l3:

(2.25.5)

Example 2.25.1
For the tensor of Example 2.22.4, first find the principal scalar invariants and then evaluate the eigenvalues using

Eq. (2.25.1).

Solution
The matrix of T is

½T� ¼
2 0 0
0 3 4
0 4 �3

2
4

3
5:

Thus,

I1 ¼ 2þ 3� 3 ¼ 2;

I2 ¼
�����
2 0

0 3

�����þ
�����
3 4

4 �3

�����þ
�����
2 0

0 �3

����� ¼ �25;
I3 ¼ jTj ¼ �50:

These values give the characteristic equation as

l3 � 2l2 � 25lþ 50 ¼ 0;

or

ðl� 2Þðl� 5Þðlþ 5Þ ¼ 0:

Thus the eigenvalues are l ¼ 2, l ¼ 5 and l ¼ �5, as previously determined.

PROBLEMS FOR PART B
2.19 A transformation T operates on any vector a to give Ta ¼ a/jaj, where jaj is the magnitude of a. Show

that T is not a linear transformation.

2.20 (a) A tensor T transforms every vector a into a vector Ta ¼ m � a, where m is a specified vector. Show

that T is a linear transformation. (b) If m ¼ e1 þ e2, find the matrix of the tensor T.

2.21 A tensor T transforms the base vectors e1 and e2 such that Te1 ¼ e1 þ e2, Te2 ¼ e1 � e2.

If a ¼ 2e1 þ 3e2 and b ¼ 3e1 þ 2e2, use the linear property of T to find (a) Ta, (b) Tb, and (c) T(aþb).
2.22 Obtain the matrix for the tensor T, that transforms the base vectors as follows: Te1 ¼ 2e1 þ e3;

Te2 ¼ e2 þ 3e3; Te3 ¼ �e1 þ 3e2.

2.23 Find the matrix of the tensor T that transforms any vector a into a vector b ¼ m(a � n) where

m ¼
ffiffiffi
2

p

2
ðe1 þ e2Þ and n ¼

ffiffiffi
2

p

2
ð�e1 þ e3Þ.
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2.24 (a) A tensor T transforms every vector into its mirror image with respect to the plane whose normal is

e2. Find the matrix of T. (b) Do part (a) if the plane has a normal in the e3 direction.

2.25 (a) Let R correspond to a right-hand rotation of angle y about the x1-axis. Find the matrix of R. (b) Do

part (a) if the rotation is about the x2-axis. The coordinates are right-handed.

2.26 Consider a plane of reflection that passes through the origin. Let n be a unit normal vector to the plane

and let r be the position vector for a point in space. (a) Show that the reflected vector for r is given by

Tr ¼ r� 2ðr � nÞn, where T is the transformation that corresponds to the reflection. (b) Let

n ¼ ðe1 þ e2 þ e3Þ=
ffiffiffi
3

p
; find the matrix of T. (c) Use this linear transformation to find the mirror image

of the vector a ¼ e1 þ 2e2 þ 3e3.

2.27 Knowing that the reflected vector for r is given by Tr ¼ r� 2ðr � nÞn (see the previous problem),

where T is the transformation that corresponds to the reflection and n is the normal to the mirror, show

that in dyadic notation the reflection tensor is given by T ¼ I� 2nn and find the matrix of T if the nor-

mal of the mirror is given by n ¼ ðe1 þ e2 þ e3Þ=
ffiffiffi
3

p
.

2.28 A rotation tensor R is defined by the relation Re1 ¼ e2; Re2 ¼ e3; Re3 ¼ e1. (a) Find the matrix of R

and verify that RTR ¼ I and det R ¼ 1 and (b) find a unit vector in the direction of the axis of rotation

that could have been used to effect this particular rotation.

2.29 A rigid body undergoes a right-hand rotation of angle y about an axis that is in the direction of

the unit vector m. Let the origin of the coordinates be on the axis of rotation and r be the position

vector for a typical point in the body. (a) Show that the rotated vector of r is given

by: Rr ¼ ð1� cosyÞðm � rÞmþ cosyrþ sinyðm� rÞ, where R is the rotation tensor. (b) Let

m ¼ ðe1 þ e2 þ e3Þ=
ffiffiffi
3

p
, find the matrix for R.

2.30 For the rotation about an arbitrary axis m by an angle y, (a) show that the rotation tensor is given

by R ¼ ð1� cosyÞðmmÞ þ cosyIþ sinyE, where mm denotes that dyadic product of m and m,

and E is the antisymmetric tensor whose dual vector (or axial vector) is m, (b) find RA, the antisym-

metric part of R and (c) show that the dual vector for RA is given by (sin y)m. Hint:
Rr ¼ ð1� cosyÞðm � rÞmþ cosyrþ sinyðm� rÞ (see previous problem).

2.31 (a) Given a mirror whose normal is in the direction of e2, find the matrix of the tensor S, which first trans-

forms every vector into its mirror image and then transforms them by a 45� right-hand rotation about the

e1-axis. (b) Find the matrix of the tensor T, which first transforms every vector by a 45� right-hand rotation

about the e1-axis and then transforms them by a reflection with respect to a mirror (with normal e2).

(c) Consider the vector a ¼ e1 þ 2e2 þ 3e3; find the transformed vector by using the transformation S.

(d) For the same vector a ¼ e1 þ 2e2 þ 3e3, find the transformed vector by using the transformation T.

2.32 Let R correspond to a right-hand rotation of angle y about the x3-axis; (a) find the matrix of R2.

(b) Show that R2 corresponds to a rotation of angle 2y about the same axis. (c) Find the matrix of

Rn for any integer n.

2.33 Rigid body rotations that are small can be described by an orthogonal transformation R ¼ Iþ eR�,
where e ! 0 as the rotation angle approaches zero. Consider two successive small rotations, R1 and

R2; show that the final result does not depend on the order of rotations.

2.34 Let T and S be any two tensors. Show that (a) TT is a tensor, (b) TT þ ST ¼ ðTþ SÞT, and

(c) ðTSÞT ¼ STTT.

2.35 For arbitrary tensors T and S, without relying on the component form, prove that (a) ðT�1ÞT ¼ ðTTÞ�1
and (b) ðTSÞ�1 ¼ S�1T�1.
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2.36 Let feig and fe 0i g be two rectangular Cartesian base vectors. (a) Show that if e 0i ¼ Qmiem, then

ei ¼ Qime
0
m. (b) Verify QmiQmj ¼ dij ¼ QimQjm.

2.37 The basis fe 0i g is obtained by a 30� counterclockwise rotation of the feig basis about the e3 axis.

(a) Find the transformation matrix ½Q� relating the two sets of basis. (b) By using the vector transforma-

tion law, find the components of a ¼ ffiffiffi
3

p
e1 þ e2 in the primed basis, i.e., find a 0i and (c) do part (b)

geometrically.

2.38 Do the previous problem with the fe 0i g basis obtained by a 30� clockwise rotation of the feig basis

about the e3 axis.

2.39 The matrix of a tensor T with respect to the basis feig is

½T� ¼
1 5 �5
5 0 0

�5 0 1

2
4

3
5:

Find T 011; T
0
12 and T 031 with respect to a right-handed basis fe 0i g where e 01 is in the direction of �e2 þ 2e3

and e 02 is in the direction of e1.

2.40 (a) For the tensor of the previous problem, find ½T 0ij�, i.e., ½T�e 0i where fe
0
i g is obtained by a 90� right-

hand rotation about the e3 axis and (b) obtain T 0ii and the determinant jT 0ijj and compare them with Tii
and jTijj.

2.41 The dot product of two vectors a ¼ aiei and b ¼ biei is equal to aibi. Show that the dot product is a sca-

lar invariant with respect to orthogonal transformations of coordinates.

2.42 If Tij are the components of a tensor, (a) show that TijTij is a scalar invariant with respect to

orthogonal transformations of coordinates, (b) evaluate TijTij with respect to the basis feig for

½T� ¼
1 0 0

1 2 5

1 2 3

2
4

3
5
ei

, (c) find ½T� 0 if e 0i ¼ Qei, where Q½ � ¼
0 0 1

1 0 0

0 1 0

2
4

3
5
ei

, and (d) verify for the above that

T 0ijT
0
ij ¼ TijTij.

2.43 Let ½T� and [T]0 be two matrices of the same tensor T. Show that det½T� ¼ det½T� 0.
2.44 (a) If the components of a third-order tensor are Rijk, show that Riik are components of a vector. (b) If

the components of a fourth-order tensor are Rijkl, show that Riikl are components of a second-order ten-

sor. (c) What are components of Riik... if Rijk... are components of a tensor of nth order?

2.45 The components of an arbitrary vector a and an arbitrary second tensor T are related by a triply sub-

scripted quantity Rijk in the manner ai ¼ RijkTjk for any rectangular Cartesian basis {ei}. Prove that

Rijk are the components of a third-order tensor.

2.46 For any vector a and any tensor T, show that (a) a �TAa ¼ 0 and (b) a �Ta ¼ a �TSa, where TA and TS

are antisymmetric and symmetric part of T, respectively.

2.47 Any tensor can be decomposed into a symmetric part and an antisymmetric part, that is, T ¼ TS þ TA.

Prove that the decomposition is unique. (Hint: Assume that it is not true and show contradiction.)

2.48 Given that a tensor T has the matrix ½T� ¼
1 2 3

4 5 6

7 8 9

2
4

3
5, (a) find the symmetric part and the antisym-

metric part of T and (b) find the dual vector (or axial vector) of the antisymmetric part of T.
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2.49 Prove that the only possible real eigenvalues of an orthogonal tensor Q are l ¼ 
1. Explain the direc-

tion of the eigenvectors corresponding to them for a proper orthogonal (rotation) tensor and for an

improper orthogonal (reflection) tensor.

2.50 Given the improper orthogonal tensor ½Q� ¼ 1

3

1 �2 �2
�2 1 �2
�2 �2 1

" #
. (a) Verify that det ½Q� ¼ �1.

(b) Verify that the eigenvalues are l ¼ 1 and �1. (c) Find the normal to the plane of reflection (i.e.,

eigenvectors corresponding to l ¼ �1) and (d) find the eigenvectors corresponding to l ¼ 1 (vectors

parallel to the plane of reflection).

2.51 Given that tensors R and S have the same eigenvector n and corresponding eigenvalues r1 and s1,
respectively, find an eigenvalue and the corresponding eigenvector for T ¼ RS.

2.52 Show that if n is a real eigenvector of an antisymmetric tensor T, then the corresponding eigenvalue

vanishes.

2.53 (a) Show that a is an eigenvector for the dyadic product ab of vectors a and b with eigenvalue a � b,
(b) find the first principal scalar invariant of the dyadic product ab and (c) show that the second and

the third principal scalar invariant of the dyadic product ab vanish, and that zero is a double eigenvalue

of ab.

2.54 For any rotation tensor, a set of basis fe 0i g may be chosen with e 03 along the axis of rotation so that

Re 01 ¼ cosye 01 þ sinye 02; Re
0
2 ¼ �sinye 01 þ cosye 02; Re

0
3 ¼ e 03, where y is the angle of right-hand rota-

tion. (a) Find the antisymmetric part of R with respect to the basis fe 0i g, i.e., find ½RA�e 0
i
. (b) Show that

the dual vector of RA is given by tA ¼ sinye 03 and (c) show that the first scalar invariant of R is given

by 1þ 2 cosy . That is, for any given rotation tensor R, its axis of rotation and the angle of rotation can

be obtained from the dual vector of RA and the first scalar invariant of R.

2.55 The rotation of a rigid body is described by Re1 ¼ e2; Re2 ¼ e3; Re3 ¼ e1. Find the axis of rotation

and the angle of rotation. Use the result of the previous problem.

2.56 Given the tensor ½Q� ¼
�1 0 0
0 �1 0
0 0 1

" #
. (a) Show that the given tensor is a rotation tensor. (b) Verify

that the eigenvalues are l ¼ 1 and �1. (c) Find the direction for the axis of rotation (i.e., eigenvectors

corresponding to l¼ 1). (d) Find the eigenvectors corresponding to l¼�1 and (e) obtain the angle of rotation
using the formula I1 ¼ 1þ 2 cos y (see Prob. 2.54), where I1 is the first scalar invariant of the rotation

tensor.

2.57 Let F be an arbitrary tensor. (a) Show that FTF and FFT are both symmetric tensors. (b) If

F ¼ QU ¼ VQ, where Q is orthogonal, show that U2 ¼ FTF and V2 ¼ FFT. (c) If l and n are eigen-

value and the corresponding eigenvector for U, find the eigenvalue and eigenvector for V.

2.58 Verify that the second principal scalar invariant of a tensor T can be written: I2 ¼ TiiTjj
2
� TijTji

2
.

2.59 A tensor T has a matrix [T] given below. (a) Write the characteristic equation and find the principal

values and their corresponding principal directions. (b) Find the principal scalar invariants. (c) If

n1; n2; n3 are the principal directions, write ½T�ni . (d) Could the following matrix [S] represent the same

tensor T with respect to some basis? ½T� ¼
5 4 0
4 �1 0
0 0 3

" #
, ½S� ¼

7 2 0
2 1 0
0 0 �1

" #
:
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2.60 Do the previous problem for the following matrix: ½T� ¼
3 0 0

0 0 4

0 4 0

2
4

3
5.

2.61 A tensor T has a matrix given below. Find the principal values and three mutually perpendicular prin-

cipal directions.

½T� ¼
1 1 0

1 1 0

0 0 2

2
4

3
5:

PART C: TENSOR CALCULUS

2.26 TENSOR-VALUED FUNCTIONS OF A SCALAR
Let T ¼ T(t) be a tensor-valued function of a scalar t (such as time). The derivative of T with respect to t is
defined to be a second-order tensor given by:

dT

dt
¼ lim

Dt!0

Tðtþ DtÞ � TðtÞ
Dt

: (2.26.1)

The following identities can be easily established:

d

dt
ðTþ SÞ ¼ dT

dt
þ dS

dt
; (2.26.2)

d

dt
ðaðtÞTÞ ¼ da

dt
Tþ a

dT

dt
; (2.26.3)

d

dt
ðTSÞ ¼ dT

dt
Sþ T

dS

dt
; (2.26.4)

d

dt
ðTaÞ ¼ dT

dt
aþ T

da

dt
; (2.26.5)

d

dt
ðTTÞ ¼ dT

dt

� �T

: (2.26.6)

We shall prove here only Eq. (2.26.5). The other identities can be proven in a similar way. Using the

definition given in Eq. (2.26.1), we have

d

dt
ðTaÞ ¼ limDt!0

Tðtþ DtÞaðtþ DtÞ � TðtÞaðtÞ
Dt

¼ limDt!0

Tðtþ DtÞaðtþ DtÞ � TðtÞaðtÞ � TðtÞaðtþ DtÞ þ TðtÞaðtþ DtÞ
Dt

¼ limDt!0

Tðtþ DtÞaðtþ DtÞ � TðtÞaðtþ DtÞ þ TðtÞaðtþ DtÞ � TðtÞaðtÞ
Dt

¼ limDt!0

Tðtþ DtÞ � TðtÞ
Dt

aðtþ DtÞ þ lim
Dt!0

TðtÞ aðtþ DtÞ � aðtÞ
Dt

:

Thus,
dðTaÞ
dt

¼ dT

dt
aþ T

da

dt
.
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Example 2.26.1
Show that in Cartesian coordinates, the components of d T=dt , i.e., d T=dtð Þij are given by the derivatives of the com-

ponents dTij=dt .

Solution
From

Tij ¼ ei � Tej ;
we have

dTij
dt
¼ dei

dt
� Tej þ ei � d T

dt
ej þ ei � Tdej

dt
:

Since the base vectors are fixed, their derivatives are zero; therefore,

dTij
dt
¼ ei � d T

dt
ej ¼ d T

dt

� �
ij

:

Example 2.26.2
Show that for an orthogonal tensor Q(t),

dQ

dt

� �
QT is an antisymmetric tensor.

Solution
Since QQT ¼ I, we have

d QQT

 �
dt

¼ Q
dQT

dt
þ dQ

dt
QT ¼ dI

dt
¼ 0:

Since [see Eq. (2.26.6)]
dQT

dt
¼ dQ

dt

� �T
, therefore, the above equation leads to

Q
dQ

dt

� �T
¼ � dQ

dt
QT:

Now Q
dQ

dt

� �T
¼ dQ

dt
QT

� �T
; therefore,

dQ

dt
QT

� �T
¼ � dQ

dt
QT;

that is,
dQ

dt

� �
QT is an antisymmetric tensor.

Example 2.26.3
A time-dependent rigid body rotation about a fixed point can be represented by a rotation tensor R(t), so that a posi-

tion vector ro is transformed through the rotation into rðtÞ ¼ RðtÞro. Derive the equation

dr

dt
¼ v� r; (2.26.7)

where v is the dual vector of the antisymmetric tensor
dR

dt
RT.
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Solution
From rðtÞ ¼ RðtÞro, we obtain

dr

dt
¼ dR

dt
ro ¼ dR

dt
R�1r ¼ dR

dt
RTr: (i)

But
dR

dt
RT is an antisymmetric tensor (see the previous example, Example 2.26.2) so that

dr

dt
¼ v� r; (ii)

where v is the dual vector of
dR

dt
RT: From the well-known equation in rigid body kinematics, we can identify v as the

angular velocity of the rigid body.

2.27 SCALAR FIELD AND GRADIENT OF A SCALAR FUNCTION
Let fðrÞ be a scalar-valued function of the position vector r. That is, for each position r, fðrÞ gives the value
of a scalar, such as density, temperature, or electric potential at the point. In other words, fðrÞ describes a
scalar field. Associated with a scalar field is a vector field, called the gradient of f. The gradient of f at a

point is defined to be a vector, denoted by grad f or by rf such that its dot product with dr gives the dif-

ference of the values of the scalar at r þ dr and r, i.e.,

df ¼ fðrþ drÞ � fðrÞ ¼ rf � dr: (2.27.1)

If dr denote the magnitude of dr, and e the unit vector in the direction of dr (Note: e ¼ dr/dr). Then the

above equation gives, for dr in the e direction,

df
dr
¼ rf � e: (2.27.2)

That is, the component of rf in the direction of e gives the rate of change of f in that direction (directional

derivative). In particular, the components of rf in the coordinate directions ei are given by

@f
@xi

¼ df
dr

� �
ei�dir

¼ rf � ei: (2.27.3)

Therefore, the Cartesian components of rf are @f=@xi, that is,

rf ¼ @f
@x1

e1 þ @f
@x2

e2 þ @f
@x3

e3 ¼ @f
@xi

ei: (2.27.4)

The gradient vector has a simple geometrical interpretation. For example, if f rð Þ describes a temper-

ature field, then, on a surface of constant temperature (i.e., isothermal surface), f ¼ a constant. Let r be a

point on an isothermal surface. Then, for any and all neighboring point rþdr on the same isothermal sur-

face, df ¼ 0. Thus,rf � dr ¼ 0. In other words, rf is a vector, perpendicular to the surface at the point

r. On the other hand, the dot product rf � dr is a maximum when dr is in the same direction as rf. In
other words, rf is greatest if dr is normal to the surface of constant f and in this case, df ¼ jrfjdr, or

df
dr

� �
max

¼ jrfj; (2.27.5)

for dr in the direction normal to the surface of constant temperature.
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Example 2.27.1
If f ¼ x1x2 þ 2x3, find a unit vector n normal to the surface of a constant f passing through the point (2,1,0).

Solution
By Eq. (2.27.4),

rf ¼ @f
@x1

e1 þ @f
@x2

e2 þ @f
@x3

e3 ¼ x2e1 þ x1e2 þ 2e3:

At the point (2,1,0), rf ¼ e1 þ 2e2 þ 2e3. Thus,

n ¼ 1

3
e1 þ 2e2 þ 2e3ð Þ:

Example 2.27.2
If q denotes the heat flux vector (rate of heat transfer/area), the Fourier heat conduction law states that

q ¼ �krY; (i)

where Y is the temperature field and k is thermal conductivity. If Y ¼ 2 x21 þ x22
	 


, find rY at the

location A (1,0) and B 1=
ffiffiffi
2

p
; 1=

ffiffiffi
2

p
 �
. Sketch curves of constant Y (isotherms) and indicate the vectors q at the

two points.

Solution
By Eq. (2.27.4),

rY ¼ @Y
@x1

e1 þ @Y
@x2

e2 þ @Y
@x3

e3 ¼ 4x1e1 þ 4x2e2:

Thus,

q ¼ �4kðx1e1 þ x2e2Þ:

θ=
2

θ=
1

B

A
x1

x2

qA

qB

FIGURE 2.27-1
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At point A,

qA ¼ �4ke1;
and at point B,

qB ¼ �2
ffiffiffi
2

p
k e1 þ e2ð Þ:

Clearly, the isotherms, Figure 2.27-1, are circles and the heat flux is an inward radial vector (consistent with heat

flowing from higher to lower temperatures).

Example 2.27.3
A more general heat conduction law can be given in the following form:

q ¼ �KrY;

where K is a tensor known as thermal conductivity tensor. (a) What tensor K corresponds to the Fourier heat conduc-

tion law mentioned in the previous example? (b) Find q if Y ¼ 2x1 þ 3x2, and

½K� ¼
2 �1 0
�1 2 0
0 0 3

2
4

3
5:

Solution
(a) Clearly, K ¼ kI, so that q ¼ �kIrY ¼ �krY.

(b) rY ¼ 2e1 þ 3e2 and

½q� ¼ �
2 �1 0
�1 2 0
0 0 3

2
4

3
5 2

3
0

2
4
3
5 ¼ �1

�4
0

2
4

3
5

that is,

q ¼ �e1 � 4e2;

which is clearly not normal to the isotherm (see Figure 2.27-2).

θ=4θ=2

q

x1

x
2

FIGURE 2.27-2
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2.28 VECTOR FIELD AND GRADIENT OF A VECTOR FUNCTION
Let v(r) be a vector-valued function of position describing, for example, a displacement or a velocity field.

Associated with v(r), is a tensor field, called the gradient of v, which is of considerable importance. The gra-

dient of v (denoted by rv or grad v) is defined to be the second-order tensor, which, when operating on dr,
gives the difference of v at r þ dr and r. That is,

dv ¼ vðrþ drÞ � vðrÞ ¼ ðrvÞdr: (2.28.1)

Again, let dr denote jdrj and e denote dr/dr; we have

dv

dr

� �
in e�direction

¼ ðrvÞe: (2.28.2)

Therefore, the second-order tensor rv transforms a unit vector e into the vector describing the rate of

change of v in that direction. In Cartesian coordinates,

dv

dr

� �
in ej�direction

¼ @v

@xj
¼ ðrvÞej; (2.28.3)

therefore, the components of rv in indicial notation are given by

ðrvÞij ¼ ei � ðrvÞej ¼ ei � @v
@xj

¼ @ðv � eiÞ
@xj

¼ @vi
@xj

; (2.28.4)

and in matrix form

½rv� ¼

@v1
@x1

@v1
@x2

@v1
@x3

@v2
@x1

@v2
@x2

@v2
@x3

@v3
@x1

@v3
@x2

@v3
@x3

2
666666664

3
777777775
: (2.28.5)

Geometrical interpretation of rv will be given later in connection with the deformation of a continuum

(Chapter 3).

2.29 DIVERGENCE OF A VECTOR FIELD AND DIVERGENCE OF A TENSOR FIELD
Let v(r) be a vector field. The divergence of v(r) is defined to be a scalar field given by the trace of the gra-

dient of v. That is,

div v � trðrvÞ: (2.29.1)

In Cartesian coordinates, this gives

div v ¼ @v1
@x1

þ @v2
@x2

þ @v3
@x3

¼ @vi
@xi

: (2.29.2)

50 CHAPTER 2 Tensors



Let T(r) be a tensor field. The divergence of T(r) is defined to be a vector field, denoted by div T, such

that for any vector a

div Tð Þ � a � div TTa
	 
� tr TTra

	 

: (2.29.3)

To find the Cartesian components of the vector div T, let b ¼ div T, then (Note: rei ¼ 0 for Cartesian

coordinates), from (2.29.3), we have

bi ¼ b � ei ¼ div TTei
	 
� tr TTrei

	 
 ¼ div Tijej
	 
� 0 ¼ @Tij=@xj: (2.29.4)

In other words,

div T ¼ @Tij=@xj
	 


ei: (2.29.5)*

Example 2.29.1
Let a ¼ aðrÞ and a ¼ aðrÞ. Show that divðaaÞ ¼ adiv aþ rvð Þ � a.
Solution
Let b ¼ aa. Then bi ¼ aai, so

div b ¼ @bi
@xi

¼ a
@ai
@xi
þ @a
@xi

ai :

That is,

div ðaaÞ ¼ a div aþ ðraÞ � a: (2.29.6)

Example 2.29.2
Given a ¼ aðrÞ and T ¼ TðrÞ, show that

div ðaTÞ ¼ TðraÞ þ a div T: (2.29.7)

Solution
We have, from (2.29.5),

div ðaTÞ ¼ @ aTij
	 

@xj

ei ¼ @a
@xj

Tijei þ a
@Tij
@xj

ei ¼ TðraÞ þ a div T:

*We note that the Cartesian components of the third-order tensor M � rT ¼ r Tijeiej
	 


are @Tij=@xk: In terms of M ¼ Mijkeiejek; div
T is a vector given by Mijjei. More on the components of rT will be given in Chapter 8.
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2.30 CURL OF A VECTOR FIELD
Let v(r) be a vector field. The curl of v(r) is defined to be a vector field given by twice the dual vector of the

antisymmetric part of rv. That is

curl v � 2tA; (2.30.1)

where tA is the dual vector of ðrvÞA:
In rectangular Cartesian coordinates,

½rv�A ¼

0
1

2

@v1
@x2

� @v2
@x1

0
@

1
A 1

2

@v1
@x3

� @v3
@x1

0
@

1
A

� 1

2

@v1
@x2

� @v2
@x1

0
@

1
A 0

1

2

@v2
@x3

� @v3
@x2

0
@

1
A

� 1

2

@v1
@x3

� @v3
@x1

0
@

1
A � 1

2

@v2
@x3

� @v3
@x2

0
@

1
A 0

2
666666666666664

3
777777777777775

: (2.30.2)

Thus, the curl of v(r) is given by [see Eq. (2.21.3)]:

curl v ¼ 2tA ¼ @v3
@x2

� @v2
@x3

� �
e1 þ @v1

@x3
� @v3
@x1

� �
e2 þ @v2

@x1
� @v1
@x2

� �
e3: (2.30.3)

It can be easily verified that in indicial notation

curl v ¼ �eijk @vj
@xk

ei: (2.30.4)

2.31 LAPLACIAN OF A SCALAR FIELD
Let f(r) be a scalar-valued function of the position vector r. The definition of the Laplacian of a scalar field is

given by

r2f ¼ div ðrf Þ ¼ trðrðrf ÞÞ: (2.31.1)

In rectangular coordinates the Laplacian becomes

r2f ¼ trðrðrf ÞÞ ¼ @2f

@xi@xi
¼ @2f

@x21
þ @2f

@x22
þ @2f

@x23
: (2.31.2)

2.32 LAPLACIAN OF A VECTOR FIELD
Let v(r) be a vector field. The Laplacian of v is defined by the following:

r2v ¼ r ðdiv vÞ � curl ðcurl vÞ: (2.32.1)
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In rectangular coordinates,

rðdiv vÞ ¼ @

@xi

@vk
@xk

� �
ei; curl v ¼ �eajk @vj

@xk

� �
ea; (2.32.2)

and

curl ðcurl vÞ ¼ �eiab @

@xb
�eajk @vj

@xk

� �
ei ¼ eiabeajk

@

@xb

@vj
@xk

� �
ei: (2.32.3)

Now eiabeajk ¼ �eaibeajk ¼ � dijdbk � dikdbj
	 


[see Prob. 2.12], therefore,

curl ðcurl vÞ ¼ � dijdbk � dikdbj
	 
 @

@xb

@vj
@xk

� �
ei ¼ � @

@xb

@vi
@xb

� �
þ @

@xb

@vb
@xi

� �� �
ei: (2.32.4)

Thus,

r2v ¼ r ðdiv vÞ � curl ðcurl vÞ ¼ @

@xi

@vk
@xk

� �
ei � � @

@xb

@vi
@xb

� �
þ @

@xi

@vb
@xb

� �� �
ei: (2.32.5)

That is, in rectangular coordinates,

r2v ¼ @2vi
@xb@xb

ei ¼ r2viei: (2.32.6)

In long form,

r2v ¼ @2v1
@x21

þ @2v1
@x22

þ @2v1
@x23

� �
e1 þ @2v2

@x21
þ @2v2

@x22
þ @2v2

@x23

� �
e2 þ @2v3

@x21
þ @2v3

@x22
þ @2v3

@x23

� �
e3: (2.32.7)

Expressions for the polar, cylindrical, and spherical coordinate systems are given in Part D.

PROBLEMS FOR PART C
2.62 Prove the identity

d

dt
ðTþ SÞ ¼ dT

dt
þ dS

dt
using the definition of derivative of a tensor.

2.63 Prove the identity
d

dt
ðTSÞ ¼ T

dS

dt
þ dT

dt
S using the definition of derivative of a tensor.

2.64 Prove that
dTT

dt
¼ dT

dt

� �T

by differentiating the definition a �Tb ¼ b �TTa, where a and b are arbitrary

constant vectors.

2.65 Consider the scalar field f ¼ x21 þ 3x1x2 þ 2x3. (a) Find the unit vector normal to the surface of con-

stant f at the origin and at (1,0,1). (b) What is the maximum value of the directional derivative of f
at the origin? at (1,0,1)? (c) Evaluate df=dr at the origin if dr ¼ dsðe1 þ e3Þ.

2.66 Consider the ellipsoidal surface defined by the equation x2=a2 þ y2=b2 þ z2=b2 ¼ 1. Find the unit vec-

tor normal to the surface at a given point (x, y, z).
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2.67 Consider the temperature field given by Y ¼ 3x1x2. (a) If q ¼ �krY, find the heat flux at the point

A(1,1,1). (b) If q ¼ �KrY, find the heat flux at the same point, where

K½ � ¼
k 0 0

0 2k 0

0 0 3k

2
4

3
5:

2.68 Let fðx1; x2; x3Þ and cðx1; x2; x3Þ be scalar fields, and let v ðx1; x2; x3Þ and w ðx1; x2; x3Þ be vector fields.
By writing the subscripted components form, verify the following identities:

(a) rðfþ cÞ ¼ rfþrc, sample solution:

r fþ cð Þ½ �i ¼
@ fþ cð Þ

@xi
¼ @f

@xi
þ @c
@xi

¼ rfþrc;

(b) divðvþ wÞ ¼ div vþ div w, (c) div fvð Þ ¼ rfð Þvþ f div vÞð and (d) divðcurl vÞ ¼ 0.

2.69 Consider the vector field v ¼ x21e1 þ x23e2 þ x22e3. For the point (1,1,0), find (a) rv, (b) (rv)v, (c) div v

and curl v, and (d) the differential dv for dr ¼ dsðe1 þ e2 þ e3Þ=
ffiffiffi
3

p
.

PART D: CURVILINEAR COORDINATES
In Part C, the Cartesian components for various vector and tensor operations such as the gradient, the diver-

gence, and the Laplacian of a scalar field and tensor fields were derived. In this part, components in polar,

cylindrical, and spherical coordinates for these same operations will be derived.

2.33 POLAR COORDINATES
Consider polar coordinates (r,y), (see Figure 2.33-1) such that

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q
and y ¼ tan�1

x2
x1

: (2.33.1)

The unit base vectors er and ey can be expressed in terms of the Cartesian base vectors e1 and e2 as

er ¼ cosye1 þ sinye2; ey ¼ �sinye1 þ cosye2: (2.33.2)

r

x1

e2

er

e1

(x1,x2)

x2

θ

eθ
P

FIGURE 2.33-1
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These unit base vectors vary in direction as y changes. In fact, from Eqs. (2.33.2), we have

der ¼ �sinye1 þ cosye2ð Þdy ¼ dyey ; dey ¼ �cosye1 � sinye2ð Þdy ¼ �dyer: (2.33.3)

The geometrical representation of der and dey are shown in Figure 2.33-2, where one notes that erðPÞ has
rotated an infinitesimal angle dy to become erðQÞ ¼ erðPÞ þ der where der is perpendicular to erðPÞ with a

magnitude jderj ¼ ð1Þdy ¼ dy : Similarly, dey is perpendicular to ey (P) but pointing in the negative er direc-

tion, and its magnitude is also dy.
Now, from the position vector

r ¼ rer; (2.33.4)

we have

dr ¼ drer þ rder: (2.33.5)

Using Eq. (2.33.3), we get

dr ¼ drer þ rdyey : (2.33.6)

The geometrical representation of this equation is also easily seen if one notes that dr is the vector PQ in the

preceding figure.

The components of rf, rv, div v, div T, r2f and r2v in polar coordinates will now be obtained.

(i) Components of rf:
Let f(r,y) be a scalar field. By definition of the gradient of f, we have

df ¼ rf � dr ¼ arer þ ay eyð Þ � drer þ rdyeyð Þ ¼ ardr þ ay rdy ; (2.33.7)

where ar and ay are components of rf in the er and ey direction, respectively. But from calculus,

df ¼ @f

@r
dr þ @f

@y
dy : (2.33.8)

Since Eqs. (2.33.7) and (2.33.8) must yield the same result for all increments dr, dy, we have

ar ¼ @f

@r
; ay ¼ 1

r

@f

@y
; (2.33.9)

r

0

Q

P

x2

x1

e2

e1

er

de
r

er

θ

eθ

er +der

er +dereθ+deθ

eθ+deθ

dθ

r +
 d

r

de
θ

eθ

FIGURE 2.33-2
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thus,

rf ¼ @f

@r
er þ 1

r

@f

@y
ey : (2.33.10)

(ii) Components of rv: Let

v r; yð Þ ¼ vr r; yð Þer þ vy r; yð Þey : (2.33.11)

By definition of rv, we have

dv ¼ rvdr: (2.33.12)

Let T ¼ rv. Then

dv ¼ Tdr ¼ Tðdrer þ rdyey Þ ¼ drTer þ rdyTey : (2.33.13)

Now

Ter ¼ Trrer þ Ty rey and Tey ¼ Tr y er þ Tyy ey ; (2.33.14)

therefore,

dv ¼ ðTrrdr þ Tr y rdyÞer þ ðTy rdr þ Tyy rdyÞey : (2.33.15)

From Eq. (2.33.11), we also have

dv ¼ dvrer þ vrder þ dvy ey þ vy dey : (2.33.16)

Since [see Eq. (2.33.3)]

der ¼ dyey ; dey ¼ �dyer; (2.33.17)

therefore, Eq. (2.33.16) becomes

dv ¼ ðdvr � vy dyÞer þ ðvrdy þ dvy Þey : (2.33.18)

From calculus,

dvr ¼ @vr
@r

dr þ @vr
@ y

dy ; dvy ¼ @vy
@r

dr þ @vy
@y

dy : (2.33.19)

Substituting Eq. (2.33.19) into Eq. (2.33.18), we have

dv ¼ @vr
@r

dr þ @vr
@y

� vy

� �
dy

� �
er þ @vy

@r
dr þ @vy

@y
þ vr

� �
dy

� �
ey : (2.33.20)

Eq. (2.33.15) and Eq. (2.33.20), then, give

@vr
@r

dr þ @vr
@ y

� vy

� �
dy ¼ Trrdr þ Tr y rdy ;

@vy
@r

dr þ @vy
@y

þ vr

� �
dy ¼ Ty rdr þ Tyy rdy : (2.33.21)

Eq. (2.33.21) must hold for any values of dr and dy. Thus,

Trr ¼ @vr
@r

; Tr y ¼ 1

r

@vr
@y

� vy

� �
; Ty r ¼ @vy

@r
; Tyy ¼ 1

r

@vy
@y

þ vr

� �
: (2.33.22)
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In matrix form,

½rv� ¼

@vr
@r

1

r

@vr
@y
� vy

0
@

1
A

@vy
@r

1

r

@vy
@ y

þ vr

0
@

1
A

2
66666664

3
77777775
: (2.33.23)

(iii) div v:

Using the components of rv given in (ii), that is, Eq. (2.33.23), we have

div v ¼ trðrvÞ ¼ @vr
@r
þ 1

r

@vy
@y

þ vr

� �
: (2.33.24)

(iv) Components of curl v:

The antisymmetric part of rv is

½rv�A ¼ 1

2

0
1

r

@vr
@y
� vy

0
@

1
A� @vy

@r

� 1

r

@vr
@y

� vy

0
@

1
A� @vy

@r

8<
:

9=
; 0

2
6666664

3
7777775
: (2.33.25)

Therefore, from the definition that curl v ¼ twice the dual vector of (rv)A, we have

curl v ¼ @vy
@r
þ vy

r
� 1

r

@vr
@y

� �
e3: (2.33.26)

(v) Components of div T:

The invariant definition of the divergence of a second-order tensor is

ðdiv TÞ � a ¼ divðTTaÞ � trððraÞTTÞ for any a: (2.33.27)

Take a ¼ er; then the preceding equation gives

ðdiv TÞr ¼ divðTTerÞ � trððrerÞTTÞ: (2.33.28)

To evaluate the first term on the right-hand side, we note that

TTer ¼ Trrer þ Tr y ey ; (2.33.29)

so that according to Eq. (2.33.24),

divðTTerÞ ¼ divðTrrer þ Tr y ey Þ ¼ @Trr
@r

þ 1

r

@Tr y
@y

þ Trr

� �
: (2.33.30)

To evaluate the second term, we first use Eq. (2.33.23) to obtainrer. In fact, since er ¼ ð1Þer þ ð0Þe y ,
we have, with vr ¼ 1 and vy ¼ 0,
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½rer� ¼
0 0

0
1

r

2
664

3
775; ½rer�½TT� ¼

0 0

Tr y
r

Tyy

r

2
64

3
75; trð½rer�½TT�Þ ¼ T yy

r
: (2.33.31)

Thus, Eq. (2.33.28) gives

ðdiv TÞr ¼
@Trr
@r

þ 1

r

@Tr y
@ y

þ Trr � Tyy

r
: (2.33.32)

In a similar manner, one can derive

ðdivTÞy ¼
@Ty r

@r
þ 1

r

@Tyy

@y
þ Tr y þ Ty r

r
: (2.33.33)

(vi) Laplacian of f(x):
Given a scalar field f(x), the Laplacian of f(x) is given by r2f ¼ divðrf Þ ¼ trðrðrf ÞÞ. In polar

coordinates,

rf ¼ @f

@r
er þ 1

r

@f

@ y
ey : (2.33.34)

From, div v ¼ @vr
@r
þ 1

r

@v y
@ y

þ vr
r
, we have

r2f ¼ div rf ¼ @2f

@r2
þ 1

r2
@2f

@ y2
þ 1

r

@f

@r
: (2.33.35)

(vii) Laplacian of a vector field v(x):

Laplacian of v is given by: r2v ¼ rðdiv vÞ � curl curl v. Now, in polar coordinates:

rðdiv vÞ ¼ @

@r

@vr
@r
þ 1

r

@vy
@y

þ vr
r

0
@

1
Aer þ 1

r

@

@y
@vr
@r
þ 1

r

@vy
@y

þ vr
r

0
@

1
Aey

¼ @2vr
@r2

þ 1

r

@2vy
@r@ y

� 1

r2
@vy
@y

þ 1

r

@vr
@r
� vr
r2

0
@

1
Aer þ 1

r

@2vr
@y@r

þ 1

r2
@2vy

@ y2
þ 1

r2
@vr
@y

0
@

1
Aey ;

(2.33.36)

and

curl v ¼ @vy
@r
þ vy

r
� 1

r

@vr
@ y

� �
ez: (2.33.37)

Since [see Eq. (2.34.7)]

curl v ¼ 1

r

@vz
@y
� @vy

@z

� �
er þ @vr

@z
� @vz

@r

� �
ey þ @vy

@r
þ vy

r
� 1

r

@vr
@y

� �
ez;

therefore,

ðcurl curl vÞr ¼
1

r

@

@y
@vy
@r
þ vy

r
� 1

r

@vr
@ y

� �
¼ 1

r

@2vy
@y@r

þ 1

r2
@vy
@y

� 1

r2
@2vr

@y2

� �
; (2.33.38)
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ðcurl curl vÞy ¼ �
@

@r

@vy
@r
þ vy

r
� 1

r

@vr
@ y

� �
¼ � @2vy

@r2
� 1

r

@vy
@r
þ vy

r2
þ 1

r

@2vr
@r@y

� 1

r2
@vr
@y

� �
: (2.33.39)

Thus,

ðr2vÞr ¼
@2vr
@r2

þ 1

r2
@2vr

@y2
þ @2vr

@z2
þ 1

r

@vr
@r
� 2

r2
@vy
@y

� vr
r2
; (2.33.40)

and

ðr2vÞy ¼
@2vy
@r2

þ 1

r2
@2vy

@y2
þ 1

r

@vy
@r
þ 2

r2
@vr
@ y

� vy
r2

: (2.33.41)

2.34 CYLINDRICAL COORDINATES
In cylindrical coordinates, the position of a point P is determined by (r, y, z), where r and y determine the

position of the vertical projection of the point P on the xy plane (the point P0 in Figure 2.34-1) and the coor-

dinate z determines the height of the point P from the xy plane. In other words, the cylindrical coordinates is a

polar coordinate (r, y) in the xy plane plus a coordinate z perpendicular to the xy plane.

We shall denote the position vector of P by R, rather than r, to avoid confusion between the position vec-

tor R and the coordinate r (which is a radial distance in the xy plane). The unit vector er and ey are on the xy
plane and it is clear from Figure 2.34-1 that

R ¼ rer þ zez; (2.34.1)

and

dR ¼ drer þ rder þ dzez þ zdez: (2.34.2)

In the preceding equation, der is given by exactly the same equation given earlier for the polar coordinates

[Eq. (2.33.3)]. We note also that ez never changes its direction or magnitude regardless where the point P is,

thus dez ¼ 0. Therefore,

dR ¼ drer þ rdyey þ dzez: (2.34.3)
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By retracing all the steps used in the previous section on polar coordinates, we can easily obtain the fol-

lowing results:

(i) Components of rf:

rf ¼ @f

@r
er þ 1

r

@f

@y
ey þ @f

@z
ez: (2.34.4)

(ii) Components of rv:

½rv� ¼

@vr
@r

1

r

@vr
@y

� vy

0
@

1
A @vr

@z

@vy
@r

1

r

@vy
@y

þ vr

0
@

1
A @vy

@z

@vz
@r

1

r

@vz
@y

@vz
@z

2
66666666666664

3
77777777777775
: (2.34.5)

(iii) div v:

div v ¼ @vr
@r
þ 1

r

@vy
@ y

þ vr

� �
þ @vz

@z
: (2.34.6)

(iv) Components of curl v:

The vector curl v ¼ twice the dual vector of (rv)A, thus,

curl v ¼ 1

r

@vz
@y
� @vy

@z

� �
er þ @vr

@z
� @vz

@r

� �
ey þ @vy

@r
þ vy

r
� 1

r

@vr
@y

� �
ez: (2.34.7)

(v) Components of div T:

ðdivTÞr ¼
@Trr
@r

þ 1

r

@Tr y
@ y

þ Trr � Tyy

r
þ @Trz

@z
; (2.34.8)

ðdivTÞy ¼
@Ty r

@r
þ 1

r

@Tyy

@ y
þ Tr y þ T y r

r
þ @Ty z

@z
; (2.34.9)

ðdivTÞz ¼
@Tzr
@r

þ 1

r

@Tzy
@ y

þ @Tzz
@z

þ Tzr
r
: (2.34.10)

(vi) Laplacian of f:

r2f ¼ div rf ¼ @2f

@r2
þ 1

r2
@2f

@y2
þ 1

r

@f

@r
þ @2f

@z2
: (2.34.11)

(vii) Laplacian of v:

ðr2vÞr ¼
@2vr
@r2

þ 1

r2
@2vr

@y2
þ @2vr

@z2
þ 1

r

@vr
@r
� vr
r2
� 2

r2
@vy
@y

; (2.34.12)
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ðr2vÞy ¼
@2vy
@r2

þ 1

r2
@2vy

@y2
þ @2vy

@z2
þ 1

r

@vy
@r
þ 2

r2
@vr
@y

� vy
r2

; (2.34.13)

ðr2vÞz ¼
@2vz
@r2

þ 1

r2
@2vz

@y2
þ 1

r

@vz
@r
þ @2vz

@z2
: (2.34.14)

2.35 SPHERICAL COORDINATES
In Figure 2.35-1, we show the spherical coordinates (r, y, f) of a general point P. In this figure, er, ey and

ef are unit vectors in the direction of increasing r, y and f, respectively.

The position vector for the point P can be written as

r ¼ rer; (2.35.1)

where r is the magnitude of the vector r. Thus,

dr ¼ drer þ rder: (2.35.2)

To evaluate der we note from Figure 2.35-1(b) that

er ¼ cosyez þ sinye 0r ; ey ¼ cosye 0r � sinyez; (2.35.3)

where e 0r is the unit vector in the OE (i.e., r0) direction (r0 is in the xy plane). Thus,

der ¼ �sinydyez þ cosydez þ cosydye 0r þ sinyde 0r ¼ �sinyez þ cosye 0r
	 


dy þ sinyde 0r ;

that is,

der ¼ dyey þ sinyde 0r : (2.35.4)

Now, just as in polar coordinates, due to df,

de 0r ¼ dfef; (2.35.5)
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therefore,

der ¼ dyey þ sinydfef: (2.35.6)

Now, from the second equation of (2.35.3), we have,

dey ¼ �sinydye 0r þ cosyde 0r � cosydyez ¼ � sinye 0r þ cosyez
	 


dy þ cosyde 0r :

Using Eq. (2.35.3) and Eq. (2.35.5), the preceding equation becomes

dey ¼ �erdy þ cosydfef: (2.35.7)

From Figure 2.35-1(a) and similar to the polar coordinate, we have

def ¼ df �e 0r
	 


: (2.35.8)

With e 0r ¼ cosyey þ sinyer (see Figure 2.35-1(b)), the preceding equation becomes

def ¼ �sinydfer � cosydfey : (2.35.9)

Summarizing the preceding, we have

der ¼ dyey þ sinydfef; dey ¼ �erdy þ cosydfef; def ¼ �sinydfer � cosydfey ; (2.35.10)

and from Eq. (2.35.2), we have

dr ¼ drer þ rdyey þ r sinydfef: (2.35.11)

We can now obtain the components of rf, rv, div v, curl v, div T, r2f, and r2v for spherical

coordinates.

(i) Components of rf:
Let f(r,y,f) be a scalar field. By the definition of rf, we have

df ¼ rf � dr ¼ rfð Þrer þ rfð Þy ey þ rfð ÞfefÞ
h i

� drer þ rdyey þ r sinydfef
	 


; (2.35.12)

that is,

df ¼ rfð Þr dr þ rfð Þy rdy þ rfð Þfr sinydf: (2.35.13)

From calculus, the total derivative of df is

df ¼ @f

@r
dr þ @f

@y
dy þ @f

@f
df: (2.35.14)

Comparing Eq. (2.35.14) and Eq. (2.35.13), we have

ðrf Þr ¼
@f

@r
; ðrf Þy ¼

1

r

@f

@y
; ðrf Þf ¼

1

r siny
@f

@f
: (2.35.15)

(ii) Components of rv:

Let the vector field be represented by

vðr; y ;fÞ ¼ vr r; y ;fð Þer þ vy r; y ;fð Þey þ vf r; y ;fð Þef: (2.35.16)
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Letting T ¼ rv, we have

dv ¼ Tdr ¼ T drer þ rdyey þ r sinydfef
	 
 ¼ drTer þ rdyTey þ r sinydfTef: (2.35.17)

By the definition of components of a tensor T in spherical coordinates, we have

Ter ¼ Trrer þ Ty rey þ Tfref;
Tey ¼ Tr y er þ Tyy ey þ Tfy ef;
Tef ¼ Trfer þ Tyfey þ Tffef:

(2.35.18)

Substituting these into Eq. (2.35.17), we get

dv ¼ Trrdr þ Tr y rdy þ Trfr sinydf
	 


er þ Tyy rdy þ Ty rdr þ Tyfr sinydf
	 


ey
þ Tfrdr þ Tfy rdy þ Tffr sinydf
	 


ef:
(2.35.19)

We also have, from Eq. (2.35.16),

dv ¼ dvrer þ vrder þ dvy ey þ vy dey þ dvfef þ vfdef: (2.35.20)

Using the expression for the total derivatives:

dvr ¼ @vr
@r

dr þ @vr
@ y

dy þ @vr
@f

df;

dvy ¼ @vy
@r

dr þ @vy
@y

dy þ @vy
@f

df;

dvf ¼ @vf
@r

dr þ @vf
@y

dy þ @vf
@f

df;

(2.35.21)

Eq. (2.35.10) and Eq. (2.35.20) become

dv ¼ @vr
@r

dr þ @vr
@y

� vy

0
@

1
Ady þ @vr

@f
� vf siny

0
@

1
Adf

8<
:

9=
;er

þ @vy
@r

dr þ vr þ @vy
@y

0
@

1
Ady þ @vy

@f
� vf cosy

0
@

1
Adf

8<
:

9=
;ey

þ @vf
@r

dr þ @vf
@y

dy þ @vf
@f

þ vr siny þ vy cosy

0
@

1
Adf

8<
:

9=
;ef:

(2.35.22)

Now, comparing Eq. (2.35.22) with Eq. (2.35.19), we have

Trrdr þ Tr y rdy þ Trfr sinydf
	 
 ¼ @vr

@r
dr þ @vr

@ y
� vy

0
@

1
Ady þ @vr

@f
� vf siny

0
@

1
Adf

8<
:

9=
;;

Ty rdr þ Tyy rdy þ Tyfr sinydf
	 
 ¼ @vy

@r
dr þ vr þ @vy

@ y

0
@

1
Ady þ @vy

@f
� vf cosy

0
@

1
Adf

8<
:

9=
;;

Tfrdr þ Tfy rdy þ Tffr sinydf
	 
 ¼ @vf

@r
dr þ @vf

@y
dy þ @vf

@f
þ vr siny þ vy cosy

0
@

1
Adf

8<
:

9=
;:

(2.35.23)
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These equations must be valid for arbitrary values of dr, dy and df, therefore,

Trr ¼ @vr
@r

; Tr y r ¼ @vr
@y

� vy

0
@

1
A; Trfr siny ¼ @vr

@f
� vf siny

0
@

1
A;

Ty r ¼ @vy
@r

; Tyy r ¼ vr þ @vy
@y

0
@

1
A; Tyfr siny ¼ @vy

@f
� vfcosy

0
@

1
A;

Tfr ¼ @vf
@r

; Tfy r ¼ @vf
@y

; Tffr siny ¼ @vf
@f

þ vrsiny þ vy cosy

0
@

1
A:

(2.35.24)

In matrix form, we have

rv½ � ¼

@vr
@r

1

r

@vr
@y

� vy
r

1

r siny
@vr
@f
� vf

r

@vy
@r

1

r

@vy
@y

þ vr
r

1

r siny
@vy
@f

� vfcoty
r

@vf
@r

1

r

@vf
@ y

1

r siny
@vf
@f

þ vr
r
þ vy coty

r

2
6666666664

3
7777777775
: (2.35.25)

(iii) div v:

Using Eq. (2.35.25), we obtain

div v ¼ trðrvÞ ¼ @vr
@r
þ 1

r

@vy
@ y

þ 1

r siny
@vf
@f

þ 2vr
r
þ vy coty

r

¼ 1

r2
@ r2vrð Þ
@r

þ 1

r siny
@ vy sinyð Þ

@ y
þ 1

r siny
@vf
@f

:

(2.35.26)

(iv) Components of curl v:

The vector curl v ¼ twice the dual vector of (rv)A, therefore

curl v ¼ vfcoty
r

þ 1

r

@vf
@y

� 1

r siny
@vy
@f

8<
:

9=
;er þ 1

r siny
@vr
@f
� 1

r

@ rvf
	 

@r

8<
:

9=
;ey

þ 1

r

@ rvyð Þ
@r

� 1

r

@vr
@y

8<
:

9=
;ef:

(2.35.27)

(v) Components of div T:

Using the definition of div T given in Eq. (2.33.27) and take a ¼ er, we have

ðdiv TÞr ¼ divðTTerÞ � trððrerÞTTÞ: (2.35.28)

To evaluate the first term on the right-hand side, we note that

TTer ¼ Trrer þ Tr y ey þ Trfef; (2.35.29)
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so that by using Eq. (2.35.26) for the divergence of a vector in spherical coordinates, we obtain,

divðTTerÞ ¼ 1

r2
@ r2Trrð Þ

@r
þ 1

r siny
@ðTr y sinyÞ

@y
þ 1

r siny
@Trf
@f

: (2.35.30)

To evaluate the second term in Eq. (2.35.28), we first used Eq. (2.35.25) to evaluate rer, then calcu-

late rerð ÞTT:

½rer� ¼
0 0 0

0 1=r 0

0 0 1=r

2
4

3
5; ½ðrerÞTT� ¼

0 0 0

Tr y =r Tyy =r Tfy =r
Trf=r Tyf=r Tff=r

2
4

3
5 (2.35.31)

thus,

trððrerÞTTÞ ¼ Tyy

r
þ Tff

r
: (2.35.32)

Substituting Eq. (2.35.32) and Eq. (2.35.30) into Eq. (2.35.28), we obtain,

ðdiv TÞr ¼
1

r2
@ r2Trrð Þ

@r
þ 1

r siny
@ Tr y sinyð Þ

@y
þ 1

r siny
@Trf
@f

� T yy þ Tff
r

: (2.35.33)

In a similar manner, we can obtain (see Prob. 2.75)

ðdivTÞy ¼
1

r3
@ r3T y rð Þ

@r
þ 1

r siny
@ðTyy sinyÞ

@ y
þ 1

r siny
@Tyf

@f
þ Tr y � Ty r � Tffcoty

r
(2.35.34)

ðdivTÞf ¼
1

r3
@ r3Tfr
	 

@r

þ 1

r siny
@ðTfy sinyÞ

@y
þ 1

r siny
@Tff
@f

þ Trf � Tfr þ Tyfcoty
r

: (2.35.35)

(vi) Laplacian of f:
From

div v ¼ 1

r2
@ðr2vrÞ
@r

þ 1

r siny
@vy siny

@y
þ 1

r siny
@vf
@f

;

rf ¼ @f

@r
er þ 1

r
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@y
ey þ 1

r siny
@f

@f
ef;

(2.35.36)

we have

r2f ¼ divðrf Þ ¼ 1
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@r
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1
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þ 1
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1
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r2
@f

@y
þ 1

r2 sin2 y
@2f

@f2

0
@

1
A:

(2.35.37)
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(vii) Laplacian of a vector function v:

It can be obtained (see Prob. 2.75)

rðdiv vÞ ¼ 1

r2
@2r2vr
@r2

� 2

r3
@r2vr
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þ 1

r siny
@2vy siny
@r@ y
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� �
� 1
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� �� �
er

þ 1
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þ 1
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@2vy siny
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þ @2vy siny

@y2

� �
� 1

r2
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sin2 y

� �
@vy siny

@ y
þ 1

r2
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1
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� �
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þ 1
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þ 1

r2 sin2 y
@2ðvy sinyÞ

@f@y
þ 1

r2 sin2 y
@2vf
@2f

� �
ef; (2.35.38)

and

curl curl v ¼ 1

r2
@2rvy
@ y@r

� @2vr

@y2
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>>>>>>:
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ef: (2.35.39)

Thus, r2v ¼ rðdiv vÞ � curl curl v leads to:

ðr2vÞr ¼

1

r2
@2r2vr
@r2

� 2

r3
@r2vr
@r

þ 1

r2
@2vr

@y2
þ coty

r2
@vr
@y
þ 1

r2 sin2 y
@2vr

@f2
� 2

r2 siny
@vy siny

@ y

� 2

r2 siny
@vf
@f

0
BBBB@

1
CCCCA; (2.35.40)

ðr2vÞy ¼

1

r2
@

@r
r2
@vy
@r

0
@

1
Aþ 1

r2
@

@ y
1

siny
@

@ y
ðvy sinyÞ
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;þ 1

r2 sin2 y
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þ 2

r2
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� 2
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coty
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@f

0
BBBBB@

1
CCCCCA; (2.35.41)

ðr2vÞf ¼

1

r2
@

@r
r2
@vf
@r

0
@

1
Aþ 1

r2
@

@ y
1

siny
@

@ y
ðvf sinyÞ
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0
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1
CCCCCA: (2.35.42)
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PROBLEMS FOR PART D
2.70 Calculate div u for the following vector field in cylindrical coordinates:

(a) ur ¼ uy ¼ 0; uz ¼ Aþ Br2.
(b) ur ¼ sin y=r; uy ¼ uz ¼ 0.

(c) ur ¼ r2 sin y=2; uy ¼ r2 cos y=2; uz ¼ 0.

2.71 Calculate ru for the following vector field in cylindrical coordinates:

ur ¼ A=r; uy ¼ Br; uz ¼ 0:

2.72 Calculate div u for the following vector field in spherical coordinates:

ur ¼ Ar þ B

r2
; uy ¼ uf ¼ 0:

2.73 Calculate ru for the following vector field in spherical coordinates:

ur ¼ Ar þ B=r2; uy ¼ uf ¼ 0:

2.74 From the definition of the Laplacian of a vector, r2v ¼ rðdiv vÞ � curl curl v, derive the following

results in cylindrical coordinates:

ðr2vÞr ¼
@2vr
@r2

þ 1

r2
@2vr

@y2
þ @2vr

@z2
� 2

r2
@vy
@ y

þ 1

r

@vr
@r
� vr
r2

� �
and

ðr2vÞy ¼
@2vy
@r2

þ 1

r2
@2vy

@ y2
þ @2vy

@z2
þ 1

r

@vy
@r
þ 2

r2
@vr
@y

� vy
r2

:

2.75 From the definition of the Laplacian of a vector, r2v ¼ rðdiv vÞ � curl curl v, derive the following

result in spherical coordinates:

ðr2vÞr ¼
1

r2
@2r2vr
@r2

� 2

r3
@r2vr
@r

þ 1

r2
@2vr

@y2
þ cot y

r2
@vr
@y

þ 1

r2 sin2y
@2vr

@f2
� 2

r2 siny
@vy siny

@y
� 2

r2 siny
@vf
@f

� �
:

2.76 From the equation ðdivTÞ � a ¼ divðTTaÞ � trðTTraÞ [see Eq. (2.29.3)], verify that in polar coordinates

the y-component of the vector ðdivTÞ is:

ðdivTÞy ¼
@T y r

@r
þ 1

r

@Tyy

@y
þ Tr y þ Ty r

r
:
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2.77 Calculate div T for the following tensor field in cylindrical coordinates:

Trr ¼ Aþ B

r2
; Tyy ¼ A� B

r2
; Tzz ¼ constant; Tr y ¼ Ty r ¼ Trz ¼ Tzr ¼ Ty z ¼ Tzy ¼ 0:

2.78 Calculate div T for the following tensor field in cylindrical coordinates:

Trr ¼ Az

R3
� 3Br2z

R5
; Tyy ¼ Az

R3
; Tzz ¼ � Az

R3
þ 3Bz3

R5

0
@

1
A; Trz ¼ Tzr ¼ � Ar

R3
þ 3Brz2

R5

0
@

1
A;

Tr y ¼ Ty r ¼ Ty z ¼ Tzy ¼ 0; R2 ¼ r2 þ z2:

2.79 Calculate div T for the following tensor field in spherical coordinates:

Trr ¼ A� 2B

r3
; T yy ¼ Tff ¼ Aþ B

r3
; Tr y ¼ Ty r ¼ T yf ¼ Tfy ¼ Trf ¼ Tfr ¼ 0:

2.80 From the equation ðdiv TÞ � a ¼ divðTTaÞ � trðTTraÞ [see Eq. (2.29.3)], verify that in spherical coordi-

nates the y-component of the vector (div T) is:

ðdiv TÞy ¼
1

r3
@ r3Ty rð Þ

@r
þ 1

r siny
@ Tyy sinyð Þ

@ y
þ 1

r siny
@Tyf

@f
þ Tr y � Ty r � Tffcoty

r
:
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