CHAPTER

Tensors

As mentioned in the introduction, all laws of continuum mechanics must be formulated in terms of quantities
that are independent of coordinates. It is the purpose of this chapter to introduce such mathematical entities.
We begin by introducing a shorthand notation—the indicial notation—in Part A of this chapter, which is fol-
lowed by the concept of tensors, introduced as a linear transformation in Part B. Tensor calculus is considered
in Part C, and expressions for the components in cylindrical and spherical coordinates for tensors resulting
from operations such as the gradient, the divergence, and the Laplacian of them are derived in Part D.

INDICIAL NOTATION

SUMMATION CONVENTION, DUMMY INDICES

Consider the sum
s =aix; +axx; + ...+ a,x,. 2.1.1)

We can write the preceding equation in a compact form using a summation sign:
n
s= a;. (2.12)
i=1

It is obvious that the following equations have exactly the same meaning as Eq. (2.1.2):

n n n
s = E aixj, §= g Xy, S = E A Xy. 2.1.3)
j=1 m=1 k=1

The index i in Eq. (2.1.2), or j or m or k in Eq. (2.1.3), is a dummy index in the sense that the sum is inde-
pendent of the letter used for the index. We can further simplify the writing of Eq. (2.1.1) if we adopt the
following convention: Whenever an index is repeated once, it is a dummy index indicating a summation with
the index running through the integral numbers 1, 2, ..., n.

This convention is known as Einstein’s summation convention. Using this convention, Eq. (2.1.1) can be
written simply as:

S=aix; Of §=aX; Or §= dpXy, etc. 2.1.4)
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It is emphasized that expressions such as a;b;x; or a,,b,x,, are not defined within this convention. That is,
an index should never be repeated more than once when the summation convention is used. Therefore, an
expression of the form

n
g a;jbix;,
i=1

must retain its summation sign.
In the following, we shall always take the number of terms # in a summation to be 3, so that, for example:

aixj = ayXy + axxy + asxs,  a; = ap +ax + as;.

The summation convention obviously can be used to express a double sum, a triple sum, and so on. For
example, we can write:
3 3

o= E a,jx,-xj
i=1 j=1
concisely as
o = a;jXX;. (215)
Expanding in full, Eq. (2.1.5) gives a sum of nine terms in the right-hand side, i.e.,
o= @jiXiXj; = A XXy + apX1xy + a13xX1X3 + a1 x0X + anXoXy + axannx;
+ az1x3x| + az3x3xy + azxaxs.

For newcomers, it is probably better to perform the preceding expansion in two steps: first, sum over i,

and then sum over j (or vice versa), i.e.,
QiXiXj = A1X1Xj + AyXaX; + a3X3x;,

where

ap XX = anxixp + apxix; + apxx;,

and so on. Similarly, the indicial notation a;x;x;x; represents a triple sum of 27 terms, that is,

3 3 3
ZZZaijkx,-xjxk = QjjkXiXjXf- (2.1.6)

i=1 j=1 k=1

FREE INDICES

Consider the following system of three equations:

/
X; = anXy + apx; + ajzxs,
)
Xy = dz1X] + axnX; + axxs, 2.2.1)
x§ = a3 x; + anx; + azx;.

Using the summation convention, Egs. (2.2.1) can be written as:
I
X1 = AimXm,

/

Xy = AomXm;s 2.2.2)
/

X3 = A3mXm,
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which can be shortened into
X = i Xy P=1,2,3. (2.2.3)

An index that appears only once in each term of an equation such as the index i in Eq. (2.2.3) is
called a free index. Unless stated otherwise, we agree that a free index takes on the integral num-
ber 1, 2 or 3. Thus, x/ = ajmX» is shorthand for three equations, each having a sum of three terms on
its right-hand side. Another simple example of a free index is the following equation defining the com-
ponents of a vector a in terms of a dot product with each of the base vectors e;,

ai=a-e;, (224)

and clearly the vector a can also be expressed in terms of its components as

a = a;e;. (225)

A further example is given by

e,‘/ = Omi€m, (2.2.6)
representing

e/ =01e; + 0res + Ose3,
e, = One; + One; + Ones, 22.7)
e; = Qize; + One; + Oszes.

We note that x,! = QjuXy is the same as Eq. (2.2.3) and e,! = Qpjep, is the same as Eq. (2.2.6). However,
a; = b; is a meaningless equation. The free index appearing in every term of an equation must be the same.
Thus, the following equations are meaningful:

a;+ki=c¢ or a-+ b,’(‘jdj :ﬁ
If there are two free indices appearing in an equation such as:
Tij = AimnAjm, (22.8)

then the equation is a shorthand for the nine equations, each with a sum of three terms on the right-hand side.
In fact,

Ty = AipAim = AnlAn + ARAp + AAss,
T2 = AipAom = A11A21 + ARAx + AzAn,
T3 = A1pAzm = AnAz + ApAs + A3Ass,
Ty = AppAim = AniAn + ApA + AxpAis,

T33 = A3pAzm = A31431 + AnAsz + AszAsz.

THE KRONECKER DELTA
The Kronecker delta, denoted by d;;, is defined as:

1 ifi=,
5'7_{0 if i # j. @30
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That is,
O =0p=2033=1, 0J1p=2013=273 =03 =203 =0n=0. (2.3.2)

In other words, the matrix of the Kronecker delta is the identity matrix:
05 = |62 62 | =10 1 0. (2.3.3)
031 0n 033 0 0 1
We note the following:
(@) 0 =011 +0n+dn=1+1+1,
that is,

(b) Oimam = d11a1 + O12as + d13a3 = d11a1 = ay,
Oy = 02141 + Onas + 023a3 = dxnar = ay,
03may = 03141 + Onay + 033a3 = d33a3 = as,

that is,
Oimm = aj. (2.3.5)
(©) O1mTmj = 01T+ 01212 + 01373 = Tyj,
OamTmj = 021T1j + 022T5; + 023135 = Ty,
03mTmj = 031T1j + 03T + 03313 = T3,
that is,
OimTmj =T (2.3.6)
In particular,
OimOmj = Oijs  OimOmnOpj = 05,  etc. 2.3.7)

(d) If ey, e,, e3 are unit vectors perpendicular to one another, then clearly,

€ - € = 5,‘1'. (238)

THE PERMUTATION SYMBOL

The permutation symbol, denoted by &, is defined by:

1 form an even
gt = § —1 » = according to whetheri,j,k| form an odd |permutation of 1,2,3, (2.4.1)
0 do not form

ie.,

€123 = €31 = &312 = +1,
&13 = €321 = €132 = — 1, 2.4.2)
e =émp =& =...=0.



2.5 Indicial Notation Manipulations

We note that
Eijk = Ejki = &kij = —é&jik = —Ekji — Eikj-

If {ey, e5, e3} is a right-handed triad, then

e xe =e;, € Xe =—e3 € Xe3=e;, e3Xe =—e, e,

which can be written in a short form as
€; X € = &jk€r = Ejki€k = Eij€k-
Now, if a = a;e; and b = b,e;, then, since the cross-product is distributive, we have
a x b = (aie;) x (bjej) = aib;(e; x €;) = abje;jrex.

The following useful identity can be proven (see Prob. 2.12):

&ijmErim = OikOj1 — Oitj.

7

(2.4.3)

(2.4.4)

(2.4.5)

(2.4.6)

(2.4.7)

INDICIAL NOTATION MANIPULATIONS

(a) Substitution: If

a; = U[m bm7
and

bi = Vi Cm,

®

(ii)

then, in order to substitute the b; in Eq. (ii) into the b,, in Eq. (i), we must first change the free index in Eq. (ii)

from i to m and the dummy index m to some other letter—say, n—so that
bm = Vmn Cn-
Now Egs. (i) and (iii) give

a; = UiV -

(iii)

(iv)

Note that Eq. (iv) represents three equations, each having a sum of nine terms on its right-hand side.

(b) Multiplication: If

p= amby, and q= Cnm,
then

pq = Ambpcad,.

It is important to note that pg # a,b,cmd,y,. In fact, the right-hand side of this expression, i.e., @,,0,,C,.d,,

is not even defined in the summation convention, and further, it is obvious that

3
Pa# Y AnbuCndn.
m=1
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Since the dot product of vectors is distributive, therefore, if a = a;e; and b = b;e;, then
a-b = (aie;) - (bje;) = aibj(e; - ¢;).
In particular, if e;, e,, e; are unit vectors perpendicular to one another, then e; - ¢; = J;; so that
a-b =a;bj0; = a;b; = a1by + a)by + azbs,
which is the familiar expression for the evaluation of the dot product in terms of the vector components.

(c) Factoring: If
T,‘jl’lj — )L}’l,‘ = 0,

then, using the Kronecker delta, we can write n; = J;n;, so that we have

T;nj — 20;n; = 0.
Thus,

(T;; — Ao4)n; = 0.
(d) Contraction: The operation of identifying two indices is known as a contraction. Contraction indicates a

sum on the index. For example, T}; is the contraction of T;; with
Tii =T + T+ Ts.
If
Ty = AAS;; + 2uEj;,
then
T = AAS; + 2uE;; = 37A + 2uE;.

PROBLEMS FOR PART A
2.1 Given

1 0 2 1
[S,'/'] = |:0 1 2:| and [(1,'] = |:2:| s
303 3

evaluate (a) Sii’ (b) SUSI']" (C) SjiSji» (d) Sijkj’ (C) A, (f) Smnamam and (g) Snmaman-

2.2 Determine which of these equations has an identical meaning with a; = Q,-jaj’ .
(2) ap = mea,/m (b) ap = qua(;, ©) am = a,;an-

2.3 Given the following matrices
1 2 30
[a,-] =10 3 [B,:,‘] = 0 5 1 s
2 0 2 1

demonstrate the equivalence of the subscripted equations and the corresponding matrix equations in the
following two problems:

(a) b; = Bjja; and [b] = [B][a] and (b) s = Bjja;a; and s = [a]T[B][a].
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2.4 Write in indicial notation the matrix equation (a) [A]=[B][C], (b) [D]= [B]T[C 1and (¢) [E]= [B]T[C] [F].

2¢ 62¢ 82(]')
2.5 Write in indicial notation the equation (a) s = A2 + A2 +A2 and (b) 2 +—=0.
Ox 8x2 Ox3
2.6 Given that S;j=a;a; and S =al aj, where a/ = Oy a, and aj’ = Qyjan, and Q;Qjx=0;;, show that

Sk =Si.
i Oy,
2.7 Write a; = ?vt + vja—:j in long form.
2.8 Given that T;; = 2uE;; + AEd;;, show that
(a) T;Ej = 2uE;E; + M(Ew)” and (b) T;Ty = 4PE;E; + (Ew )’ (4ul + 37%).

2.9 Given that a; = T;b;, and a/ = Tubj’ , where a; = Qjna,, and T;; = Qi Q;uT,,,

(a) show that Q,mT,:mb,g QimQinT,,,bj and (b) if Qi Qim = 51<m, then T}, (b, — Qjub;) =0
2.10 Given

1 0
[ai] = {2}, [bi] = [2}7
0 3

evaluate [d,], if dy = &;a;b;, and show that this result is the same as dy = (a X b) - e,
2.11 (a) If ¢%T;; = 0, show that T; = T};, and (b) show that J;&; = 0.

2.12 Verify the following equation: &;,éum = 00 — 0ydjx. Hint: There are six cases to be considered:
MDi=j,Qi=kQ@ i=L@@j=k (5)j=1and (6) k =1L

2.13 Use the identity &jméwm = Oi0j — 0idj as a shortcut to obtain the following results: (a) €im&jm = 20
and (b) EijkEijk = 6.

2.14 Use the identity &;p&xm = 0i0j — 0;0j to show that a x (b x ¢) = (a-¢)b — (a-b)c.

2.15 Show that (a) if T,:,' = —Tj,', then T,'ja,'llj =0, (b) if T,‘j = —Tj,‘, and S,‘j = Sj[, then T,]SU =0.

1 1
5 (S + Sji) and Ry = = (S — Sji), show that Ty = Tj;, Ry = —R;i, and S = T + Ry

2.17 Let f(x1,x2,x3) be a function of xy, x,, and x3 and let v;(x;,x2,x3) be three functions of x;, x,, and xs.
Express the total differential df and dv; in indicial notation.

2.16 Let T,:,‘ =

2.18 Let |A;| denote the determinant of the matrix [A;]. Show that |A;| = &;zAi1ApAss.

TENSORS

TENSOR: A LINEAR TRANSFORMATION

Let T be a transformation that transforms any vector into another vector. If T transforms a into ¢ and b into d,
we write Ta = ¢ and Tb = d.
If T has the following linear properties:

T(a+b) = Ta+ Tb, (2.6.1)
T(xa) = oTa, (2.6.2)
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where a and b are two arbitrary vectors and o is an arbitrary scalar, then T is called a linear transformation. It
is also called a second-order tensor or simply a tensor.* An alternative and equivalent definition of a linear
transformation is given by the single linear property:

T(oa + fb) = oTa + fTb, (2.6.3)

where a and b are two arbitrary vectors and o and f§ are arbitrary scalars. If two tensors, T and S, transform
any arbitrary vector a identically, these two tensors are the same, that is, if Ta = Sa for any a, then T = S.
We note, however, that two different tensors may transform specific vectors identically.

Example 2.6.1
Let T be a nonzero transformation that transforms every vector into a fixed nonzero vector n. Is this transformation a
tensor?

Solution

Let a and b be any two vectors; then Ta = n and Tb = n. Since a + b is also a vector, therefore T(a + b) = n.
Clearly T(a + b) does not equal Ta + Th. Thus, this transformation is not a linear one. In other words, it is not a
tensor.

Example 2.6.2
Let T be a transformation that transforms every vector into a vector that is k times the original vector. Is this transfor-
mation a tensor?

Solution
Let a and b be arbitrary vectors and « and f be arbitrary scalars; then, by the definition of T,
Ta=ka, Tb=kb and T(ca+ Bb) = k(xa + pb). (i)
Clearly,
T(oa + pb) = aka + fkb = oTa + STb. (ii)

Therefore, T is a linear transformation. In other words, it is a tensor. If k= 0, then the tensor transforms all vectors
into a zero vector (null vector). This tensor is the zero tensor or null tensor and is symbolized by the boldface 0.

Example 2.6.3
Consider a transformation T that transforms every vector into its mirror image with respect to a fixed plane. Is T a
tensor?

Solution
Consider a parallelogram in space with its sides representing vectors a and b and its diagonal the vector sum of
a and b. Since the parallelogram remains a parallelogram after the reflection, the diagonal (the resultant vector)

*Scalars and vectors are sometimes called the zeroth order tensor and the first-order tensor, respectively. Even though they can also
be defined algebraically, in terms of certain operational rules, we choose not to do so. The geometrical concept of scalars and vectors,
with which we assume readers are familiar, is quite sufficient for our purpose.
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of the reflected parallelogram is clearly both T(a + b) (the reflected a + b) and Ta + Tb (the sum of the reflected a
and the reflected b). That is, T(a + b) = Ta + Th. Also, for an arbitrary scalar «, the reflection of «a is obviously the
same as o times the reflection of a, that is, T(«a) = a(Ta), because both vectors have the same magnitude given by o
times the magnitude of a and in the same direction. Thus, T is a tensor.

Example 2.6.4

When a rigid body undergoes a rotation about some axis n, vectors drawn in the rigid body in general change their
directions. That is, the rotation transforms vectors drawn in the rigid body into other vectors. Denote this transforma-
tion by R. Is R a tensor?

Solution

Consider a parallelogram embedded in the rigid body with its sides representing vectors a and b and its diagonal
representing the resultant (a + b). Since the parallelogram remains a parallelogram after a rotation about any axis,
the diagonal (the resultant vector) of the rotated parallelogram is clearly both R(a + b) (the rotated a + b) and
Ra + Rb (the sum of the rotated a and the rotated b). That is, R(a + b) = Ra + Rb. A similar argument as that used
in the previous example leads to R(ea) = «(Ra). Thus, R is a tensor.

Example 2.6.5

Let T be a tensor that transforms the specific vectors a and b as follows:
Ta=a+2b,
Tb=a-bh.

Given a vector ¢ = 2a + b, find Tc.

Solution
Using the linearity property of tensors, we have

Tc = T(2a+b) =2Ta+Th =2(a+2b) + (a—b) = 3a+3b.

COMPONENTS OF A TENSOR

The components of a vector depend on the base vectors used to describe the components. This will also be
true for tensors.

Let ey, e,, e3 be unit vectors in the direction of the x;-, X,-, X3-, respectively, of a rectangular Cartesian
coordinate system. Under a transformation T, these vectors e, e,, e; become Te;, Te;, Te;. Each of these
Te;, being a vector, can be written as:

Te; =Tie; + Ta1€x + T31€3,
Te, =Tise; + Trrer + Ties, (2.7.1)
Te; = Tize; + Tazes + Tazes,

or

Tei = Tjiej~ (272)
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The components Tj; in the preceding equations are defined as the components of the tensor T. These com-
ponents can be put in a matrix as follows:

Ty T2 T
M= |To Tn Tnl|. 2.73)
T35 Tz T3

This matrix is called the matrix of the tensor T with respect to the set of base vectors {e;}. We note that, because
of the way we have chosen to denote the components of transformation of the base vectors, the elements of the
first column in the matrix are components of the vector Te;, those in the second column are the components of
the vector Te,, and those in the third column are the components of Tej.

Example 2.7.1
Obtain the matrix for the tensor T that transforms the base vectors as follows:
Te1 = 461 + €,
Te, = 2e; + 3es, (i)

Tes = —e; + 3es +es3.

Solution
By Eq. (2.7.1),
4 2 -1
mM=1{1 0 3|. (ii)
0 3 1
Example 2.7.2

Let T transform every vector into its mirror image with respect to a fixed plane; if e; is normal to the reflection plane
(eo and ez are parallel to this plane), find a matrix of T.

Solution
Since the normal to the reflection plane is transformed into its negative and vectors parallel to the plane are not
altered, we have

Te1 = —€e, T82 =€y, TE3 = €3

which corresponds to

Mirror

€

45°
€4

FIGURE 2.7-1
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We note that this is only one of the infinitely many matrices of the tensor T; each depends on a particular choice of
base vectors. In the preceding matrix, the choice of e; is indicated at the bottom-right corner of the matrix. If we
choose e] and e} to be on a plane perpendicular to the mirror, with each making 45° with the mirror, as shown in
Figure 2.7-1, and e} pointing straight out from the paper, then we have

Te; =e), Te;=e;, Tej=ej.
Thus, with respect to {e/}, the matrix of the tensor is
010
M'=1]1 00
0 0 1]

Throughout this book, we denote the matrix of a tensor T with respect to the basis {e} by either [T] or [T}]
and with respect to the basis {e/} by either [T] or [T;]. The last two matrices should not be confused with [T],
which represents the matrix of the tensor T’ with respect to the basis {e}, not the matrix of T with respect to the
primed basis {e/}.

Example 2.7.3

Let R correspond to a right-hand rotation of a rigid body about the xs-axis by an angle 6 (Figure 2.7-2). Find a
matrix of R.

€
Re,

€4

FIGURE 2.7-2

Solution

From Figure 2.7-2, it is clear that
Re; = cosfe; +sinfe,,
Re, = —sinfe; + cosle,,,
R63 = e3.

which corresponds to

cos@ —sing O
[Rl=|sin@ cos@ O
0 0 1

€
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Example 2.7.4
Obtain the matrix for the tensor T, which transforms the base vectors as follows:

Te; = e + 2e, + 3es,
Te, = 4e; + be, + 6es.
Tes = 7e; + 8es + 9es.

Solution
By inspection,

This example emphasizes again the convention we use to write the matrix of a tensor: The components of Te; fill
the first column, the components of Te, fill the second column, and so on. The reason for this choice of convention
will become obvious in the next section.

Since e; -e; = e;-e; = e3-e; = 0 (because they are mutually perpendicular), it can be easily verified
from Eq. (2.7.1) that

Ty =e Te;, Tip=e -Tey, Ti3=e;-Te;s,
Tz] =€ Tel, T22 =€y T(EQ7 T23 =€) Te3, (274)
T3 =e3-Te;, T3 =e3-Tey, Ts;3 =e;3-Tes,

or
Tij =€ Tej. (275)

These equations are totally equivalent to Eq. (2.7.1) [or Eq. (2.7.2)] and can also be regarded as the defi-
nition of the components of a tensor T. They are often more convenient to use than Eq. (2.7.2).

We note again that the components of a tensor depend on the coordinate systems through the set of base
vectors. Thus,

r_ /
T;=e/ Te], (2.7.6)

where Tij’- are the components of the same tensor T with respect to the base vectors {e/}. It is important to note
that vectors and tensors are independent of coordinate systems, but their components are dependent on the
coordinate systems.

COMPONENTS OF A TRANSFORMED VECTOR

Given the vector a and the tensor T, which transforms a into b (i.e., b = Ta), we wish to compute the com-
ponents of b from the components of a and the components of T. Let the components of a with respect to
{61,62763} be (al,az,ag), that is,

a—=aje; + ae) + ases, 2.8.1)
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then

b=Ta= T(alel + arey + [1363) =a,Te; + a,Te; + asTes,

thus,

by =b-e =¢; -T(alel + azer +a3e3) = Cl](é] 'TC]) +a2(e1 ~Te2) +a3(e| ~Te3)7
by=b-e;=¢e ~T(a1e1 + are; +a3e3) = 01(62 'TC]) +a2(e2 ~Te2) +a3(e2 ~Te3),
bs;=b-e3=¢3 -T(a1e1 + aze; +a3e3) = 01(63 ~Te1) +a2(e3 ~Te2) +a3(e3 ~Te3).

By Egs. (2.7.4), we have
b1 = Tnay + Tpas + Thzas,

by = Toiay + Txnar + Taas, (2.8.2)
by = Ts1a1 + Taaz + Ts3a3.

We can write the preceding three equations in matrix form as:
by Tw T Tu||a
by| =|Ta T Tn||a|, (2.8.3)
bs Ty T Ts3]|as

[b] = [T][a]. (2.8.4)

or

We can also derive Eq. (2.8.2) using indicial notations as follows: From a = a;e;, we get Ta = T(a;e;) = a;Te;.
Since Te; = Tje; [Eq. (2.7.2)], b = Ta = a;T;¢; so that
by =b-e, = aTje; e, = aTjjdp, = a;Ty,
that is,
by = aiTy; = Tya;. (2.8.5)

Eq. (2.8.5) is nothing but Eq. (2.8.2) in indicial notation.

We see that for the tensorial equation b = Ta, there corresponds a matrix equation of exactly the same form, that
is, [b] = [T][a]. This is the reason we adopted the convention that Te; = Tje; (i.e., Te; = T11e; + Ta1e; + T3;e3,
etc.). If we had adopted the convention that Te; = Tj;e; (i.e., Te; = T1e; + T12e; + T13e3, etc.), then we would
have obtained [b] = [T]" [a] for the tensorial equation b = Ta, which would not be as natural.

Example 2.8.1
Given that a tensor T transforms the base vectors as follows:

Te; = 2e; — 6e;, + 4e3,
Te, = 3e; + 4ep — les,
Tes = —2e; + ley + 2es.

how does this tensor transform the vector a = e; + 2e, + 3e3?
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Solution
Use the matrix equation

El-Le 2 HE L

we obtain b = 2e; + 5e, + 8es.

SUM OF TENSORS
Let T and S be two tensors. The sum of T and S, denoted by T + S, is defined by
(T+S)a=Ta + Sa (2.9.1)

for any vector a. It is easily seen that T + S, so defined, is indeed a tensor. To find the components of
T + 8, let

W=T+S. (2.9.2)
The components of W are [see Egs. (2.7.5)]
Wi =¢e;-(T+S)e; =e;-Te; +e¢;-Sej,
that is,
Wy =Ty +S;. (2.9.3)
In matrix notation, we have
(W] = [T] +[S], (2.9.4)

and that the tensor sum is consistent with the matrix sum.

PRODUCT OF TWO TENSORS

Let T and S be two tensors and a be an arbitrary vector. Then TS and ST are defined to be the transformations
(easily seen to be tensors) such that

(TS)a = T(Sa), (2.10.1)
and

(ST)a = S(Ta). (2.10.2)
The components of TS are

(TS)” =€;- (TS)ej =€; - T(Se,) =€ TSmjem = Smje,- . Tem = Sijim7 (2103)

that is,

(TS);; = TimSmj- (2.10.4)
Similarly,

(ST); = SinT;- (2.10.5)
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Eq. (2.10.4) is equivalent to the matrix equation:

[TS] = [T][S], (2.10.6)
whereas Eq. (2.10.5) is equivalent to the matrix equation:

[ST] = [S][T]. (2.10.7)

The two products are, in general, different. Thus, it is clear that in general TS # ST. That is, in general, the
tensor product is not commutative.
If T, S, and V are three tensors, then, by repeatedly using the definition (2.10.1), we have

(T(SV))a =T((SV)a) = T(S(Va)) and (TS)(Va) = T(S(Va)), (2.10.8)
that is,
T(SV) = (TS)V = TSV. (2.10.9)

Thus, the tensor product is associative. It is, therefore, natural to define the integral positive powers of a ten-
sor by these simple products, so that

=TT, T=TIT,... (2.10.10)

Example 2.10.1
(a) Let R correspond to a 90° right-hand rigid body rotation about the xz-axis. Find the matrix of R.
(b) Let S correspond to a 90° right-hand rigid body rotation about the x;-axis. Find the matrix of S.
(c) Find the matrix of the tensor that corresponds to the rotation R, followed by S.
(d) Find the matrix of the tensor that corresponds to the rotation S, followed by R.
(e) Consider a point P whose initial coordinates are (1,1,0). Find the new position of this point after the
rotations of part (c). Also find the new position of this point after the rotations of part (d).

Solution
(a) Let {e1, ey, e3} be a set of right-handed unit base vector with e5 along the axis of rotation of the rigid
body. Then,
Re; =e;, Re,=—e;, Res=e;,
that is,

0 -1 0
Rl=|1 0 Of.
0 0 1
(b) In a manner similar to (a), the transformation of the base vectors is given by:

Se; =e;, Se)=e3 Sez=—e,

that is,
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(c) Since S(Ra) = (SR)a, the resultant rotation is given by the single transformation SR whose components are

given by the matrix:
1 0 O 0 -1 0 0O -1 O
[SRj=|0 O -1(|1 O O|=]|0 O -1].
01 O 0 0 1 1 0 O

(d) In a manner similar to (c), the resultant rotation is given by the single transformation RS whose components

are given by the matrix:
0O -1 0][1 O O 0 0 1
RS]=|1 O 0|0 O -1|=1|1 O Of.

60 0 I1]j[01 O 010

(e) Let r be the initial position of the material point P. Let r* and r** be the rotated position of P after the
rotations of part (c) and part (d), respectively. Then

0 -1 011 -1
[r*}:[SR][r]:[O 0 1“1} :[o},
1 0 o0]lo 1

that is,
" = —e; +e;3,
and
0 01 1 0
r1=[RS]f=|1 0 O||1|=1|1],
01 0|0 1
that is,

r' =e, +e;s.

This example further illustrates that the order of rotations is significant.

TRANSPOSE OF A TENSOR

The transpose of a tensor T, denoted by T", is defined to be the tensor that satisfies the following identity for

all

vectors a and b:

a-Tb=b-T'a. (2.11.1)

It can be easily seen that T is a tensor (see Prob. 2.34). From the preceding definition, we have

ej-Te;=¢e -T'e;. (2.11.2)

Thus,

or

(2.11.3)

)" = [17], 2.11.4)
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that is, the matrix of T" is the transpose of the matrix T. We also note that by Eq. (2.11.1),
we have

a-T"™b=b-(T" a. (2.11.5)
Thus, b-Ta = b - (T")"a for any a and b, so that
(THT =T. (2.11.6)
It can be easily established that (see Prob. 2.34)
(Ts)" = s™1". (2.11.7)

That is, the transpose of a product of the tensors is equal to the product of transposed tensors in reverse order,
which is consistent with the equivalent matrix identity. More generally,

(ABC...D)" =D"...C"B"A". (2.11.8)

DYADIC PRODUCT OF VECTORS

The dyadic product of vectors a and b, denoted” by ab, is defined to be the transformation that transforms any
vector ¢ according to the rule:

(ab)e = a(b-c¢). (2.12.1)
Now, for any vectors ¢, d, and any scalars o and f3, we have, from the preceding rule,

(ab)(xc + pd) = a(b- (xc + d)) = a((ab-¢c) + (fb-d)) = za(b-c) + fa(b-d)

= o(ab)c + S(ab)d. (2.122)
Thus, the dyadic product ab is a linear transformation.
Let W = ab, then the components of W are:
W,'j =€ - Wej =€ - (ab)ej =€ a(b . e]') = aibj, (2.12.3)
that is,
W,‘j = a,‘bj, (2124)
or
a1by aib, abs a
[W] = azb1 d2b2 a2b3 = | a [b] b2 bg ] (2125)
asby azby azbs as
In particular, the dyadic products of the base vectors e; are:
1 00 010
[eie;]]=10 0 Of, J[ejexJ=[0 0 Of-.... (2.12.6)
0 0 O 0 0 0

*Some authors write a ® b for ab. Also, some authors write (ab)-c for (ab)c and c-(ab) for (ab)TCA
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Thus, it is clear that any tensor T can be expressed as:

T= T]]Q]E] + T12e192 + T13e1e3 + T21e2e1 +...= T,-J-eiej, (2127)

TRACE OF A TENSOR

The trace of a tensor is a scalar that obeys the following rules: For any tensor T and S and any vectors a and b,

tr(T+S)=tuT+1trS,
tr(a T) = atr T, (2.13.1)
tr(ab) =a-b.

In terms of tensor components, using Eq. (2.12.7),

tr' T = tr(Tjje;e;) = Tytr(eie;) = Tije; - €j = Tjj0; = Tis. (2.13.2)
That is,
tr'T =Ty, + T + T33 = sum of diagonal elements. (2.13.3)
It is, therefore, obvious that
trTT =trT. (2.13.4)

Example 2.13.1
Show that for any second-order tensor A and B

tr(AB) = tr(BA). (2.13.5)

Solution
Let C = AB, then Cj = A By, so that tr(AB) =trC = C;j = AinBpm.

Let D = BA, then Dj = BinAp, so that tr(BA) =tr D = Dj; = BjnAmi. But BinAmi = BmiAim (change of dummy
indices); therefore, we have the desired result

tr(AB) = tr(BA).

IDENTITY TENSOR AND TENSOR INVERSE

The linear transformation that transforms every vector into itself is called an identity tensor. Denoting this
special tensor by I, we have for any vector a,

Ia =a. (2.14.1)
In particular,

IE| =€, Ie2 = €3, Ie3 = €3. (2142)
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Thus the (Cartesian) components of the identity tensor are:

I[j = €; ~Iej =€ e, = 5,7‘, (2143)

10
[1]—{01
0 0

It is obvious that the identity matrix is the matrix of I for all rectangular Cartesian coordinates and that
TI = IT = T for any tensor T. We also note that if Ta = a for any arbitrary a, then T = L

that is,

—_— o O

} . (2.14.4)

Example 2.14.1
Write the tensor T, defined by the equation Ta = «a, where « is a constant and a is arbitrary, in terms of the identity
tensor, and find its components.

Solution
Using Eq. (2.14.1), we can write «a as «la, so that

Ta =oca =ala.
Since a is arbitrary, therefore,
T=oal

The components of this tensor are clearly T; = «dj.

Given a tensor T, if a tensor S exists such that
ST =1, (2.14.5)
then we call S the inverse of T and write
S=T17" (2.14.6)

To find the components of the inverse of a tensor T is to find the inverse of the matrix of T. From the
study of matrices, we know that the inverse exists if and only if det T # O (that is, T is nonsingular) and in
this case,

()T = [1)[1] " = [1]. (2.14.7)

Thus, the inverse of a tensor satisfies the following relation:

T 'T=TT'=L (2.14.8)
It can be shown (see Prob. 2.35) that for the tensor inverse, the following relations are satisfied:

(Th)™" = (1", (2.14.9)

and

(TS)"' =s7'17L. (2.14.10)

We note that if the inverse exists, we have the reciprocal relations that

Ta=b and a=T"'b. (2.14.11)
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This indicates that when a tensor is invertible, there is a one-to-one mapping of vectors a and b. On the other
hand, if a tensor T does not have an inverse, then, for a given b, there are in general more than one a that
transform into b. This fact is illustrated in the following example.

Example 2.14.2
Consider the tensor T = cd (the dyadic product of ¢ and d).

(a) Obtain the determinant of T.
(b) Show that if Ta = b, then T(a + h) = b, where h is any vector perpendicular to the vector d.

Solution
1 1 d1 C1 d2 C1 C/3 1 11
(a) [T} =|C [dl d2 O’3} = C2d1 C2d2 CQC/3 and det [T} = C1(,‘2C3d1d2d3 1 1 1|=0.
C3 C3d1 C3d2 C3C/3 1 11

That is, T is a singular tensor, for which an inverse does not exist.
(b) T(a+h) = (cd)(@+h) =c(d-a) + c(d-h). Now d-h = O (h is perpendicular to d); therefore,
T@+h)=c(d-a)=(cdja=Ta=h.

That is, all vectors a + h transform into the vector b, and it is not a one-to-one transformation.

ORTHOGONAL TENSORS

An orthogonal tensor is a linear transformation under which the transformed vectors preserve
their lengths and angles. Let Q denote an orthogonal tensor; then by definition, |Qa|=|a|, |Qb|=|b|, and
cos(a,b) = cos(Qa, Qb). Therefore,

Qa-Qb=a-b 2.15.1)

for any vectors a and b.
Since by the definition of transpose, Eq. (2.11.1), (Qa) - (Qb) = b - Q'(Qa), thus

b-a=b-(Q'Q)a or b-la=b-Q'Qa.
Since a and b are arbitrary, it follows that
Q'Q=1L (2.15.2)
This means that for an orthogonal tensor, the inverse is simply the transpose,
Q'=Q". (2.15.3)
Thus [see Eq. (2.14.8)],
Q'Q=QQ"=1L (2.15.4)
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In matrix notation, Eq. (2.15.4) takes the form:
[QI'[Q = [QI[Q]" = [, (2.15.5)
and in subscript notation, we have
QmiQmj = QimQjm = 61] (2156)
Example 2.15.1
The tensor given in Example 2.7.2, being a reflection, is obviously an orthogonal tensor. Verify that [T][T]" = [I] for the

[T] in that example. Also, find the determinant of [TI.

Solution
Evaluating the matrix product:

The determinant of T is

Example 2.15.2

The tensor given in Example 2.7.3, being a rigid body rotation, is obviously an orthogonal tensor. Verify that

[R][R]" = [1] for the [R] in that example. Also find the determinant of [R].

cosf —sinf O cosf sinf O 1 00
RIR"=|sin® cos® Of|—-sind cosd O|=1[0 1 0Of,
0

0 1 0 0 1

Solution

cosf —sinf O
sinf cosf O
0 0 1

det[R] = |R| = =1

The determinant of the matrix of any orthogonal tensor Q is easily shown to be equal to either +1 or —1.

In fact, since

Q" =1,

therefore,

QIQ"| = QIIQ"| = .
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Now |Q| = |Q"| and [I| = 1, therefore, |Q|* = I, thus
Q| = £1. (2.15.7)

From the previous examples, we can see that for a rotation tensor the determinant is +1, whereas for a
reflection tensor, it is —1.

TRANSFORMATION MATRIX BETWEEN TWO RECTANGULAR
CARTESIAN COORDINATE SYSTEMS

Suppose that {e;,e;,e3} and {el’ ,€5, e3’} are unit vectors corresponding to two rectangular Cartesian coordi-
nate systems (see Figure 2.16-1). It is clear that {e;,e;, e3} can be made to coincide with {el’, e, eg} through
either a rigid body rotation (if both bases are same-handed) or a rotation followed by a reflection (if different-
handed). That is, {e;} and {el-’ } are related by an orthogonal tensor Q through the equations below.

e, 2
e;
€4
€3
€3
FIGURE 2.16-1
e/ = Qe; = Oyien, (2.16.1)
that is,
e] = 011 + 0212 + 03183,
e, = One; + One; + Ones, (2.16.2)
e; = Onze; + Oner + Ox3es,
where
OinQjm = OmiQmj = 0ij, (2.16.3)
or
QQ"=Q'Q=1L (2.16.4)
We note that
011 =e;-Qe; = e, -e] = cosine of the angle between e; and e],

Q1> =e;-Qe; = e -ej = cosine of the angle between e; and ej, etc.
That is, in general, Q;; = cosine of the angle between e; and ei’ , which may be written:

Q,:,' = COS(E,‘, ej’). (2165)
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The matrix of these direction cosines, i.e., the matrix

031 QOn» 03

is called the transformation matrix between {e;, e;,es} and {el’ ,e5, e3’}. Using this matrix, we shall obtain in
the following sections the relationship between the two sets of components, with respect to these two sets of
base vectors, of a vector and a tensor.

On Qn 0O
Ql=(0n On 0On], (2.16.6)

Example 2.16.1
Let {e{, eé,eé} be obtained by rotating the basis {e1, e», e3} about the ez axis through 30°, as shown in Figure 2.16-2.
In this figure, e3 and ej coincide.

, €
€

30° e

30°
€1

FIGURE 2.16-2

Solution
We can obtain the transformation matrix in two ways:

1. Using Eq. (2.16.5), we have

Qi1 = cos(ep,e]) =cos30° = V3/2, Q= cos(er,e}) =cos120° = —1/2, (3 = cos(er,e}) = cos90° =0,
(o1 = cos(ey,e]) =cos60° =1/2, Qo = cos(ey,e)) =cos30° = V3/2, Qo3 = cos(ey, e}) =cos90° =0,
Q31 = cos(ez, e) = cos90° =0, Qs = cos(ez, e)) = cos90° =0, (v3 = cos(ez, ef) =cos0° = 1.

2. ltis easier to simply look at Figure 2.16-2 and decompose each of the e/ into its components in the
{e1,ep,e3} directions, i.e.,

. 3 1
e] =cos30°e; +sin30%;, = gel + §e2’

1
e, = —sin30°e; + cos30°e; = —éel +§e2,

e = es.

Thus, by Eq. (2.16.2), we have

/2 V3/2 0

V3/2 -1/2 0
Q= .
0 0o 1
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TRANSFORMATION LAW FOR CARTESIAN COMPONENTS OF A VECTOR

Consider any vector a. The Cartesian components of the vector a with respect to {e;,e;,e3} are:
a; —=a-e;, (2171)

and its components with respect to {e[, e}, e}} are:

al=a-e/. (2.17.2)
Now ei’ = Omien [see Eq. (2.16.1)]; therefore,
al =a-Qpien = Omi(a-ey), (2.17.3)
that is,
al = Quidn. (2.17.4)
In matrix notation, Eq. (2.17.4) is
aj Ou OQu Qs | |a
a| =00 On On| |al, (2.17.5)

aj Q13 0 03 as

or

[a]" = [Q]"[a]. (2.17.6)

Equation (2.17.4), or Eq. (2.17.5), or Eq. (2.17.6) is the transformation law relating components of
the same vector with respect to different rectangular Cartesian unit bases. It is very important to note
that in Eq. (2.17.6), [a]’ denotes the matrix of the vector a with respect to the primed basis {ei’ }, and [a]
denotes the same vector with respect to the unprimed basis {e;}. Eq. (2.17.6) is not the same as a’ = Q'a.
The distinction is that [a]’ and [a] are matrices of the same vector, whereas a and a’ are two different vec-
tors—a’ being the transformed vector of a (through the transformation a’ = Q'a).

If we premultiply Eq. (2.17.6) with [Q], we get

[a] = [Q[a]". 2.17.7)
The indicial notation for this equation is:

ai = Qima,,. (2.17.8)

Example 2.17.1

Given that the components of a vector a with respect to {e;} are given to be [2,0,0]. That is, a = 2e;, find its com-
ponents with respect to {e/}, where the {e/} axes are obtained by a 90° counter-clockwise rotation of the {e;} axis
about its ez axis.

Solution
The answer to the question is obvious from Figure 2.17-1, that is,

a=2e = —2e,).
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To show that we can get the same answer from Eq. (2.17.6), we first obtain the transformation matrix of Q. Since

e] =ep,e, = —ej and e = e3, we have
0 -1 0
Q] = [1 0 O}.

0O 0 1
Thus,
0 1 0] (2 0
@' =[Q'a]=|-1 0 0] [0]|=]|-2],
0O 0 1] |0 0
that is,
a=—2e,.
Xo
ejle;
g Xq
es ey a
FIGURE 2.17-1

TRANSFORMATION LAW FOR CARTESIAN COMPONENTS OF A TENSOR

Consider any tensor T. The components of T with respect to the basis {e;,e,,e3} are:
T;; =e;-Te,. (2.18.1)
Its components with respect to {e[, e}, e} are:
T[;- = e[/ . Tej’. (2.18.2)
With e/ = Qe,,, we have
T,-j/- = Omin  TOne, = 0niQnjen - Te,,

that is,
T,'j/' = QmiQniTnm~ (2]83)

In matrix notation, the preceding equation reads:

T, T{, T On QOn Qs Ty Ty Tis On Qn 0O
Ty, Ty Ty| = |0 On On Toy T Ta 0On QO»n 0Oxn|, (2.18.4)
Ty, Ty Ts Oz 0n 0| [Ts Tn T |0 QOxn 03

or

)’ =[Q]" [T] [Q]. (2.18.5)
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We can also express the unprimed components in terms of the primed components. Indeed, if we premul-
tiply the preceding equation with [Q] and post-multiply it with [Q]", we obtain, since

QI [Q" = [Q"[Q] = 1], (2.18.6)
1] = [Q] [T] [Q]". (2.18.7)

In indicial notation, Eq. (2.18.7) reads
Tij = QinQinT - (2.18.8)

Equations (2.18.5) [or Eq. (2.18.3)] and Eq. (2.18.7) [or Eq. (2.18.8)] are the transformation laws relating
components of the same tensor with respect to different Cartesian unit bases. Again, it is important to note
that in Eqs. (2.18.5) and (2.18.7), [T] and [T] are different matrices of the same tensor T. We note that
the equation [T]' = [Q]"[T][Q] differs from T’ = QTTQ in that the former relates the components of the
same tensor T whereas the latter relates the two different tensors T and T’

Example 2.18.1
Given that with respect to the basis {e;, e»,e3}, the matrix of a tensor T is given by

010
[T]—{l 2 o].
001

Find [TV, that is, find the matrix of T with respect to the e/ basis, where {e], e}, e} is obtained by rotating
{e1,e2,e3} about its es-axis through 90° (see Figure 2.17-1).

Solution
Since e =ey,e) = —ej and e; = e3, by Eq. (2.7.1) we have

0 -1 0
[Q]—[l 0 o]
0 0 1

0 -1 0 2 -1 0
1 0 O0|=(-1 0 Of,
0O 0 1 0O 0 1

h=2 T,o=-1, T53=0, T,=0 T5;=0T5;=1L

Thus, Eq. (2.18.5) gives

that is,

Example 2.18.2
Given a tensor T and its components Tj and T/].’ with respect to two sets of bases {e;} and {e,’}. Show that T} is invari-
ant with respect to these bases, i.e., T = T/

I/

Solution
The primed components are related to the unprimed components by Eq. (2.18.3):

T//‘, = Qm/ an Tmn 5
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thus,
Tii = QmiQni Trmn-
But QmiQni = 6mn [Eq. (2.15.6)], therefore,
Tii = 0mn Tron = Tonm = T,
that is,

N1+ Too+ Tas =T} + T + Tas.

We see from Example 2.18.1 that we can calculate all nine components of a tensor T with respect to { e/ }
from the matrix [T] (e} by using Eq. (2.18.5). However, there are often times when we need only a few com-
ponents. Then it is more convenient to use Eq. (2.18.1). In matrix form, this equation is written:

T = [e/]"[T] [¢]] (2.18.9)

where [e/]" denote the row matrix whose elements are the components of e/ with respect to the basis {e;}.

Example 2.18.3
Obtain T, for the tensor T and the bases {e;} and {e,.’} given in Example 2.18.1 by using Eq. (2.18.1).

Solution
Since e; = ep and e = —ey, therefore,

T,=e;-Te;=ey-T(—e;) = —To = 1.

Alternatively, using Eq. (2.18.9), we have

01 0][-1 0
T, =le]]"[M[es] =[0 1 0] [1 2 o] {o][o 1 0] {_1]_1.
00 1]]0

DEFINING TENSOR BY TRANSFORMATION LAWS

Equation (2.17.4) or (2.18.3) states that when the components of a vector or a tensor with respect to
{e1,ey,e3} are known, then its components with respect to any {el’,ez’,eg} are uniquely determined from
them. In other words, the components a; or T;; with respect to one set of {e;, e,, e3} completely characterize
a vector or a tensor. Thus, it is perfectly meaningful to use a statement such as “consider a tensor T;;,” mean-
ing consider the tensor T whose components with respect to some set of {e, e,, e3} are T};. In fact, an alter-
native way of defining a tensor is through the use of transformation laws relating components of a tensor with
respect to different bases. Confining ourselves to only rectangular Cartesian coordinate systems and using unit
vectors along positive coordinate directions as base vectors, we now define Cartesian components of tensors

of different orders in terms of their transformation laws in the following, where the primed quantities are
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referred to basis {e[,e},e]} and unprimed quantities to basis {e|,e,,es}, where the e/ and e, are related by
e/ = Qe;, Q being an orthogonal transformation:

o' =« zeroth-order tensor (or scalar),
al.’ = Qpiap first-order tensor (or vector),
= OmiQniTmn second-order tensor (or tensor), 2.19.1)
uk = O0niOniOtSmnr third-order tensor, 7
CI_,/kl Ohmi anQl‘stlcmnm fourth-order tensor,

Using the preceding transformation laws, we can easily establish the following three rules for tensor com-
ponents: (1) the addition rule, (2) the multiplication rule, and (3) the quotient rule.

1. The addition rule. If T;; and S;; are components of any two second-order tensors, then T;; + S;; are com-
ponents of a second-order tensor. Similarly, if 7;; and S;; are components of any two th1rd order ten-
sors, then T + S, are components of a third-order tensor.

To prove this rule, we note that since T, = = OmiQnjOrTynr and S,jk OmiQjOricSmnr» thus,

k + S,]k QmianQ/‘kTmm' + QmianQrkSmnr = QmianQl‘k(Tmnr + Smnr)‘

Letting
W,j;‘]; l]k + S,jk and Wmm - Tmm + Smm»

we have
Uk le Q”l]Qf]\ Wmm )

that is, W are components of a third-order tensor.

2. The multiplication rule. Let a; be components of any vector and T;; be components of any tensor. We
can form many kinds of products from these components. Examples are (a) a;a;, (b) a,ajay, (¢) T;iTy,
(d) T;Tj, etc. It can be proved that these products are components of a tensor Whose order is equal
to the number of free indices. For example, a;a; are components of a second-order tensor a,a;ay are
components of a third-order tensor, T;T; are components of a fourth-order tensor, and 7T, are com-
ponents of a second-order tensor.

To prove that a,a; are components of a second-order tensor, we let S;; = a;a; and S L= al aJ’ , then,
since a; are components of the vector a, ai’ = Qpia,, and aj’ = 0,;a,, so that

Sl; = Qmiaanjan = Qmianaman = QmianSmm
thus,
S,; = QmianSmm

which is the transformation law for a second-order tensor.
To prove that T;T}; are components of a fourth-order tensor, let My = T;;Ty; then we have

Mi/,'kl kl - leQn/ anerles - thQn/Q/erlenTrv:

that is,
,]k[ th Qn/Qlelemm Sy

which is the transformation law for a fourth-order tensor. It is quite clear from the proofs given above that
the order of the tensor whose components are obtained from the multiplication of components of tensors
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is determined by the number of free indices; no free index corresponds to a scalar, one free index corre-
sponds to a vector, two free indices correspond to a second-order tensor, and so on.

3. Quotient rule. If a; are components of an arbitrary vector, T;; are components of an arbitrary tensor, and
a; = Tyb; for all coordinates, then b; are components of a vector
To prove this, we note that since a; are components of a vector and T;; are components of a second-
order tensor, therefore,

a; = Qina,, )
and
Tjj = QimQinT pyy- (ii)
Now, substituting Eq. (i) and Eq. (ii) into the equation a; = T;b;, we have
Qinty, = QimQinT b (iii)
But the equation a; = T;;b; is true for all coordinates, thus we also have
a; =T;bj and a, =T,,b,, (iv)
and thus Eq. (iii) becomes
OinT,,by = QinQinT b v)

Multiplying the preceding equation with Q; and noting that 030, = Orms We get
ST by = OumQin T, or  Ti,by, = QpTy,
thus,
T}, (b, = Qjubj) = 0. (vi)
Since this equation is to be true for any tensor T, therefore b] — Q;,b; must be identically zero. Thus,
b! = Qjub;. (vii)

This is the transformation law for the components of a vector. Thus, b; are components of a vector.

Another example that will be important later when we discuss the relationship between stress and
strain for an elastic body is the following: If T;; and E;; are components of arbitrary second-order ten-
sors T and E, and

Ty = CijuEu, (viii)

for all coordinates, then Cjj; are components of a fourth-order tensor. The proof for this example fol-
lows exactly the same steps as in the previous example.

SYMMETRIC AND ANTISYMMETRIC TENSORS

A tensor is said to be symmetric if T = T". Thus, the components of a symmetric tensor have the property

T, =Ty, (2.20.1)



32 CHAPTER 2 Tensors

that is,
Tyo=Tn, Tiz=Tn, Tiu=Ts (2.20.2)
A tensor is said to be antisymmetric if T = —T". Thus the components of an antisymmetric tensor have
the property
Ty = Ty, (2.20.3)
that is,
Thw=Tn=T53=0, Tn=-Tn, Ti=-T3, Tn=-Tsn (2.20.4)
Any tensor T can always be decomposed into the sum of a symmetric tensor and an antisymmetric tensor.
In fact,
T=T54+T4, (2.20.5)
where
T+T" T-T"

T = is symmetric and T = is anti-symmetric. (2.20.6)

It is not difficult to prove that the decomposition is unique (see Prob. 2.47).

THE DUAL VECTOR OF AN ANTISYMMETRIC TENSOR

The diagonal elements of an antisymmetric tensor are always zero, and, of the six nondiagonal elements, only
three are independent, because T\, = —T»1, To3 = —T3; and T3; = —T3. Thus an antisymmetric tensor has
really only three components, just like a vector. Indeed, it does behave like a vector. More specifically, for
every antisymmetric tensor T there is a corresponding vector t* such that for every vector a, the transformed
vector of a under T, i.e., Ta, can be obtained from the cross-product of t* with the vector a. That is,

Ta=t" x a. (2.21.1)

This vector t* is called the dual vector of the antisymmetric tensor. It is also known as the axial vector.
That such a vector indeed can be found is demonstrated here.
From Eq. (2.21.1), we have

T12:e1~Te2:e1~tA><e2:tA-e2><e1:— re3 = —I3,
Ty =e;-Tey =e;-th xe; =th-e; xe3 = —t ey = 1, (2.21.2)
T23:e2-Te3:e2~tA><e3:tA-e3><e2:— e =

Similar derivations will give To; = 3, T13 = 13, T3o = 14 and Ty; = Ty = T3 = 0. Thus, only an antisym-
metric tensor has a dual vector defined by Eq. (2.21.1). It is given by

th = —(Tase; + T312 + Thoes) = Tazey + Thses + Tajes (2.21.3)
or, in indicial notation,
2 — ey Te. @2.21.4)

The calculations of dual vectors have several uses. For example, it allows us to easily obtain the axis of
rotation for a finite rotation tensor. In fact, the axis of rotation is parallel to the dual vector of the
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antisymmetric part of the rotation tensor (see Example 2.21.2). Also, in Chapter 3 it will be shown that the dual
vector can be used to obtain the infinitesimal angles of rotation of material elements under infinitesimal defor-
mation (Section 3.11) and to obtain the angular velocity of material elements in general motion (Section 3.14).

Example 2.21.1
Given

1 23
m—{zx 2 1}.
111

(@) Decompose the tensor into a symmetric and an antisymmetric part.
(b) Find the dual vector for the antisymmetric part.
(c) Verify Tha =1t" x a for a = e; + es.

Solution

(@) [T] = [T°] + [T"], where

132 T [0 -1 1
[Tﬂ:W:[g 2 %},[TA]zm;m:[l 0 o}.

(b) The dual vector of TA is

th = —(Tihe1 + Thieo + Tihes) = —(Oe; —ep —e3) = €5 + es.

0o -11 1 1
SUEE[RE
-1 0 O 1 -1

b=e; +e,—e;s.

(c) Let b = T"a. Then

that is,

We note that t* x a = (e +e3) x(ej+e3)=—e3+e; +e,=Dh.

Example 2.21.2
Given that R is a rotation tensor and that m is a unit vector in the direction of the axis of rotation, prove that the dual
vector q of R” is parallel to m.

Solution
Since m is parallel to the axis of rotation, therefore,

Rm =m.
Multiplying the preceding equation by R and noticing that R'R = I, we then also have the equation R'm = m. Thus,

(R-RYm=0 or 2R"m=0,
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but R*m = g x m, where q is the dual vector of R”. Therefore,
gxm=0, (2.21.5)

that is, q is parallel to m. We note that it can be shown [see Prob. 2.54(b)] that if 0 denotes the right-hand rotation
angle, then

q = (sinf)m. (2.21.6)

EIGENVALUES AND EIGENVECTORS OF A TENSOR

Consider a tensor T. If a is a vector that transforms under T into a vector parallel to itself, that is,
Ta = Ja, (2.22.1)

then a is an eigenvector and A is the corresponding eigenvalue.
If a is an eigenvector with corresponding eigenvalue 4 of the linear transformation T, any vector parallel
to a is also an eigenvector with the same eigenvalue A. In fact, for any scalar o

T(xa) = «Ta = a(la) = A(ca). (2.22.2)

Thus, an eigenvector, as defined by Eq. (2.22.1), has an arbitrary length. For definiteness, we shall agree that
all eigenvectors sought will be of unit length.

A tensor may have infinitely many eigenvectors. In fact, since Ia = a, any vector is an eigenvector for the
identity tensor I, with eigenvalues all equal to unity. For the tensor 1, the same is true except that the eigen-
values are all equal to f.

Some tensors only have eigenvectors in one direction. For example, for any rotation tensor that effects a
rigid body rotation about an axis through an angle not equal to an integral multiple of 7, only those vectors
that are parallel to the axis of rotation will remain parallel to themselves.

Let n be a unit eigenvector. Then

Tn = An = /In, (2.22.3)
thus,
(T—)n=0 with n-n=1. (2.22.4)
Let n = o;e;; then, in component form,
(Tj — 26;)o; =0 with ooy = 1. (2.22.5)

In long form, we have

(T11 — /1)0(1 + Tp0 + Tiz03 = 0,
Ty10n + (T — A)on + Toz03 = 0, (2.22.6)
T30y + T30 + (T33 — /l)OC3 =0.

Equations (2.22.6) are a system of linear homogeneous equations in «y, , and az. Obviously, a solution
for this system is a; = ap = o3 = 0. This is known as the trivial solution. This solution simply states the
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obvious fact that a = 0 satisfies the equation Ta = Za, independent of the value of A. To find the nontrivial
eigenvectors for T, we note that a system of homogeneous, linear equations admits a nontrivial solution only
if the determinant of its coefficients vanishes. That is,

T — A1) = 0, 2.22.7)
that is,
Ty — X T T3
Ty Tn—% Ty |=0. (2.22.8)
T3 T3 Ty — A

Expanding the determinant results in a cubic equation in A. It is called the characteristic equation of T.
The roots of this characteristic equation are the eigenvalues of T.
Equations (2.22.6), together with the equation

B4l =1, (2.22.9)

allow us to obtain eigenvectors of unit length. The procedure for finding the eigenvalues and eigenvectors of a
tensor are best illustrated by example.

Example 2.22.1
Find the eigenvalues and eigenvectors for the tensor whose components are

2 00
mz{o 2 o}.
00 2

Solution

We note that this tensor is 21, so that Ta = 2la = 2a for any vector a. Therefore, by the definition of eigenvector [see
Eqg. (2.22.1)], any direction is a direction for an eigenvector. The eigenvalue for every direction is the same, which is
2. However, we can also use Eq. (2.22.8) to find the eigenvalues and Egs. (2.22.6) to find the eigenvectors. Indeed,
Eq. (2.22.8) gives, for this tensor, the following characteristic equation:

(2-4°=0,
so we have a triple root A = 2. Substituting this value in Egs. (2.22.6), we have
(2-2)y =0, (2-2up =0, (2—2)az=0.

Thus, all three equations are automatically satisfied for arbitrary values of o, ao and a3z so that every direction is a
direction for an eigenvector. We can choose any three noncoplanar directions as the three independent eigenvectors;
on them all other eigenvectors depend. In particular, we can choose {e;, e,, es} as a set of independent eigenvectors.

Example 2.22.2
Show that if To; = T3; = 0, then +e; are eigenvectors of T with eigenvalue T;;.

Solution
From Te; = T11e1 + To1€0 + T31€3, we have

TE1 = T11e1 and T(—el) = T11(—e1).
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Thus, by definition, Eq. (2.22.1), +e; are eigenvectors with T;; as its eigenvalue. Similarly, if T;, = T3, =0, then
+e, are eigenvectors with corresponding eigenvalue To,, and if Ti3 = T3 =0, then +ez are eigenvectors with
corresponding eigenvalue Tss.

Example 2.22.3
Given that

T =

o O N
o NN O
w O O

Find the eigenvalues and their corresponding eigenvectors.

Solution
The characteristic equation is

(2-7)?@B-1)=0.

Thus, 41 = 3, 2o = A3 = 2 (obviously the ordering of the eigenvalues is arbitrary). These results are obvious in
view of Example 2.22.2. In fact, that example also tells us that the eigenvectors corresponding to 41 = 3 are +e3
and eigenvectors corresponding to 2, = 13 = 2 are +e; and +e,. However, there are actually infinitely many eigen-
vectors corresponding to the double root. In fact, since

Te; =2e; and Te, =2ey,
therefore, for any o and p,
T(oe; + pey) = aTe; + fTe, = 2ue; + 26 = 2(xe; + fey),

that is, ae; + fe, is an eigenvector with eigenvalue 2. This fact can also be obtained from Egs. (2.22.6). With 2 = 2,
these equations give

OO(l = O7 OO€2 = O7 o3 = 0.

Thus, «; = arbitrary, an = arbitrary, and a3 = 0, so that any vector perpendicular to es, that is, any
n =o€, + ayey, iS an eigenvector.

Example 2.22.4
Find the eigenvalues and eigenvectors for the tensor

20 0
[T]:[OS 4}
0 4 -3
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Solution
The characteristic equation gives

T-M=| 0 3-4 4 |=@-))-25=0.

Thus, there are three distinct eigenvalues, A; = 2, ., = 5 and A3 = —5.
Corresponding to 4; = 2, Egs. (2.22.6) gives

Oy =0, op+4a3=0, 4oy —5az=0,
and we also have Eq. (2.22.9):
02 4 as 405 = 1.
Thus, ao = a3 = 0 and «; = +1 so that the eigenvector corresponding to 4; = 2 is
n; = te;.
We note that from the Example 2.22.2, this eigenvalue 2 and the corresponding eigenvectors n; = +e; can be

written by inspection.
Corresponding to A, = 5, we have

—301 =0, 200 +403=0, 4o, —8uz3=0,
thus (note the second and third equations are the same),
oy =0, ap = 203,

and the unit eigenvectors corresponding to A, = 5 are
np, ==+ ! (2e2 + e3)

Similarly for 43 = —5, the unit eigenvectors are

1
n3 = i—(—eg + 283).

V5

All the examples given here have three eigenvalues that are real. It can be shown that if a tensor is
real (i.e., with real components) and symmetric, then all its eigenvalues are real. If a tensor is real
but not symmetric, then two of the eigenvalues may be complex conjugates. The following is such an
example.
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Example 2.22.5
Find the eigenvalues and eigenvectors for the rotation tensor R corresponding to a 90° rotation about the e (see
Example 2.10.1).

Solution
With

0 -1 0
[R]_[l 0 o}

the characteristic equation is

that is,
PA=D+1=-=0-1A+1)=0.

Thus, only one eigenvalue is real, namely A; = 1; the other two, 1, = +v/—1 and A3 = —v/—1, are imaginary. Only
real eigenvalues are of interest to us. We shall therefore compute only the eigenvector corresponding to 41 = 1. From

O—1og —ap=0, a3 —0p=0, (1-1)az=0,
and
o3+ og ol =1,
we obtain a1 =0, ap =0, a3 = +1, that is,
n = +es,

which, of course, are parallel to the axis of rotation.

PRINCIPAL VALUES AND PRINCIPAL DIRECTIONS OF REAL SYMMETRIC
TENSORS

In the following chapters, we shall encounter several real tensors (stress tensor, strain tensor, rate of deforma-
tion tensor, etc.) that are symmetric. The following significant theorem can be proven: The eigenvalues of any
real symmetric tensor are all real (we omit the proof). Thus, for a real symmetric tensor, there always exist at
least three real eigenvectors, which we shall also call the principal directions. The corresponding eigenvalues
are called the principal values.

We now prove that there always exist three principal directions that are mutually perpendicular. Let n,
and n, be two eigenvectors corresponding to the eigenvalues A; and 4,, respectively, of a tensor T. Then

Tnl = /11[117 (2231)

and
Tll2 = j.gl'lz. (2232)

Thus,
H2~TII| = j.ll‘lz'l'll7 (2233)
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and
n;-Tn, = Aong -ny. (2.23.4)
For a symmetric tensor, T = TT, so that
n-Tn, =n,-T'n; = n, - Tny. (2.23.5)
Thus, from Egs. (2.23.3) and (2.23.4), we have
(1 — 22)(ny -my) = 0. (2.23.6)

It follows that if 4, is not equal to A,, then n; - ny = 0, that is, n; and n, are perpendicular to each other.
We have thus proved that if the eigenvalues of a symmetric tensor are all distinct, then the three principal
directions are mutually perpendicular.

Next, let us suppose that n; and n, are two eigenvectors corresponding to the same eigenvalue A. Then, by
definition, Tn; = An; and Tn, = /n; so that for any o and f5,

T(Oﬂ]] + ﬁl‘lz) = O(Tll] + ﬁTI‘lz = O()Jl] =+ ﬂ/ll]z = /1(0([]1 + ﬁl‘lz).

That is, (en; + fn,) is also an eigenvector with the same eigenvalue A. In other words, if there are
two distinct eigenvectors with the same eigenvalue, then there are infinitely many eigenvectors (which form
a plane) with the same eigenvalue. This situation arises when the characteristic equation has a repeated root
(see Example 2.22.3). Suppose the characteristic equation has roots 1; = A, = 4 and A5 (43 distinct from ).
Let n3 be the eigenvector corresponding to A3; then n3 is perpendicular to any eigenvector of 1. Therefore
there exist infinitely many sets of three mutually perpendicular principal directions, each containing n; and
any two mutually perpendicular eigenvectors of the repeated root A.

In the case of a triple root, 4, = 4, = A3 = A, any vector is an eigenvector (see Example 2.22.1) so that
there exist infinitely many sets of three mutually perpendicular principal directions.

From these discussions, we conclude that for every real symmetric tensor there exists at least one triad of
principal directions that are mutually perpendicular.

MATRIX OF A TENSOR WITH RESPECT TO PRINCIPAL DIRECTIONS

We have shown that for a real symmetric tensor, there always exist three principal directions that are mutually
perpendicular. Let ny, n, and n3 be unit vectors in these directions. Then, using n;, n, and n; as base vectors,
the components of the tensor are

Ty =n;-Tny =n;-4ing = iny -0y = 44,
Ty =ny-Tny =my-Jony = /omy -y = Ay,
T33 =13 'Tl'l3 =n3 '/13113 = )u3l’l3 ‘N3 = /13,

T12 =ng- Tnz =N '/lznz = ;»2111 ‘M = O7 (2.24.1)
T3 =n;-Tny =n;-/3n3 = /3n;-m3 =0,
T3 =my-Tn3 =my-/3n3 = A3my -n3 = 0,
that is,
A1 0 0
m=|0 2 0] . (2.24.2)
0 0 A

Thus, the matrix is diagonal and the diagonal elements are the eigenvalues of T.
We now show that the principal values of a tensor T include the maximum and the minimum values that
the diagonal elements of any matrix of T can have. First, for any unit vector e{ = an; + fin, + yns,
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),1 0 0 o
T, =e/-Tef=[a B y]| 0 i O0|]|B], (2.24.3)
that is,
T/, = Mo? + Jaf® + iy’ (2.24.4)

Without loss of generality, let

>0 > . (2.24.5)
Then, noting that o? + [32 + yz =1, we have

I =2(® + B2 +97) > e + Jaf + Iay?, (2.24.6)

that is,
A>T, (2.24.7)

We also have

ot + Iaf? 4 A3yt > da(of + B +97) = s, (2.24.3)

that is,
T/, > J3. (2.24.9)

Thus, the maximum value of the principal values of T is the maximum value of the diagonal elements of
all matrices of T, and the minimum value of the principal values of T is the minimum value of the diagonal
elements of all matrices of T. It is important to remember that for a given T, there are infinitely many matri-
ces and therefore, infinitely many diagonal elements, of which the maximum principal value is the maximum
of all of them and the minimum principal value is the minimum of all of them.

PRINCIPAL SCALAR INVARIANTS OF A TENSOR

The characteristic equation of a tensor T, |T;; — A9;;| = 0 can be written as:

B+ hi—1;=0, (2.25.1)
where
I =Ty +Typ+Ty =T; =uT, (2.25.2)
Ty T Ty Ta Ty Tis 1 1 [ 2 2 }

I, = =—(T;T; — T;;Ty;) == |(&rT)” —te(T7) ], 2.25.3
2T Ty T + Ty, Tss + T3 Tss| 2 (T3 i) 2 (&rT) ") ( )

Ty T Ti
I3 =Ty Ty Tx|=det [T} (2.25.4)

T3 T T3

Since by definition, the eigenvalues of T do not depend on the choices of the base vectors, therefore the
coefficients of Eq. (2.25.1) will not depend on any particular choices of basis. They are called the principal
scalar invariants of T.
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We note that, in terms of the eigenvalues of T, which are the roots of Eq. (2.25.1), the scalar invariants
take the simple form

11 = ;\.1 + ;,2 + 13,
I, = 2]/12 -+ )uz/l3 + 23/1], (2255)
Iy = A1 243.

Example 2.25.1
For the tensor of Example 2.22.4, first find the principal scalar invariants and then evaluate the eigenvalues using
Eq. (2.25.1).

Solution
The matrix of T is

0 4 -3
Thus,
h=243-3=2,
2 0 3 4 2 0
b= + + = 25,
0 3 4 -3 0 -3
I =T = -50.
These values give the characteristic equation as
22 —2,%2-25,+50=0,
or
(A=2)(A—=5)(4+5) =0.
Thus the eigenvalues are A = 2, A = 5 and 4 = —b, as previously determined.

PROBLEMS FOR PART B

2.19 A transformation T operates on any vector a to give Ta = a/|a|, where |a| is the magnitude of a. Show
that T is not a linear transformation.

2.20 (a) A tensor T transforms every vector a into a vector Ta = m x a, where m is a specified vector. Show
that T is a linear transformation. (b) If m = e; + e,, find the matrix of the tensor T.

2.21 A tensor T transforms the base vectors e; and e, such that Te; =e; +e,, Te, =e; —es.
Ifa = 2e; + 3e, and b = 3e; + 2e;,, use the linear property of T to find (a) Ta, (b) Tb, and (c) T(a+b).

2.22 Obtain the matrix for the tensor T, that transforms the base vectors as follows: Te; = 2e; + e3,
Te, = e; + 3e3, Te; = —e; + 3e;.

2.23 Find the matrix of the tensor T that transforms any vector a into a vector b = m(a - n) where

2 2
m = 7(e1 +e) andn :7(—e1 +es3).
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2.24

2.25

2.26

2.27

2.28

2.29

2.30

231

2.32

2.33

2.34

2.35

CHAPTER 2 Tensors

(a) A tensor T transforms every vector into its mirror image with respect to the plane whose normal is
e,. Find the matrix of T. (b) Do part (a) if the plane has a normal in the e; direction.

(a) Let R correspond to a right-hand rotation of angle 6 about the x;-axis. Find the matrix of R. (b) Do
part (a) if the rotation is about the x,-axis. The coordinates are right-handed.

Consider a plane of reflection that passes through the origin. Let n be a unit normal vector to the plane
and let r be the position vector for a point in space. (a) Show that the reflected vector for r is given by
Tr=r —2(r-n)n, where T is the transformation that corresponds to the reflection. (b) Let
n = (e; + e, + e3)/+/3; find the matrix of T. (c) Use this linear transformation to find the mirror image
of the vector a = e; + 2e; + 3es.

Knowing that the reflected vector for r is given by Tr =r — 2(r-n)n (see the previous problem),
where T is the transformation that corresponds to the reflection and n is the normal to the mirror, show
that in dyadic notation the reflection tensor is given by T = I — 2nn and find the matrix of T if the nor-
mal of the mirror is given by n = (e; + e, +e3)/V/3.

A rotation tensor R is defined by the relation Re; = e;, Re, = e3, Res; = e;. (a) Find the matrix of R
and verify that R™R = I and det R = 1 and (b) find a unit vector in the direction of the axis of rotation
that could have been used to effect this particular rotation.

A rigid body undergoes a right-hand rotation of angle 6 about an axis that is in the direction of
the unit vector m. Let the origin of the coordinates be on the axis of rotation and r be the position
vector for a typical point in the body. (a) Show that the rotated vector of r is given
by: Rr=(1—cosf)(m-r)m+ cosfr + sinf(m x r), where R is the rotation tensor. (b) Let
m = (e; + e, + e3)/+/3, find the matrix for R.

For the rotation about an arbitrary axis m by an angle 0, (a) show that the rotation tensor is given
by R = (1 —cosf)(mm) + cosf1 + sinfE, where mm denotes that dyadic product of m and m,
and E is the antisymmetric tensor whose dual vector (or axial vector) is m, (b) find R”, the antisym-
metric part of R and (c) show that the dual vector for R® is given by (sin 0)m. Hint:
Rr = (1 —cosf)(m-r)m + cosfOr + sinf (m X r) (see previous problem).

(a) Given a mirror whose normal is in the direction of e,, find the matrix of the tensor S, which first trans-
forms every vector into its mirror image and then transforms them by a 45° right-hand rotation about the
e;-axis. (b) Find the matrix of the tensor T, which first transforms every vector by a 45° right-hand rotation
about the e;-axis and then transforms them by a reflection with respect to a mirror (with normal e;).
(c) Consider the vector a = e + 2e; + 3es; find the transformed vector by using the transformation S.
(d) For the same vector a = e + 2e; + 3es, find the transformed vector by using the transformation T.

Let R correspond to a right-hand rotation of angle @ about the xs-axis; (a) find the matrix of R
(b) Show that R? corresponds to a rotation of angle 20 about the same axis. (¢) Find the matrix of
R" for any integer n.

Rigid body rotations that are small can be described by an orthogonal transformation R =1+ ¢R”,
where ¢ — 0 as the rotation angle approaches zero. Consider two successive small rotations, R; and
R,; show that the final result does not depend on the order of rotations.

Let T and S be any two tensors. Show that (a) T' is a tensor, (b) TT +8T = (T+S)T, and
(c) (TS)" = S™TT.

For arbitrary tensors T and S, without relying on the component form, prove that (a) (T~")T = (TT)™!
and (b) (TS) ' =s~'T ..



Problems for Part B 43

2.36 Let {e;}and {e/} be two rectangular Cartesian base vectors. (a) Show that if e/ = Q,,e,, then
e; = Qine,,. (b) Verify 0,0, = 0jj = QimQjm-

2.37 The basis {e/} is obtained by a 30° counterclockwise rotation of the {e;} basis about the e; axis.
(a) Find the transformation matrix [Q] relating the two sets of basis. (b) By using the vector transforma-
tion law, find the components of a = v/3e| + e, in the primed basis, i.e., find a/ and (c) do part (b)
geometrically.

2.38 Do the previous problem with the {e/} basis obtained by a 30° clockwise rotation of the {e;} basis
about the ez axis.

2.39 The matrix of a tensor T with respect to the basis {e;} is

Find T{,, T{, and T}, with respect to a right-handed basis {e/} where e] is in the direction of —e, + 2e3
and e} is in the direction of e;.

2.40 (a) For the tensor of the previous problem, find [T/}, i.e., [T],, where {e/} is obtained by a 90° right-
hand rotation about the e; axis and (b) obtain T}, and the determinant \Ti}| and compare them with T;;
and |T;]. '

2.41 The dot product of two vectors a = a;e; and b = b;e; is equal to a;b;. Show that the dot product is a sca-
lar invariant with respect to orthogonal transformations of coordinates.

242 If T; are the components of a tensor, (a) show that T;T; is a scalar invariant with respect to
orthogonal transformations of coordinates, (b) evaluate T;7T; with respect to the basis {e;} for

1 00 0 0 1
M= |1 2 5/, (c)find [T]"if e/ =Qe;, where [Q] = |1 0 O [, and (d) verify for the above that
1 2 3 01 0
€; €;

TiT; = TyTy.
2.43 Let [T] and [T]’ be two matrices of the same tensor T. Show that det[T] = det[T]’.

2.44 (a) If the components of a third-order tensor are Ry, show that R;; are components of a vector. (b) If
the components of a fourth-order tensor are R;j;, show that R;;; are components of a second-order ten-
sor. (c) What are components of R;;.. if R;j... are components of a tensor of n™ order?

2.45 The components of an arbitrary vector a and an arbitrary second tensor T are related by a triply sub-
scripted quantity R;; in the manner a; = R;3Tj for any rectangular Cartesian basis {e;}. Prove that
R are the components of a third-order tensor.

2.46 For any vector a and any tensor T, show that (a) a - TAa = 0 and (b) a-Ta = a- TSa, where T and TS
are antisymmetric and symmetric part of T, respectively.

2.47 Any tensor can be decomposed into a symmetric part and an antisymmetric part, that is, T = TS 4+ T%.
Prove that the decomposition is unique. (Hint: Assume that it is not true and show contradiction.)

1 2 3
2.48 Given that a tensor T has the matrix [T] = |4 5 6|, (a) find the symmetric part and the antisym-
7 8 9

metric part of T and (b) find the dual vector (or axial vector) of the antisymmetric part of T.
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Prove that the only possible real eigenvalues of an orthogonal tensor Q are A = +1. Explain the direc-
tion of the eigenvectors corresponding to them for a proper orthogonal (rotation) tensor and for an
improper orthogonal (reflection) tensor.

[1o—2 2
Given the improper orthogonal tensor [Q] = 3 [—2 1 —2]. (a) Verify that det [Q] = —1.

-2 -2 1
(b) Verify that the eigenvalues are 4 = 1 and —1. (¢) Find the normal to the plane of reflection (i.e.,
eigenvectors corresponding to A = —1) and (d) find the eigenvectors corresponding to A = 1 (vectors

parallel to the plane of reflection).

Given that tensors R and S have the same eigenvector n and corresponding eigenvalues r; and sy,
respectively, find an eigenvalue and the corresponding eigenvector for T = RS.

Show that if n is a real eigenvector of an antisymmetric tensor T, then the corresponding eigenvalue
vanishes.

(a) Show that a is an eigenvector for the dyadic product ab of vectors a and b with eigenvalue a - b,
(b) find the first principal scalar invariant of the dyadic product ab and (c) show that the second and
the third principal scalar invariant of the dyadic product ab vanish, and that zero is a double eigenvalue
of ab.

For any rotation tensor, a set of basis {e/} may be chosen with e} along the axis of rotation so that
Re| = cosfe| +sinfej, Rej = —sinfe| 4 cosfe), Re; = e}, where 0 is the angle of right-hand rota-
tion. (a) Find the antisymmetric part of R with respect to the basis {e/}, i.e., find [R*],,. (b) Show that
the dual vector of R is given by t* = sinfe} and (c) show that the first scalar invariant of R is given
by 1 + 2cosf. That is, for any given rotation tensor R, its axis of rotation and the angle of rotation can
be obtained from the dual vector of R” and the first scalar invariant of R.

The rotation of a rigid body is described by Re; = e;, Re, = e3, Re; = e;. Find the axis of rotation
and the angle of rotation. Use the result of the previous problem.

[100

Given the tensor [Q]=| 0 —1 0] . (a) Show that the given tensor is a rotation tensor. (b) Verify

0 0 1
that the eigenvalues are 4 = 1 and —1. (c) Find the direction for the axis of rotation (i.e., eigenvectors
corresponding to 4 = 1). (d) Find the eigenvectors corresponding to 4 = —1 and (e) obtain the angle of rotation
using the formula /; = 1+ 2cos 0 (see Prob. 2.54), where I; is the first scalar invariant of the rotation
tensor.

Let F be an arbitrary tensor. (a) Show that F TF and FF' are both symmetric tensors. (b) If
F = QU = VQ, where Q is orthogonal, show that U? = F'F and V> = FF". (c) If / and n are eigen-
value and the corresponding eigenvector for U, find the eigenvalue and eigenvector for V.
LTy TyTji

2 2
A tensor T has a matrix [T] given below. (a) Write the characteristic equation and find the principal
values and their corresponding principal directions. (b) Find the principal scalar invariants. (c) If
n;, Ny, nj are the principal directions, write [T]n,-‘ (d) Could the following matrix [S] represent the same

5 4 0 7 2 0

4 -1 0],[8] [2 1 0 ]
0o o0 3 0 0 -1

Verify that the second principal scalar invariant of a tensor T can be written: I, =

tensor T with respect to some basis? [T] =
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300
2.60 Do the previous problem for the following matrix: [T]= |0 0 4
0 4 0

2.61 A tensor T has a matrix given below. Find the principal values and three mutually perpendicular prin-

cipal directions.
1 10
T=|1 1 0].
0 0 2

TENSOR CALCULUS

TENSOR-VALUED FUNCTIONS OF A SCALAR

Let T = T(¢) be a tensor-valued function of a scalar ¢ (such as time). The derivative of T with respect to ¢ is
defined to be a second-order tensor given by:

dar . T+ At) —T(2)
AT A (2.26.1)

The following identities can be easily established:

d dT dS

Srs) =" (2.26.2)
& aom) =212 (226.3)
%(m _ %s + T%?, (2.26.4)
) =Tar 1, (226.5)
% (T7) — (% >T. (2.26.6)

We shall prove here only Eq. (2.26.5). The other identities can be proven in a similar way. Using the
definition given in Eq. (2.26.1), we have

T(r+ Ar)a(t + Ar) — T(r)a(r)

d
E[ (Ta) = 1imA,*,0

At
~ limy, T(t+ An)a(t + Ar) — T(t)a(t) — T(t)a(r + At) + T(r)a(r + Ar)
= A At
~ limy T(t+ At)a(t + Ar) — T(t)a(r 4 Ar) + T(t)a(r 4 At) — T(t)a(z)
= Ao At

T(t+ Ar) — T(z)
At
d(Ta) dT da

= — T—.
dt dta+ dt

= limp, o

. a(r+ Ar) —a(r)
a(t+ Ar) + Al::no T() A

Thus,
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Example 2.26.1
Show that in Cartesian coordinates, the components of d T/dt, i.e., (dT/dt) are given by the derivatives of the com-
ponents dTj/dt.

Solution
From
Tj=ei-Tey,
we have
dTy  de, dT de;
— =——"Te
gt~ dr e Tter g ter g
Since the base vectors are fixed, their derivatives are zero; therefore,
dfy_, dT, _(dT
AN

Example 2.26.2 4Q
Show that for an orthogonal tensor Q(1), (E) Q' is an antisymmetric tensor.

Solution
Since QQ" = I, we have
T
d(QQ ) QL@ dQQT A_,
dt dt '
T T
Since [see Eq. (2.26.6)] ﬂ = <(2,?) therefore, the above equation leads to

QY  da
o(F) -0

.
Now Q(%) = (dQQT) therefore,

that is, (%?) Q' is an antisymmetric tensor.

Example 2.26.3
A time-dependent rigid body rotation about a fixed point can be represented by a rotation tensor R(#), so that a posi-
tion vector r, is transformed through the rotation into r(¢) = R(¢)r,. Derive the equation

d
G exr (2.26.7)

where w is the dual vector of the antisymmetric tensor %RT.
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Solution
From r(f) = R(t)r,, we obtain
dar dR dR dR

_ = — = — T i
G- a @R rmgRe M

R
But %RT is an antisymmetric tensor (see the previous example, Example 2.26.2) so that

ar

dt*‘”xr (i)

. dR L . . . ,
where w is the dual vector of ERT. From the well-known equation in rigid body kinematics, we can identify @ as the

angular velocity of the rigid body.

SCALAR FIELD AND GRADIENT OF A SCALAR FUNCTION

Let ¢(r) be a scalar-valued function of the position vector r. That is, for each position r, ¢(r) gives the value
of a scalar, such as density, temperature, or electric potential at the point. In other words, ¢ (r) describes a
scalar field. Associated with a scalar field is a vector field, called the gradient of ¢. The gradient of ¢ at a
point is defined to be a vector, denoted by grad ¢ or by V¢ such that its dot product with dr gives the dif-
ference of the values of the scalar at r + dr and r, i.e.,

d = ¢(r +dr) — ¢(r) = Ve - dr. (2.27.1)

If dr denote the magnitude of dr, and e the unit vector in the direction of dr (Note: e = dr/dr). Then the
above equation gives, for dr in the e direction,

dp

S =Ve (227.2)

That is, the component of V¢ in the direction of e gives the rate of change of ¢ in that direction (directional
derivative). In particular, the components of V¢ in the coordinate directions e; are given by

o  (do B N

Therefore, the Cartesian components of V¢ are d¢/0x;, that is,

09 109 90, 09, (2.27.4)

V¢ 6X1 Ox X2 6 axr

The gradient vector has a simple geometrical interpretation. For example, if ¢(r) describes a temper-
ature field, then, on a surface of constant temperature (i.e., isothermal surface), ¢ = a constant. Let r be a
point on an isothermal surface. Then, for any and all neighboring point r+dr on the same isothermal sur-
face, d¢p = 0. Thus,V¢ - dr = 0. In other words, V¢ is a vector, perpendicular to the surface at the point
r. On the other hand, the dot product V¢ -dr is a maximum when dr is in the same direction as V¢. In
other words, V¢ is greatest if dr is normal to the surface of constant ¢ and in this case, d¢p = |V|dr, or

(@) — V4L, (2.27.5)
dr ) max

for dr in the direction normal to the surface of constant temperature.



48 CHAPTER 2 Tensors

Example 2.27.1
If ¢ = x1% + 2x3, find a unit vector n normal to the surface of a constant ¢ passing through the point (2,1,0).

Solution
By Eq. (2.27.4),

¢ o ¢
V(f) 8—)(191 +a—X262 +a—e3 Xo€1 + X1€2 +293.

At the point (2,1,0), V¢ = e; + 2e, + 2e3. Thus,

(e1 + 2ey + 2e3).

U..)l'—‘

Example 2.27.2
If q denotes the heat flux vector (rate of heat transfer/area), the Fourier heat conduction law states that

q= —kve, 0

where © is the temperature field and k is thermal conductivity. If ® =2(x%+x%), find VO at the
location A (1,0) and B@/\/Z 1/\/§>. Sketch curves of constant ® (isotherms) and indicate the vectors q at the
two points.

Solution
By Eq. (2.27.4),

Ve = 2—2 1 +§7®e2 +g® e3 = 4xe; +4xe;.

Thus,

q= —4k(X161 + Xgﬁg).

ds

X4

FIGURE 2.27-1
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At point A,
dn = —4key,
and at point B,
Qs = —2V2k(e1 + e).

Clearly, the isotherms, Figure 2.27-1, are circles and the heat flux is an inward radial vector (consistent with heat
flowing from higher to lower temperatures).

Example 2.27.3
A more general heat conduction law can be given in the following form:

q=—-KVo,

where K is a tensor known as thermal conductivity tensor. (a) What tensor K corresponds to the Fourier heat conduc-
tion law mentioned in the previous example? (b) Find q if ® = 2x; + 3x,, and

2 -1 0
K] = [—1 2 o}.
0 0 3

Solution
(a) Clearly, K = kI, so that q = —kIVO® = —kVO.

2 -1 0 2 -1
SCHIEE
0O 0 3 0 0

q=—-€ — 4827

(b) VO = 2e; + 3e, and

that is,

which is clearly not normal to the isotherm (see Figure 2.27-2).

X1

FIGURE 2.27-2
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VECTOR FIELD AND GRADIENT OF A VECTOR FUNCTION

Let v(r) be a vector-valued function of position describing, for example, a displacement or a velocity field.
Associated with v(r), is a tensor field, called the gradient of v, which is of considerable importance. The gra-
dient of v (denoted by Vv or grad v) is defined to be the second-order tensor, which, when operating on dr,
gives the difference of v at r 4 dr and r. That is,

dv =v(r+dr)—v(r) = (Vv)dr. (2.28.1)

Again, let dr denote |dr| and e denote dr/dr; we have

dv
(E) in e—direction a (VV)e. (2282)

Therefore, the second-order tensor Vv transforms a unit vector e into the vector describing the rate of
change of v in that direction. In Cartesian coordinates,

dv ov
- =—= ; 2.28.3
(dl‘) in e;—direction 8xj (VV)eJ? ( )

therefore, the components of Vv in indicial notation are given by

ov_O(v-e) v

(VV),,=ef-(Vv)e,=e,~0—)g_ o o’ (2.28.4)
and in matrix form
[Ovi v O ]
ox; Ox, 0Ox3
8V2 8\12 (9\12
[Vv] = ox; Ox, O | (2.28.5)
8x| 8x2 a)n

Geometrical interpretation of Vv will be given later in connection with the deformation of a continuum
(Chapter 3).

DIVERGENCE OF A VECTOR FIELD AND DIVERGENCE OF A TENSOR FIELD

Let v(r) be a vector field. The divergence of v(r) is defined to be a scalar field given by the trace of the gra-
dient of v. That is,

divv = tr(Vv). (2.29.1)
In Cartesian coordinates, this gives

Ovy  Ovy  Ovs O

divv=—-4 =4 -—22="721
vy ox;  Oxy Oxz  Ox;

(2.29.2)
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Let T(r) be a tensor field. The divergence of T(r) is defined to be a vector field, denoted by div T, such
that for any vector a

(divT) -a=div(T"a) — tr(T"Va). (2.29.3)

To find the Cartesian components of the vector div T, let b = div T, then (Note: Ve; = 0 for Cartesian
coordinates), from (2.29.3), we have

bi=b-e; = div(T"e;) — tr(T"Ve;) = div(T;e;) — 0 = OT;;/0x;. (2.29.4)
In other words,

Example 2.29.1
Let « = a(r) anda = a(r). Show that div(ea) = adiva + (Vv) - a.

Solution
Let b=oa. Then b,= aa; so

. ob; 0a;, Ow
leb_a_X/‘_aa_X/ a—)(/a/.
That is,

div (@) = a diva+ (Vo) -a. (2.29.6)
Example 2.29.2
Given a = a(r) and T = T(r), show that

div (aT) = T(Va) + o div T, (2.29.7)
Solution
We have, from (2.29.5),

. _0(aTy) o Ty .
div (oT) = % e = 6_)9 Tiei + aa—xje, =T(Va) +adivT.

*We note that the Cartesian components of the third-order tensor M = VT = V(T,:,-e,-q)are OT;j/Ox;.. In terms of M = Mjj.e;eje;, div
T is a vector given by M;je;. More on the components of VT will be given in Chapter 8.
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CURL OF A VECTOR FIELD

Let v(r) be a vector field. The curl of v(r) is defined to be a vector field given by twice the dual vector of the
antisymmetric part of Vv. That is

curl v = 2t*, (2.30.1)
where t* is the dual vector of (Vv)™.
In rectangular Cartesian coordinates,
[, Ufon _om)  1fom_aw)]

2 8}(2 8X1 2 8){3 8X1

A 1 Bvl 8\)2 1 8\/2 8V3
= |- (== 2.30.2
[VV} 2 (8}(2 8)(1 0 2 8}(3 8x2 ( 3 )

_Lfon _dvs) L1 [0v2 Ov 0
2 6}(3 ox) 2 8X3 Ox;

Thus, the curl of v(r) is given by [see Eq. (2.21.3)]:

aV3 aVZ 6v1 8V3 8\’2 8vl
lv =2 A _ _ - - _ 2 - . 2.30.
curl v t (8)(2 6x3)e1 + (8x3 8x1>e2 + (ébq 8x2) €3 (2.30.3)

It can be easily verified that in indicial notation

(") .
curl v = —¢; —e;. (2.30.4)
’ 8xk

LAPLACIAN OF A SCALAR FIELD

Let f(r) be a scalar-valued function of the position vector r. The definition of the Laplacian of a scalar field is
given by

V2 = div (Vf) = t(V(Vf)). (231.1)
In rectangular coordinates the Laplacian becomes

. o  Of f ¥
20 _ — = < 2
Vi =u(V(Vf)) = o~ o + 2 + el (2.31.2)

LAPLACIAN OF A VECTOR FIELD

Let v(r) be a vector field. The Laplacian of v is defined by the following:

V2v =V (div v) — curl (curl v). (2.32.1)
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In rectangular coordinates,

. 0 (0w (o
V(le V) = 87_)51 (aixk) €, curl v = — ik (67/\’,() €y, (2322)
and
d v, a [0v,
curl (curl v) = _SM8_X,3 (—sw-k B_)Cj() € = Einfluji a_x,; (8—)(1) e;. (2.32.3)

NOW &iupénji = —Enipbojt = —(551'5/5’/« - 5ik5,;j) [see Prob. 2.12], therefore,

a (0v 0 (Ov; a (0
et et =~on =0u0n) g ()= (=g () + (G oo 0

Thus,

0 (0Ov g (0v; 9 (ov
vz -V (di _ _ k ) i p )
V= (le V) curl (curl V) 8x,- (8xk) ¢ { 8Xﬁ (8xﬁ) + 8x,~ (6)(,;) }el. (2'32’5)

That is, in rectangular coordinates,

2 62\1,' 2
= B0, e; = Vve;. (2.32.6)
In long form,
(92\11 82v1 (?2\/] 82l’2 02\/2 82172 02\/3 82\/3 (92\13
Viy — Z ey —— 424 es. 2.32.7
v (Ox% +0x% +6x§)el+<8x% +6x% +6x§)e2+(&\% +8x% +8x§)e3 ( )

Expressions for the polar, cylindrical, and spherical coordinate systems are given in Part D.

PROBLEMS FOR PART C

d dT dS
2.62 Prove the identity ” (T+S)= -t using the definition of derivative of a tensor.
. d dS dT . . -
2.63 Prove the identity 7 (TS) = TE + ES using the definition of derivative of a tensor.

dt dt
constant vectors.

dr’  (dT\"
2.64 Prove that — = (—) by differentiating the definition a- Th = b - T"a, where a and b are arbitrary

2.65 Consider the scalar field ¢ = x% + 3x1x2 + 2x3. (a) Find the unit vector normal to the surface of con-
stant ¢ at the origin and at (1,0,1). (b) What is the maximum value of the directional derivative of ¢
at the origin? at (1,0,1)? (c¢) Evaluate d¢/dr at the origin if dr = ds(e; + e3).

2.66 Consider the ellipsoidal surface defined by the equation x?/a* + y*/b* + 72 /b* = 1. Find the unit vec-
tor normal to the surface at a given point (x, y, z).
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2.67 Consider the temperature field given by ® = 3xx,. (a) If ¢ = —kVO, find the heat flux at the point
A(1,1,1). (b) If ¢ = —KVO, find the heat flux at the same point, where

k 0 O
Kl=1|0 2 o0].
0 0 3k
2.68 Let ¢(x1,x2,x3) and Y(x;,x2,x3) be scalar fields, and let v (x1, xp,x3) and w (x,x2,x3) be vector fields.
By writing the subscripted components form, verify the following identities:

(@) V(¢ +y)=V¢+ Vy, sample solution:

W@+ =22 B gy,

(b) div(v+w) =divv+div w, (c) div(¢v) = (Vo)v + ¢(div v) and (d) div(curl v) = 0.

2.69 Consider the vector field v = x%el + x%ez + x%e3. For the point (1,1,0), find (a) Vv, (b) (VVv)v, (c) div v
and curl v, and (d) the differential dv for dr = ds(e; + e, + e3)/V/3.

CURVILINEAR COORDINATES

In Part C, the Cartesian components for various vector and tensor operations such as the gradient, the diver-
gence, and the Laplacian of a scalar field and tensor fields were derived. In this part, components in polar,
cylindrical, and spherical coordinates for these same operations will be derived.

POLAR COORDINATES

Consider polar coordinates (r,0), (see Figure 2.33-1) such that

r=\/3+2 and 0:tan’1j§—?. (2.33.1)

X1

FIGURE 2.33-1

The unit base vectors e, and ey can be expressed in terms of the Cartesian base vectors e; and e, as

e, = coslle; +sinle,, ey = —sinle; + cosOe;. (2.33.2)
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X2
eg+dey er+de, 6@%
%e
Q ep+deg
S
% €0
ae P
er+der
e i 0
e
0 e, Xq

FIGURE 2.33-2

These unit base vectors vary in direction as 6 changes. In fact, from Egs. (2.33.2), we have
de, = (—sinfe; + cosfe;)d0 = dOey, dey = (—cosle; —sinle,)d0 = —dOe,. (2.33.3)

The geometrical representation of de, and dey are shown in Figure 2.33-2, where one notes that e, (P) has
rotated an infinitesimal angle d0 to become e,(Q) = e,(P) + de, where de, is perpendicular to e,(P) with a
magnitude |de,| = (1)d0 = dO. Similarly, dej is perpendicular to ey (P) but pointing in the negative e, direc-
tion, and its magnitude is also d0.

Now, from the position vector

r=re,, (2.33.4)
we have
dr = dre, + rde,. (2.33.5)
Using Eq. (2.33.3), we get
dr =dre, +rd0ey. (2.33.6)

The geometrical representation of this equation is also easily seen if one notes that dr is the vector PQ in the
preceding figure.
The components of Vf, Vv, div v, div T, V?f and V?v in polar coordinates will now be obtained.

(i) Components of Vf:
Let f(r,0) be a scalar field. By definition of the gradient of f, we have

df =Vf-dr = (a,e, +apey)- (dre, +rdley) = a,dr +agrd0, (2.33.7)
where a, and ay are components of Vf in the e, and e, direction, respectively. But from calculus,

U X 2.33.8)

af or 00

Since Eqgs. (2.33.7) and (2.33.8) must yield the same result for all increments dr, df, we have

_u _Lor

a, = E, ag = ;69 ) (2339)
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thus,

Components of Vv: Let

By definition of Vv, we have
dv = Vvdr.

Let T = Vv. Then

dv ="Tdr =T(dre, + rdOeg) = drTe, + rd0Tey.
Now

Te, =T, e +Tygep and Tey =T, pe. + Typey,
therefore,

dv = (Tydr +Trgrd0)e, + (To,dr +Toord0)ey.
From Eq. (2.33.11), we also have

dv =dv,e, +v,de. +dvgey + vodey.
Since [see Eq. (2.33.3)]
de, =d0Oey, dey = —d0e,,
therefore, Eq. (2.33.16) becomes
dv = (dv, —vod0)e, + (v,dO +dvy)ey.

From calculus,

v, Ov, Oy
E d’ + %d 9, dV 0 = —F~—
Substituting Eq. (2.33.19) into Eq. (2.33.18), we have

_ove v, Ovg vy
dv = |:Ed’ + <%7V0)d9}er+ |:Wdi + <W+V7-)d0:|e().

v ar+ 2 a0,

dvr = or 90

Eq. (2.33.15) and Eq. (2.33.20), then, give

%d‘-i- %
"\ o0 a0

or
Eq. (2.33.21) must hold for any values of dr and df. Thus,

0w, 1 (0w, _Ovy 1 /0vy
Trr*E: Trof;(ae—VG), TG"iW’ Toaf’j(a—e-i-vr)

vy vy
or

- v(;)a'f) =T,dr+T,grd0, ——dr—+

—+v,.)d0 =Tg,dr + Tepyrd0.

(2.33.10)

(2.33.11)

(2.33.12)

(2.33.13)

(2.33.14)

(2.33.15)

(2.33.16)

(2.33.17)

(2.33.18)

(2.33.19)

(2.33.20)

(2.33.21)

(2.33.22)
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In matrix form,

[Vv] = . (2.33.23)

8"() 1 8v0
o r (ae + V")
(i) div v:

Using the components of Vv given in (ii), that is, Eq. (2.33.23), we have

divv =1tr(Vv) = % —0—1 (% + vr) . (2.33.24)
T r

(iv) Components of curl v:
The antisymmetric part of Vv is

L A I
| rlao or

[Vv]* = 5 . (2.33.25)
o) SO 0
Flao V) T e

Therefore, from the definition that curl v = twice the dual vector of (VV)A, we have

_(Ove ve 10V,

(v) Components of div T:
The invariant definition of the divergence of a second-order tensor is
(div T) -a = div(T"a) — tr((Va)TT) for any a. (2.33.27)
Take a = e,; then the preceding equation gives
(div T), = div(T"e,) — tr((Ve,)TT). (2.33.28)

To evaluate the first term on the right-hand side, we note that

TTe/‘ =Tne +Toeq, (2.33.29)
so that according to Eq. (2.33.24),
. . OT, 1 (0T,
T _ _ i - 7 ). . .
div(T"e,) = div(T,e, + T,pep) = o + ( 50 + T,,) (2.33.30)

To evaluate the second term, we first use Eq. (2.33.23) to obtain Ve,. In fact, since e, = (1)e, + (0)ey,
we have, with v, = 1l and vy = 0,



CHAPTER 2 Tensors

0 0
. [Ve]M = |Tro Too

r r

0

Ver] = ([ Ve, 1)) = 2

0

N |l—= O

Thus, Eq. (2.33.28) gives

. aTrr 1 aTr(‘) Trl‘ - T99
divT) =—+——+ 4+ ——.
(div ), or + r 00 r

In a similar manner, one can derive

_ 0Ty,  10T9y  Tro +Tor
WD =5 730 *— +
(vi) Laplacian of f(x):
Given a scalar field f(x), the Laplacian of f(x) is given by V*f = div(Vf)

coordinates,
10
V=T 1 e,
ov, 10 »
From, divv = GV —1—’—%—&—‘}— e have
2 2
V3 =div Vf = ﬂ—‘—iﬂ%— laf

2902 ror

(vii) Laplacian of a vector field v(x):

Laplacian of v is given by: V2v = V(div v) — curl curl v. Now, in polar coordinates:

. 0 [Ov, 10vy v, 10 [0v, 10vy v,
dive) = o [ Grt -2l T e b [ -
V(divy) 1"(0r+)‘60+r>e+r80 (0}"+r60+r)e0

0
_ 62‘}"4,182‘}9 ,laﬁ+l%,ﬂ e + lazv" +l82\/9 +l8v" e
"\ o2 roro0 200  ror 2| " ro00r 12 90*>  r2o0 0

and

_(Ovg vy 10V,
C“ﬂv—<w+7‘;ae)

Since [see Eq. (2.34.7)]
dv = lé)vz_% + %_% + aV() + Vo 1(9\/,
arv=\ra0 a2 )Y e e )% T ar r o0

19 (Ovg  ve 10v\ _ l[)zvo 1avg 132vr
790 =\ra0or T2 90 2907

therefore,

(curl curl v), = o + 7790

(2.33.31)

(2.33.32)

(2.33.33)

= tr(V(Vf)). In polar

(2.33.34)

(2.33.35)

(2.33.36)

(2.33.37)

(2.33.38)
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0 (Ovyg ve 10v, vy 10vy vy 1 0%, 1 0v,
leurlv), = —— (20 Y0 290 _ (20 “cve Fo, D oh DO 2.33.
(curleurl v), or ( or + r 1”00) < o r or + 2 + rorod  r29o0 (2.33.39)
Thus,
v, 107, v, 10v, 208vy v,
2V =y T 2 270 2.33.4
(V2Y), or? +r2 90? + 02 +r or 1290 2’ (2.33.40)
and
Pvyg 10%y 10vy 20v, vy
2 ¥
V¥ =Gz a2 Trar Trae 2 (23341

CYLINDRICAL COORDINATES

In cylindrical coordinates, the position of a point P is determined by (r, 0, z), where r and 0 determine the
position of the vertical projection of the point P on the xy plane (the point P’ in Figure 2.34-1) and the coor-
dinate z determines the height of the point P from the xy plane. In other words, the cylindrical coordinates is a
polar coordinate (r, 6) in the xy plane plus a coordinate z perpendicular to the xy plane.

We shall denote the position vector of P by R, rather than r, to avoid confusion between the position vec-
tor R and the coordinate » (which is a radial distance in the xy plane). The unit vector e, and ey are on the xy
plane and it is clear from Figure 2.34-1 that

R = re, + ze., (2.34.1)
and

dR = dre, + rde, + dze, + zde.. (2.34.2)

In the preceding equation, de, is given by exactly the same equation given earlier for the polar coordinates

[Eq. (2.33.3)]. We note also that e, never changes its direction or magnitude regardless where the point P is,
thus de. = 0. Therefore,

dR = dre, +rd0ey + dze,. (2.34.3)

FIGURE 2.34-1
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By retracing all the steps used in the previous section on polar coordinates, we can easily obtain the fol-
lowing results:

(i) Components of Vf:

Uo (LU U (2.34.4)

V= ar 700" " oz

(ii) Components of Vv:

on 1fon N o
a rl\lao ") &
(wv)= |0 L[ ) v (2.34.5)
or r\ o0 ! 0z
o dow v
or roo 0z
(iii) div v:
. Ove 1 (0v v,
divv = o + - (8—9 + v,,) + 5 (2.34.6)
(iv) Components of curl v:
The vector curl v = twice the dual vector of (VV)A, thus,
_(10v. 0Ovy Ov,  Ov, dvg vy 10v,
curl v= (;a—e—g)er-i‘ (E—E)e + (a’ +——’—8—0)e2. (2347)

(v) Components of div T:

(divT), = aaT’ %aar (’)" ﬂ + aaTZ : (2.34.8)
(divT), 8;}?’ %8; i Lo J,r Tor | 6(79‘52 7 (2.34.9)
(divT), = aaT + ’1 aaT 9" + % + TT (2.34.10)
(vi) Laplacian of f:
V3 =div Vf = 82f LOf Lo O (2.34.11)

2692 ror | 02’

(vii) Laplacian of v:

v, 1%, v, 10v, v, 20vy
gy =Gy J OV O SOV Y 2OV 234.12
(V) or? + 2902 + 072 + ror 12 2900’ ( )
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2 2 2
Pvg 1 Pvy Pvg 10vg 20v, vy (2.34.13)

20y = "
VYo =%z Y ager "oz Trar TRan 2

782\): 1@ 10v. 0%v.

2 —_— N [ —_—
(Viv), = 92 +,.2 90? + r or + 022

(2.34.14)

SPHERICAL COORDINATES

In Figure 2.35-1, we show the spherical coordinates (r, 6, ¢) of a general point P. In this figure, e,, ey and
e, are unit vectors in the direction of increasing r, 6 and ¢, respectively.

FIGURE 2.35-1

The position vector for the point P can be written as
r=re, (2.35.1)
where r is the magnitude of the vector r. Thus,
dr = dre, + rde,. (2.35.2)
To evaluate de, we note from Figure 2.35-1(b) that
e, = cosle, +sinfe/, ey =cosle/ —sinle;, (2.35.3)
where e/ is the unit vector in the OF (i.e., 7’) direction (+/ is in the xy plane). Thus,
de, = —sin0d0e. + cosOde. + cosOdOe/ + sinfde] = (—sinle. + cosOe/)d0 + sinOde],
that is,
de, = d0Oey + sinfde/. (2.35.4)
Now, just as in polar coordinates, due to d¢,

de! = doey, (2.35.5)
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therefore,
de, = d0Oey + sinOdde,. (2.35.6)
Now, from the second equation of (2.35.3), we have,
dey = —sinfd0e/ + cosOde, — cosfdle. = —(sinfe, + cosbe.)dl + cosOde,.
Using Eq. (2.35.3) and Eq. (2.35.5), the preceding equation becomes
deg = —e,d0 + cosOdgpe,. (2.35.7)
From Figure 2.35-1(a) and similar to the polar coordinate, we have
dey = do(—e)). (2.35.8)

With e/ = coslOey + sinfe, (see Figure 2.35-1(b)), the preceding equation becomes

dey = —sinfdge, — cosOddey. (2.35.9)
Summarizing the preceding, we have
de, = d0eg +sinOdpey, deyg = —e.d0 + cosOdpey, dey = —sinOdpe, — cosOdpey, (2.35.10)
and from Eq. (2.35.2), we have
dr =dre, +rd0eg +r sinOdgpey. (2.35.11)

We can now obtain the components of Vf, Vv, div v, curl v, div T, sz, and V2v for spherical
coordinates.

(i) Components of Vf:
Let f(r,0,¢) be a scalar field. By the definition of Vf, we have

df = Vf-dr = |(Vf),e, + (Vf)yeq + (Vf) ¢e¢,)] - (dre, + rd0egy + rsinfddes), (2.35.12)
that is,
df = (Vf), dr + (Vf)4rd0 + (Vf) ,r sin0d. (2.35.13)

From calculus, the total derivative of df is

F o +gd(9 +—d¢ (2.35.14)

I =75 ¢

Comparing Eq. (2.35.14) and Eq. (2.35.13), we have

of 18] 1o

90" (Vf)y = sn00 (2.35.15)

(Vf), =

(ii) Components of Vv:
Let the vector field be represented by

v(r,0,¢) =v.(r,0,¢)e, +vo(r,0,¢)eq +vy(r, 0,d)ey. (2.35.16)
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Letting T = Vv, we have
dv =Tdr = T(dre, + rdOey + rsin0dpes) = drTe, + rd0Tey + rsin0d¢Te,. (2.35.17)

By the definition of components of a tensor T in spherical coordinates, we have

Ter - Trrer + TG)'eG + T¢r'e¢7
Teg =T,ge, +Togeg + Tyopey, (2.35.18)
Te(/, =Tper +Topeq +Tppey.

Substituting these into Eq. (2.35.17), we get

dv = (Tyydr +T,grd0 + T,4r sin0d¢)e, + (Togrd0 + Tg,dr + Togr sinfde)ey

+(Tgrdr + Tpord0 + Tygr sinfde)es. (2.35.19)
We also have, from Eq. (2.35.16),
dv =dv,e, +v,de, +dvoey +vodeg + dvyey + vodey. (2.35.20)
Using the expression for the total derivatives:
8Vr 8vr Bv,-
dv, = ——dr —d9 —d¢,
y o r + + 99 ¢
. vy vy vy
dvyg = o dr +89 d0+8¢ do, (2.35.21)

_Ovp vy

Eq. (2.35.10) and Eq. (2.35.20) become

dv = {E)v,. ( )d0+ (vd,mn@)dqb}e,
or
+{%ﬂd; n (v, +aﬂ)d6 n ( _— cosﬂ>d¢}eg (2.35.22)

+{8av¢dr+8v¢d0 + (+v, sinf + vy cos())dd)}%7
-

Now, comparing Eq. (2.35.22) with Eq. (2.35.19), we have

. v, 0 v, .
(Tyydr + Trgrd0 + Tygr sin0de) = {av; dr + (;0 )de n (%— Vo 51n0>d¢},

(Tordr + Togrd0 + Togr sin0de) = {av—ed; T ( v, + aﬁ) do + (E)V—f’ — vy cos 0) d</>}, (2.35.23)

p) 90 9

(T¢rdr+T¢0rd0 + Typgr sin9d¢) = %d}*+ ng)d@ + %%Jrv, sinf + vy cosf d¢}
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These equations must be valid for arbitrary values of dr, df and d¢, therefore,

8V,< o 8V,< . _ 6V,~ .
T, =5 Tror = ((’N)V‘?)’ Typrsind = (8(]5 v sm0),

Ty, = ((2}—’.9, Toor = (v,- + %VOH) , Togrsind = (aav(/f — vd,cosH) , (2.35.24)
Ty = aavld’ s Teor = %, Tyyrsinf = (%ﬁ; + v,8inf + vGCOSH) .
In matrix form, we have
[ Ov, lc?v,» Ve 1 Ov, v
or radl r rsinf 0¢  r
vy 10vy n vy 1 0Ovg vgcotl
WI=1"ar 700 "+  rsn6op 7 : (2.35.25)
Gy L0y 1 vy v vocotf
or r o0 rsind 0¢p  r r

(iii) div v:
Using Eq. (2.35.25), we obtain

divv:tr(Vv):av" 10vy 1 Ovy & vgcotl

o r o0 rsin()% r r
100 1 O(vgsing) 1 dv, (2.35.26)
T2 or rsin 90 rsinf ¢
(iv) Components of curl v:
The vector curl v = twice the dual vector of (Vv)", therefore
_Jvgoot0 10vy 1 vy 1 %_lﬁ(m@)
curlv = { r * r 90 rsinf 0¢ et rsin@ ¢ r Or €0
(2.35.27)
19(rvg) 10v,
+{; o roo [
(v) Components of div T:
Using the definition of div T given in Eq. (2.33.27) and take a =e,, we have
(divT), = div(Te,) — tr((Ve,)TT). (2.35.28)

To evaluate the first term on the right-hand side, we note that

T e, = T,ve, + Troeg + Trgep, (2.35.29)
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so that by using Eq. (2.35.26) for the divergence of a vector in spherical coordinates, we obtain,

ArTy) 1 OTysind) | 1 9Ty
or rsinf o0 rsin0 O0¢

1
div(TTe,) = = (2.35.30)

To evaluate the second term in Eq. (2.35.28), we first used Eq. (2.35.25) to evaluate Ve,, then calcu-
late (Ve,)T":

0 0 0 0 0 0
Ve = Vr 0 |, [(Ve)T'| = |To/r Too/r Tyo/r (2.35.31)
0 0 l/r T,.¢/r T9¢/r T¢¢/l‘
thus,
(Ve )17y = 100 4 Too (2.35.32)
r r
Substituting Eq. (2.35.32) and Eq. (2.35.30) into Eq. (2.35.28), we obtain,
. - 1 8(1‘2T,.,.) 1 6(T,.9 sin@) 1 8T,,¢, T()() + T(/Nb
WD) = = Trsn0 00 Trsm0 96 1 (2.35.33)
In a similar manner, we can obtain (see Prob. 2.75)
. - 1 8(1‘3T(),-) 1 B(ng sin9) 1 8T94, To — Ty, — T(M,COtO
(divT), TR or +rsin0 00 +rsin0 o¢ + r (2.35.34)
. 1 (9(7’3T¢,~) 1 0(T¢()Sin0) 1 0Ty Trp — Ty + Togcotl
(divT), = B or rsin@ a0 rsinf 9¢ + r ' (2.35.35)
(vi) Laplacian of f:
From
1Oy 1 Ovgsind 1 Ovy
dwv*r_2 or +rsin9 a6 rsin0 d¢
2.35.36
S AL R 3 e
o ra0 rsind 9¢
we have
10| ,0f 1 Lof 1 9 1 of
2 __9 9 Y “
Vi =dv(Vf) =55, ( ar> tsin000 ( a0 “0) t i sin0 06 <rsin9 ¢
(2.35.37)

O 20f 1 (0% )\ cotd of 1 O*f
o2 o T \aer| T2 a0 T st \ 992 )
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(vii) Laplacian of a vector function v:

It can be obtained (see Prob. 2.75)

. 1%, 2 0rty, 1 Ovpsind vy 1 vy sinf vy
V(divv) = (’7 a2 P or J“,.Sin@ ( oroo +6;~8¢) ~ 2sind ( a0 %))er

N 1 %%, 1 vy sinf  9%vy sind 1 (cos0 8vesin(9+1 9 1 vy .
90 12005sin0 0 )"

3 000r | 2sin0 962 + 902 2 \sin?0

> 0 . 2
( 19 a0 1 8 (vpsin0) 1 5%) . (2.35.38)

Psin0d O r2sint0 090 | r2sin20 024 )¢

and
dourd v — 1 Prvy _@ +cot9 18rv0 B l% B 1 & 1 821‘v¢
curteurtv = 2 \000r 96* r \r or rob r2sin?0 §p>  r2sin0 Opor e
n 1 82v¢ sinf B vy 1 Orvy B % B l(’)zrv(g B l(?rv(; 71 v, . l% e
P2sin?0 \ 0600 99> ) 2\ or 90 r o2 2 or roro0 r200) "

1L ov, 1 1 0Ov, 182)‘\/4, " 1 9rvg n 1 1 v, vy
rsin® Ord¢p  risinf d¢ r Orr 2 Or r2 \sin@ d¢  Or
+

e. (2.35.39)
_i 1 B sinH—b—sinHazv(p— vy n cosf 6v¢,sin9_8v_g
Psing \ ¢ 90> 0004 " 2sin?0 \ 00 0
Thus, Vv = V(div v) — curl curl v leads to:
i(?zrzv,. 3 garzv,. N iazvr N cotd dv, N 1 &%, 2 Ovgsind
, r2 or? 3 or 2 902 r2 90  r2sin?0 9¢* r?sinf 90
=y o, : (2.35.40)
r2sinf d¢
10 [ ,0vg 10 1 0 . 1 Pvy
Y92 Y)Y 0 _ YV
. 2or\" o | "0 {sin() g " sin )} T 2sin?0 04
(V) = , (2.35.41)
L2 20w,
r2060  r?sinf 9¢
10 9 vy 1 0 1 0 . 1 82v¢
2 2 0r (’ 6r> +r280{sir16 00 (v 51110)} +r2sin29 d?
(V V)d) (2.35.42)
n 2 % n zcotﬁ ('?v_g
r2sin® 0¢  r?sin® 9
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PROBLEMS FOR PART D

2.70 Calculate div u for the following vector field in cylindrical coordinates:

2.71

2.72

2.73

2.74

2.75

2.76

@ u=uy =0, u,=A+Br.
M) u, =sin0/r, ug =u,=0.
(¢) u =r*sin0/2, wug=r>cos0/2, u,=0.

Calculate Vu for the following vector field in cylindrical coordinates:

u =A/r, ug=Br, u,=0.
Calculate div u for the following vector field in spherical coordinates:
B
u, :Ar+r—2, ug =ugy =0.
Calculate Vu for the following vector field in spherical coordinates:
u, = Ar +B/r2, ug =uy =0.

From the definition of the Laplacian of a vector, V?v = V(div v) — curl curl v, derive the following
results in cylindrical coordinates:

v, 1%, v, 20vey 10v, v,
2 _ r - T r i r .
(V7v), = (81‘2 +r2 062 + 02 1200 ror r2> and

_Pvo 1 Pv  Pvg  10vg  20v vy
o 292 02 " r Or r200 %’

(Vzv)(,

From the definition of the Laplacian of a vector, V?v = V(div v) — curl curl v, derive the following
result in spherical coordinates:

2 o 13 or +)‘2892+ r2 %+;-25in20(9i¢27r2sin0 00 71‘zsin0%

(Vzv) _ (i 8r?v, E@rzv,. 1 0%, cot 0 v, 1 &%, 2 Ovgsinl 2 6v¢,)

From the equation (div T) -a = div(T"a) — tr(T"Va) [see Eq. (2.29.3)], verify that in polar coordinates
the O-component of the vector (divT) is:

. OTg, 10Tg9  Trog+To,
divT), = - .
(divT), or r 00 + r
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2.77 Calculate div T for the following tensor field in cylindrical coordinates:

B
Tog =A——

a2 T..=constant, T,9 =Tg, =T, =T, =Ty, =T,y =0.

2.78 Calculate div T for the following tensor field in cylindrical coordinates:

Az 3Br’z Az Az 3Bz} Ar  3Brz?
Tr/‘:ﬁ_Ta TH(J:E, T.=- F‘FF v Te=T,=— F‘FT )

Tog=Tg=Ty.=T.9 = 07 R2 = "2 + 22'
2.79 Calculate div T for the following tensor field in spherical coordinates:

2B B
T, =A —3 Top =Tpp =A +r73’ T.g =To,=Togy =Tp9 =T,y =Ty = 0.

2.80 From the equation (div T) -a = div(T"a) — tr(T"Va) [see Eq. (2.29.3)], verify that in spherical coordi-
nates the 6-component of the vector (div T) is:

8(1‘3T9,-) 1 9(Tggsin0) 1 0Tgy  Trg —Tor — Tygcotl

1
divT), =—
(divT), =3 or rsin0 00 rsin@ O¢ r

7






